
People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University A. MIRA - BEJAIA

Faculty of Exact Sciences
Department of Computer Science

THESIS
Presented by

MOHAMMED AMINE MERZOUG

To obtain the degree of

DOCTOR OF SCIENCE
Specialty: Computer Science

Option: Cloud Computing

Title

LOCALIZED ADAPTIVE ROUTING IN WIRELESS
SENSOR NETWORKS

Defended on: 30/04/2019 Before the jury composed of:

ABDELOUHAB ALOUI Assoc. Professor Univ. of Bejaia President
AHMED MOSTEFAOUI Assoc. Professor Univ. of BFC, France Reviewer
ABDERRAHMANE BAADACHE Assoc. Professor Univ. of Algiers 1 Examiner
ABDELMALEK BOUDRIES Assoc. Professor Univ. of Bejaia Examiner
HAMOUDI KALLA Full Professor Univ. of Batna 2 Examiner
HAMOUMA MOUMEN Assoc. Professor Univ. of Batna 2 Examiner

Academic Year: 2018/2019

THESIS presented by
MOHAMMED AMINE MERZOUG

to obtain the degree of

Doctor of Science
Specialty: Computer Science

Localized Adaptive Routing in Wireless Sensor
Networks

Research Units:
1. Department of Computer Science, Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria,
2. Department of Computer Science and Complex Systems (DISC), AND Team, FEMTO-ST Institute, UMR

CNRS 6174, University of Burgundy Franche-Comte, 25200 Montbeliard, France.

Defense date: 30/04/2019

Praise be to Allah, The Lord of the worlds,
and Peace and Blessings be upon our Prophet Muhammad PBUH,

his Family and Companions,
and those who follow his guidance.

”And lower to them the wing of humility out of mercy and say, My Lord, have mercy upon them
as they brought me up [when I was] small.” Quran [17:24]

To the memory of my Beloved Precious Mother who passed away when I was writing this
manuscript. She was very proud of me, may Allah SWT, in his infinite mercy, forgive her sins
and grant her Jannah Al-Firdous.

To my Dear Father, may Allah SWT protect him and lengthen his life,

To my Brothers and Sisters, especially the little Maria,

To all my Family.

ACKNOWLEDGMENTS

”And We have enjoined upon man [care] for his parents. His mother carried him, [increasing
her] in weakness upon weakness, and his weaning is in two years. Be grateful to Me and to

your parents; to Me is the [final] destination.” Quran [31:14]

Now that the stress is starting to fade away, and the light at the end of the thesis tunnel is emerging,
I chose to take some time alone to remember all I have been through these last couple of years and all the
people who helped me during this period of my life. Actually, in these moments of relief and appreciation,
I would like to start by expressing my profound thanks and my sincere gratitude to my esteemed supervisor,
Dr. Ahmed Mostefaoui, Associate Professor at the University of Burgundy Franche-Comté. I am deeply
indebted to him for his time and his unwavering guidance and support. In fact, I would like to thank him
first and foremost for his trust in my abilities and for the chance of working with him and his research team.
For me, Dr. Ahmed is more than a thesis director, I consider him as a member of my family. He showed
me how to step out of my comfort zone, and taught me to embrace fear and challenge my limits. Just when
you think, you have finished, Dr. Ahmed will show you how one can dig deep down and find more. My
discussions with him, his constructive criticism, and more particularly his insight helped me become if I
may say, not only a better researcher and computer scientist but also a better person. No matter what I say,
I cannot thank Dr. Ahmed enough. May Allah SWT bless him and his entire family.

I also would like to take this opportunity to thank the research team with whom I have and am still working,
particularly Prof. Azzedine Boukerche, Full Professor at the University of Ottawa, and Dr. Samir Chouali,
Associate Professor at the University of Burgundy Franche-Comté. It is a true honor to work under the
invaluable guidance of Professor Boukerche. I warmly and particularly thank the University of Bejaia for
accepting my application and allowing me to work under the supervision of a foreign thesis director. I, as
well, would like to thank the University of Burgundy Franche-Comté, especially the FEMTO-ST Institute
and the DISC Department, for welcoming me with kindness and open arms.

