University of BATNA 2
Faculty: Mathematics and Computer
Department: Common Core in Mathematics and Computer Science
1st Year CC-MCS 2023-2024 academic year

Seriesof 1st supervised exercises

Exercise 1

Either the following problems:

1. Calculation of the perimeter of a circle with radius R
2. Calculation of the area of a disc with radius R
3. Calculation of the sum of two complex numbers
4. Calculation of the product of two complex numbers
5. Solution of a second-degree equation in the set of real numbers (R).
6. Deliberation of a group of 20 students, displaying for each student: their name, surname, registration number, average, and the deliberation decision of the jury, either "Admitted" or "Deferred". Knowing that:

- All students in the group take 4 modules (M1, M2, M3, and M4).
- The respective coefficients of the modules are: $2,1,3$, and 2 .
- The student is declared "Admitted" if their average is 10 or higher, otherwise they are declared "Deferred".

Question: Determine for each of the previous problems

- The input data.
- The output results.
- The main steps for solving,

Exercise 2

1. We have $a=4, b=5, c=-1$ et $d=0$, Evaluate the following logical expressions:

- $(\mathrm{a}<\mathrm{b})$ AND $(\mathrm{c} \geq \mathrm{d})$
- $\operatorname{NOT}(\mathrm{a}<\mathrm{b})$ OR $(\mathrm{c} \neq \mathrm{b})$
- NOT $[(a<b)$ OR $(c \neq b)]$
- NOT ($\left(a \neq b^{\wedge} 2\right)$ AND $\left.\left(a^{*} c<d\right)\right)$

2. Knowing that : $\mathrm{A}=$ TRUE $, \mathrm{B}=\mathrm{FALSE}, \mathrm{C}=$ TRUE ; evaluate the following logical expressions:

- (A ORB) AND (A ORC)
- (NOT A AND B) OR (A AND NOT B)
- (A AND B) AND (B AND C) OR (C AND A)
- (A AND B) OR (B AND C) AND (C AND A)
- (A OR(A AND B)) AND (A OR(B AND C))

3. Knowing that $A=3, B=4, X=3.0, Y=-1.0, C=' K$ ' et $F=F a l s e$.

Specify the evaluation order as well as the value of each of the following expressions below:

- $-\mathrm{X}^{*} \mathrm{~A}+\mathrm{Y}$,
- $\mathrm{B}-\mathrm{A} / \mathrm{Y}+2$,
- $\left(4+\mathrm{A}^{*} 4-\mathrm{B}+\left(\mathrm{A}+2^{\wedge} 4\right)\right) /(\mathrm{Y}-9+6 * 3)$,
- $(((\mathrm{B}-2) /(\mathrm{Y} / 3)) / 2)^{*}\left(\left(5^{*} \mathrm{X}\right)-4^{\wedge} 2\right)$,
- F AND NOT(C<'A'),
- $(X>Y)$ OR $(A>B)$,
- $(\mathrm{X} \leq \mathrm{Y})$ AND $(\mathrm{A}<\mathrm{B})$.

Exercise 3

What is the type of each variable: $\mathrm{A}=1, \mathrm{~B}=$ TRUE, test= 12.23 , specialite=' m ',

Exercise 4

Let A and B be two variables of integer type; C and D be two variables of real type; E and F be two variables of boolean type

What is the type of the followingvariable: $\mathrm{A} 1, \mathrm{~B} 1, \mathrm{C} 1, \mathrm{~A} 2, \mathrm{~B} 2, \mathrm{C} 2, \mathrm{D} 2, \mathrm{~A} 3, \mathrm{~B} 3, \mathrm{C} 3, \mathrm{D} 3$
$\mathrm{A} 1 \leftarrow \mathrm{~A}+\mathrm{B} ; \mathrm{B} 1 \leftarrow \mathrm{~A} * \mathrm{~B} ; \mathrm{C} 1 \leftarrow \mathrm{~A} / \mathrm{B} ; \mathrm{A} 2 \leftarrow \mathrm{C}+\mathrm{D} ; \mathrm{B} 2 \leftarrow \mathrm{C} * \mathrm{D} ; \mathrm{C} 2 \leftarrow \mathrm{C} / \mathrm{D} ; \mathrm{D} 2 \leftarrow$ true; $\mathrm{A} 3 \leftarrow \mathrm{E}$ and $\mathrm{F} ; \mathrm{B} 3$ $\leftarrow \mathrm{E}$ and $\mathrm{F} ; \mathrm{C} 3 \leftarrow(\mathrm{~A}>\mathrm{B}) ; \mathrm{D} 3 \leftarrow \mathrm{~A}^{*} \mathrm{C}$;

Exercise 5

What are the valid identifiers and those that are not valid? A, cA, 12, 1exo, exo2, A12m, batna ,valide?, if,exo 1, égale.

Exercise 6

Let be the following algorithms :

```
Algorithm Algo_01;
Var A, B, C: integer ;
    D: boolean ;
Begin
    \(\mathrm{A} \leftarrow 5\);
    \(\mathrm{B} \leftarrow 6\);
    \(\mathrm{C} \leftarrow \mathrm{A}+\mathrm{B}^{*} 2+3\);
    \(\mathrm{D} \leftarrow(\mathrm{C} \boldsymbol{\operatorname { m o d }} \mathrm{A})<(\mathrm{C} \operatorname{div} \mathrm{B}) ;\)
    Write (A,B,C,D) ;
end.
```

```
Algorithm Algo_03;
Var x, y : real ;
Begin
    \(\mathrm{x} \leftarrow 10\);
    \(\mathrm{y} \leftarrow \mathrm{x} * 2\);
    Write (x," *2= '", y) ;
End.
```

```
Algorithm Algo_02;
Var A, B, C : integer ;
        D : boolean ;
begin
    Read (A) ;
    Read (B) ;
    \(\mathrm{C} \leftarrow \mathrm{A}+\mathrm{B}^{*} 2+3\);
    \(\mathrm{D} \leftarrow(\mathrm{C} \boldsymbol{\operatorname { m o d }} \mathrm{A})<(\mathrm{C} \operatorname{div} \mathrm{B}) ;\)
    write (A,B,C,D) ;
End.
```

```
Algorithm Algo_04;
Var x, y : real ;
Begin
    \(\boldsymbol{\operatorname { R e a d }}(\mathrm{x})\);
    \(\mathrm{y} \leftarrow \mathrm{x} * 2\);
    Write (x," *2= '", y);
End.
```


Questions :

1. Perform the trace of algorithm Algo_01and algorithm Algo_02.
2. What results does algorithm Algo_03 produce?
3. What results does algorithm Algo_04 produce?
4. What is the difference between the last two algorithms? .