I sincerely thank the jury members who offered their precious time and kindly accepted to evaluate my
thesis and attend its defense.

I offer my special thanks to my favorite teacher Prof. Tahar Bensebaa, Full Professor at the University
of Annaba. Actually, thanks to him, I discovered the beauty and fascination of the world of algorithms,
programming, and optimization. To be honest, this whole journey would not have been possible also without
the help of my dear brother and training partner Ali Beddiaf. Thank you so much, Ali. There is no way I can
forget my dear friends; Abdelghani Boubram, Abderrezak Benyahia, Amine Barkat, Chafiq Titouna, Toufik
Baroudi, and the list goes on and on. A big thank you to my friend Omar Barkat. You are a great source of
inspiration and motivation. I thank my friends in France; Amir Haroun, André Naz, and Ridha Ouaguelal.
Thank you so much, guys, for opening your hearts and houses, and thank you so much for the warmth of
your welcome and hospitality. My special thanks go also to my dear Nigerien friend Issa Abdoua. Thank
you so much, man, for all the great funny moments we had in Montbéliard, and in France in general. This
work would not have been possible without the support of many other people. So, I gratefully acknowledge
and thank all those who have in one way or another helped me attain my current position of Assistant
Professor and contributed to the completion of this humble work.

To those whose names do not appear in this manuscript, I wholeheartedly apologize and say thank you.

Sincerely,
Mohammed A.

v

LIST OF PUBLICATIONS

Journal Articles

• Mohammed Amine Merzoug, Azzedine Boukerche, Ahmed Mostefaoui, and Samir
Chouali. Spreading Aggregation: A Distributed Collision-free Approach for Data Ag-
gregation in Large-Scale Wireless Sensor Networks. Journal of Parallel and Dis-
tributed Computing,125:121–134, March 2019.

• Mohammed Amine Merzoug, Azzedine Boukerche, and Ahmed Mostefaoui. Ef-
ficient Information Gathering from Large Wireless Sensor Networks. Computer
Communications, 132:84–95, November 2018.

• Ahmed Mostefaoui, Azzedine Boukerche, Mohammed Amine Merzoug, and Mah-
moud Melkemi. A Scalable Approach for Serial Data Fusion in Wireless Sensor
Networks. Computer Networks, 79:103–119, March 2015.

Conference Articles

• Mohammed Amine Merzoug, Azzedine Boukerche, and Ahmed Mostefaoui. Serial
In-network Processing for Large Stationary Wireless Sensor Networks. In Proceed-
ings of the 20th ACM International Conference on Modeling, Analysis and Simula-
tion of Wireless and Mobile Systems, MSWiM’17, Miami, Florida, USA, November
21-25, 2017, pages 153–160.

• Mohammed Amine Merzoug, Ahmed Mostefaoui, and Samir Chouali. Dis-
tributed Collision-free Data Aggregation Approach for Wireless Sensor Networks. In
13th IEEE International Conference on Distributed Computing in Sensor Systems,
DCOSS’17, Ottawa, Ontario, Canada, June 5-7, 2017, pages 175–182.

vii

CONTENTS

ACKNOWLEDGMENTS v

LIST OF PUBLICATIONS vii

TABLE OF CONTENTS ix

LIST OF FIGURES xiii

LIST OF TABLES xvii

LIST OF DEFINITIONS xix

LIST OF ACRONYMS xxi

1 INTRODUCTION 1

1.1 Thesis context . 1

1.2 Motivations . 3

1.3 Assumptions and thesis objective . 5

1.4 Contributions . 6

1.5 Thesis structure . 6

2 WIRELESS SENSOR NETWORKS 9

2.1 Generalities . 9

2.1.1 Architecture . 9

2.1.2 Applications classification . 10

2.1.3 Examples of application areas . 10

2.1.4 Main design constraints . 11

2.2 Query processing in WSNs . 11

2.2.1 Parallel structure-based querying . 12

2.2.2 Parallel structure-free querying . 13

2.2.3 Serial structure-based querying . 13

ix

x CONTENTS

2.2.4 Serial structure-free querying . 14

2.3 Boundary traversal in WSNs . 15

2.3.1 Basic concepts . 15

2.3.2 Boundary traversal algorithms . 16

2.3.2.1 Curved-stick . 18

2.3.2.2 Rolling-ball . 18

3 PEELING ALGORITHM 21

3.1 Introduction . 21

3.2 Background and general idea . 22

3.3 Proposed approach: peeling algorithm . 23

3.3.1 Hole-free topologies . 25

3.3.2 Hole topologies . 29

3.3.2.1 Hole gate nodes identification 30

3.3.2.2 Hole gate nodes rules . 30

3.3.3 Starting node determination . 33

3.4 Proof of correctness . 35

3.5 Peeling efficiency and robustness enhancement 37

3.6 Peeling performance assessment . 39

3.6.1 Evaluation metrics . 39

3.6.2 Simulation parameters . 40

3.6.3 Simulation results . 41

3.6.3.1 Single query performance 41

3.6.3.2 Network lifetime . 42

3.6.3.3 Collisions impact . 43

3.6.3.4 PA versus EPA . 45

3.7 Conclusion . 46

4 SPREADING AGGREGATION 47

4.1 Introduction . 47

4.2 Background and general idea . 48

4.3 Proposed approach: spreading aggregation 49

4.3.1 Brief description of SA . 50

4.3.2 Connectivity maintenance during network traversal 51

4.3.3 Aggregation launch by non-boundary nodes 53

4.3.4 Cycles detection and removal . 55

CONTENTS xi

4.4 Proof of correctness . 61

4.5 Spreading performance assessment . 65

4.5.1 Evaluation metrics . 65

4.5.2 Simulation parameters . 65

4.5.3 Simulation results . 66

4.5.3.1 Spreading algorithm versus tree-based aggregation 66

4.5.3.2 Spreading algorithm versus serial approaches 69

4.6 Conclusion . 71

5 GEOMETRIC SERIAL SEARCH 73

5.1 Introduction . 73

5.2 Background and general idea . 74

5.3 Proposed approach: geometric serial search 75

5.3.1 Internality of nodes . 76

5.3.2 Disconnectivity of unmarked nodes 76

5.3.3 GSS overview . 79

5.3.4 Looping avoidance mechanism . 83

5.4 GSS performance assessment . 84

5.4.1 Evaluation metrics . 84

5.4.2 Simulation parameters . 85

5.4.3 Simulation results . 85

5.4.3.1 GSS versus serial information gathering techniques 86

5.4.3.2 GSS versus tree-based information gathering 88

5.5 Conclusion . 91

6 GENERAL CONCLUSION AND FUTURE WORKS 93

BIBLIOGRAPHY 97

LIST OF FIGURES

2.1 Example of holes and boundaries in a wireless sensor network. 16

2.2 Anti-void routing. 17

2.3 Curved-stick boundary traversal started by BTI. 18

2.4 Rolling-ball boundary traversal triggered by node N1. 19

3.1 Boundary and non-boundary nodes in a wireless network. 22

3.2 Curved-stick network traversal started by node N1. 23

3.3 Peeling process. 24

3.4 Peeling disconnectivity issue. (a) The node in the middle ensures the con-
nectivity of Ω. (b) If this node marks itself as visited (i.e., no longer par-
ticipates in the traversal process), Ω will be partitioned, leading to missed
unvisited nodes. 25

3.5 Bridge and non-bridge nodes. 26

3.6 Peeling connectivity maintenance. (a) Bridge nodes maintain the connec-
tivity of Ω. (b) The process continues, at each moment, on the boundary of
Ω. 26

3.7 Example of artificial holes. (a) Once node N2 is marked as visited, it creates
an artificial hole. (b) Artificial holes lead to looping. (c) Links crossing the
boundary and causing artificial holes (dashed line) must be deactivated. . . 27

3.8 Example of peeling misbehavior (caused due to the use of bridge nodes
concept). 29

3.9 Example of hole selection by HGN. 29

3.10 Rules applied by HGNs. (a) Before performing HGN rules. (b) After chang-
ing the boundary of Ω. 31

3.11 Nested holes. (a) Peeling the network without using HCP packets. (b) Peel-
ing the network using HCP packets. 32

3.12 Network boundary nodes determination. 34

3.13 Peeling linearity phenomenon. 38

3.14 Peeling one query performance: number of transmissions. 42

3.15 Peeling one query performance: average response time. 42

3.16 Peeling one query performance: total energy consumption. 43

xiii

xiv LIST OF FIGURES

3.17 Peeling performance: network lifetime. 43

3.18 Peeling query response time while enabling and disabling MAC functions. . 44

3.19 PA and EPA one query performance: number of transmissions. 44

3.20 PA and EPA one query performance: average response time. 45

3.21 PA and EPA one query performance: total energy consumption. 45

4.1 Illustration of SA: starting from the launcher node, the traversal mechanism
extends the visited region as a ”stain” until reaching the entire network (and
this independently of the topology as shown in the rest of the chapter). . . . 48

4.2 Rolling-ball network traversal launched by node N0. 50

4.3 Disconnectivity of Ω during network traversal. Nodes N1, N3, N7, and N8
are left unvisited. 52

4.4 Network traversal with the use of the linking nodes concept. 52

4.5 Shrunken rolling-ball setting and enlargement. 53

4.6 Example of cycles. Looping due to the use of linking nodes concept. 55

4.7 Initial boundary marking via IBS Packet issued by boundary-QL (node N2). 56

4.8 Left and right sets creation by portal node Ni. 59

4.9 Disjoint boundary scan using DBS Packet issued by portal node Ni. 59

4.10 Cycle removal using LC packet broadcasted by portal node Ni. 60

4.11 Transmissions required by Spreading and Tree-based approaches to ag-
gregate data. 67

4.12 Time required by Spreading and Tree-based approaches to aggregate data. 67

4.13 Energy required by Spreading and Tree-based approaches to aggregate
data. 68

4.14 Spreading Aggregation versus serial approaches. Comparison in terms of
required transmissions for data aggregation. 69

4.15 Spreading Aggregation versus serial approaches. Comparison in terms of
required time for data aggregation. 70

4.16 Spreading Aggregation versus serial approaches. Comparison in terms of
required energy for data aggregation. 71

5.1 Boundary-first network traversal. 74

5.2 Optimal rolling-ball network traversal. 75

5.3 Query launch by internal non-boundary nodes. 77

5.4 Disconnectivity example. 78

5.5 Example of actual-cuts. Considering node N10 as QL, nodes N7, N8, N9,
and N10 are actual-cuts, while the others are not (they can leave the traver-
sal process). 78

LIST OF FIGURES xv

5.6 Example of potential-cuts. Exactly, as depicted in this figure, N3 is a
potential-cut that has no idea about the overall network topology and hence
it does not know if it is an actual-cut. 79

5.7 (a) Example of looping caused by the use of PCNs concept. (b) Appliance
of cycle removal process. 83

5.8 GSS versus serial approaches. Comparison in terms of required commu-
nications (sent packets). 87

5.9 GSS versus serial approaches. Comparison in terms of information gath-
ering time. 88

5.10 GSS versus serial approaches. Comparison in terms of information gath-
ering energy. 89

5.11 GSS versus Tree-based aggregation. Comparison in terms of required
communications (sent packets). 89

5.12 GSS versus Tree-based aggregation. Comparison in terms of information
gathering time. 90

5.13 GSS versus Tree-based aggregation. Comparison in terms of information
gathering energy. 91

LIST OF TABLES

3.1 Peeling simulation configuration and parameters 40

3.2 Peeling average nodes’ degree. 41

4.1 Spreading simulation configuration and parameters 66

4.2 Spreading average nodes’ degree. 66

5.1 GSS simulation configuration and parameters 86

5.2 GSS average nodes’ degree. 86

xvii

LIST OF DEFINITIONS

1 Definition: Hole . 15

2 Definition: Curved stick starting point . 18

3 Definition: Boundary Node (BN) . 22

4 Definition: Network Boundary Node (NBN) 23

5 Definition: Unvisited sub-network . 25

6 Definition: BRidge Node (BRN) . 26

7 Definition: Potential Boundary Node (PBN) 27

8 Definition: Alive Neighborhood . 28

9 Definition: Potential Hole Boundary Node (PHBN) 29

10 Definition: Hole Gate Node (HGN) . 30

11 Definition: Boundary of Ωi . 36

12 Definition: Cyclic Node (CN) . 38

13 Definition: Linking-Node (LN) . 51

14 Definition: Portal Node (PN) . 56

15 Definition: Internal and external Nodes . 76

16 Definition: Actual-cut node (ACN) . 77

17 Definition: Potential-cut node (PCN) . 78

xix

LIST OF ACRONYMS

L(i, j) Communication link between node Ni and N j 5
Q j Query intended for the whole WSN 75, 77,

79, 80
R Communication range of nodes 5, 18,

19, 51,
53, 57,
63, 76

X Left set of detected cycle 58–61
Y Right set of detected cycle 58–61
Γ Set of all currently visited nodes 49, 61
Ω Set of all currently unvisited nodes xiii, xiv,

25–31,
33,
35–38,
49,
51, 52,
54, 55,
57, 58,
60–62,
77, 78,
83, 84

N Set of all nodes in the network 5, 25,
36, 37,
49, 52,
61, 62,
64, 75

Vi Neighbors set of node Ni 5, 22,
78, 79,
81–83

Wi Active neighbors set of node Ni 78, 83
n Number of nodes in the network 5, 37,

61, 73
L Set of all links in the network 5

ACN Actual-Cut Node (Definition 16) xix,
78–82,
84

BN Boundary Node (Definition 3) xix, 22,
23, 29

xxi

xxii LIST OF ACRONYMS

BRN BRidge Node (Definition 6) xix,
25–29,
34–38

BS Back Set of detected cycle 31–33
BTI Boundary Traversal Initiator xiii, 18

CN Cyclic Node (Definition 12) xix, 38
CS Curved-Stick (boundary traversal tool) 16–18

DBS Disjoint-Boundary Scan Packet xiv, 51,
58–61,
70, 71,
87

DFS Depth-First Search 13, 39,
41, 43,
69, 70,
86–88

EPA Enhanced Peeling Algorithm (enhanced ver-
sion of first proposed approach)

6, 7,
21, 38,
39, 45,
46

FS Front Set of detected cycle 30–33

GAR Greedy Anti-void Routing 16–19
GBT Greedy-Boundary Traversal 15, 48,

69, 70,
86, 87

GSS Geometric Serial Search (third proposed ap-
proach)

6–8,
73–76,
79,
83–92,
94, 95

HCP Hole Control Packet xiii,
32–34

HGN Hole Gate Node (Definition 10) xiii, xix,
29–36

HLN Hole Left Neighbor 29–34
HRN Hole Right Neighbor 29, 30,

32, 33

IBS Initial-Boundary Scan Packet xiv, 50,
51, 55,
56, 59,
61, 71

LIST OF ACRONYMS xxiii

LC Link-Cut Packet xiv, 51,
59, 60

LN Linking Node (Definition 13) xix, 52

NBN Network Boundary Node (Definition 4) xix, 23,
29, 34

PA Peeling Algorithm (first proposed approach) 6–8,
21–23,
32,
35–39,
41, 43,
45, 46,
69, 70,
74, 86,
87, 94,
95

PBN Potential Boundary Node (Definition 7) xix, 27,
28, 34

PCN Potential-Cut Node (Definition 17) xv, xix,
78–84

PHBN Potential Hole Boundary Node (Definition 9) xix, 29,
30

PN Portal Node (Definition 14) xix, 55
PSB Parallel Structure-Based 1–3, 6,

7, 11–
13

PSF Parallel Structure-Free 1–3, 6,
7, 13

QL Query Launcher xiv, 5,
13, 15,
23, 24,
39, 40,
49–51,
53–58,
62, 63,
65, 78

SA Spreading Aggregation (second proposed
approach)

xiv,
6–8,
47–50,
61,
63–68,
70, 71,
74, 75,
86, 87,
94, 95

SN Starting Node 23–25

xxiv LIST OF ACRONYMS

SSB Serial Structure-Based 1–3, 6,
7, 13

SSF Serial Structure-Free 1–3, 6,
7, 14,
15, 79,
84, 89–
91

WQR Window Query Region 95, 96
WSN Wireless Sensor Network 1, 2,

6, 7,
9–11,
13–16,
21,
24, 39,
46–48,
64,
65, 70,
73, 84,
85, 88,
92–95

1
INTRODUCTION

1.1/ THESIS CONTEXT

Typically, a Wireless Sensor Network (WSN) is composed of hundreds to several thou-
sands of smart autonomous sensor nodes which are randomly deployed in an area of

interest. Using their sensing, computing and wireless communication capabilities, sensor
nodes respond to the application/end-user needs by collecting and reporting the required
environmental information (such as temperature, movement, etc.) to a specific more
powerful node known as the base station or simply the sink [1, 2]. Actually, regardless
of its inefficiency, raw data gathering from sensor nodes is practically not a purpose on
its own. Rather than collecting all raw data at the sink, usually, the objective is to get a
lower/upper value or to derive an estimate of a parameter of interest as fast and effectively
as possible [3,4] (e.g., minimum, maximum, average reading [5], alive nodes count, target
location [6–8], etc.). To achieve this end and attain time/energy efficiency, out-of-network
data gathering (raw data collection) has been disregarded and much research has been
focused on finding in-network approaches which involve sensor nodes in processing and
consider the network as a distributed database [3,9].

Given its interesting features and advantages, in-network processing has been estab-
lished as a very efficient technique in WSNs, and numerous approaches have been pro-
posed in this regard [9]. In fact, based on how the different tasks (such as processing,
communications, etc.) are performed by sensor nodes, the in-network approaches pro-
posed in the literature can be categorized into two major classes: parallel concurrent
and serial incremental. In turn, actually, both parallel and serial approaches can also be
divided into structure-based and structure-free. These four approaches, which we refer
to in this manuscript respectively as PSB, PSF, SSB, and SSF are briefly presented in
the following along with some of their advantages and drawbacks.

• Parallel structure-based approaches (PSB), which are also known as in-network
centralized approaches, operate in three separate phases: structure construction,
query dissemination, and data processing [3, 9, 10]. For example, at first, a span-

1

2 CHAPTER 1. INTRODUCTION

ning tree rooted at the sink must be created. Once the whole network is covered,
queries can then be spread throughout the tree ordering nodes to perform a certain
processing on data. After query dissemination phase, data processing starts from
leaf nodes and goes up towards the root/sink. In fact, before sending the result to
the upper level, each node aggregates its children’s data with its own reading.

Besides the fact that these approaches are not scalable and, consequently, are
not suitable for large-scale deployments, they suffer from several other drawbacks
among which we briefly cite: overuse of the network resources, mainly through
communications. Generation of a high degree of collisions, especially in large-scale
and dense networks. Creation of the energy depletion hole problem by relying the
traffic on nodes that are close to the sink/root [11, 12]. Finally, low resilience to
failures in nodes and links, as any link or node failure will require maintenance
or complete reconstruction of the entire tree-structure, in particular, if the broken
link or node is near the root. These drawbacks become very costly in large-scale
deployments.

• Parallel structure-free approaches (PSF): actually, in large-scale WSNs, the two
last limitations of PSB approaches cited above can have a deeply negative im-
pact on the overall performance of information gathering. To overcome these draw-
backs, parallel structure-free approaches, also known as in-network distributed ap-
proaches, were proposed as an interesting alternative [3, 9, 13–15]. In such ap-
proaches, each node maintains a local estimate of the unknown parameter. This
estimate is refined successively (iteratively) through one-hop communications until
convergence to the right value (which is attained when the difference between two
consecutive estimates is less than the predefined convergence threshold). In these
approaches, since all communications are one-hop, nodes do not need to have any
knowledge about the current network topology. Furthermore, since at the end (after
convergence) each node holds the desired estimate, there is no need for a cen-
tral base station, as there is no need for any kind of routing. Finally, given their
structure-free nature, these approaches are very robust against failures in links and
nodes [16,17].

Even though PSF approaches are independent of any rooting structure, they re-
main dependent on the network topology. For instance, whether in large-scale
or in sparse deployments (e.g., linear topologies), the convergence of the unknown
parameter can require a lot of iterations, leading thus to a huge communication
overhead. Knowing that communications are the most energy-consuming task in
WSNs [1], this limitation of PSF approaches can seriously compromise the whole
network lifetime. What is worse is the fact that concurrent communications be-
tween nodes not only increase collisions but also considerably augment the query
response time [18].

• Serial structure-based (SSB) and serial structure-free (SSF) approaches: in
WSNs, a serial in-network processing algorithm browses nodes one by one and
can perform different tasks such as: creating a schedule among nodes, query-
ing or gathering data from nodes, supplying nodes with data, etc. Actually, as is
the case for parallel techniques, we distinguish two possible approaches: serial
structure-based and serial structure-free. While in SSB approaches, the query is
sequentially processed from node to node following a preset path (that crosses ev-
ery node in the network), in SSF approaches, the visiting path is gradually built and

1.2. MOTIVATIONS 3

each visited node must be able of autonomously choosing the next hop. In both
approaches, the information gathering process stops when all nodes in the network
have been visited (i.e., contributed to the query), and the final node in the path holds
the answer to the query [19,20].

Similar to the PSB approaches case, using a predefined path contributes to the
vulnerability of serial structure-based techniques to topology changes and failures
in links/nodes. For instance, if at some point the next predefined hop is unavailable,
the traversal process will inevitably stop at the currently explored node.

On the other hand, compared with PSB and PSF, or even with SSB approaches, se-
rial structure-free algorithms achieve superior performances. In a nutshell, among
others, the main features that differentiate serial structure-free algorithms from
their counterparts are (1) compactness, (2) collision-freeness, and (3) structure-
independency. First of all, one of the main reasons behind the bad performance
of PSB approaches is their mode of operation. As previously mentioned, these
approaches operate in three separate phases: structure construction, query dis-
semination, and data processing. Performing these three tasks separately not only
increases energy consumption but also delays the response time. With regard to
SSF algorithms, energy and time are considerably saved through the combination
of the three previous phases into one step. While the path is being gradually laid
out throughout the network, at the same time, the query is disseminated and data
is processed. Second, in SSF algorithms, the desired task is executed sequen-
tially by each node while the network is gradually traversed. In other words, only
one node is allowed to communicate at any given moment in time. Hence, serial
algorithms are inherently collision-free1 and no elaborated MAC layer is needed
in these algorithms. Consequently, a considerable improvement can be made in
terms of responsiveness. As regards tree-based approaches, the network, in this
case, is traversed in a parallel fashion. So, from a theoretical point of view, we can
say that this feature would give an advantage to tree-based approaches and en-
hances their response time. In reality, however, the parallel traversal creates a lot
of collisions, which considerably wastes time and dissipates energy, especially in
large-dense networks. In fact, even the tree construction process is deeply affected
by collisions. Finally, the main concern in structure-based approaches is topology
changes because rebuilding or fixing a structure that covers a large dense network
is a very time and energy-consuming task. Unlike structure-based approaches, SSF
algorithms do not rely on any pre-established structure (no path is built in advance).
Instead, each time a query is issued, a new path will be gradually built by each tra-
versed node. This characteristic makes SSF algorithms more resistible to topology
changes and links/nodes failures.

1.2/ MOTIVATIONS

Apart from the theoretical foundations of serial approaches (i.e., convergence proofs in
the case of a parameter/function estimation) which have been provided and discussed
in [19–21], several other practical issues of serial approaches still remain to be addressed
and deserve additional research efforts, especially in large-scale and randomly deployed

1They do not generate any communication collisions because all communications in the network are
serial.

4 CHAPTER 1. INTRODUCTION

networks. As a matter of fact, the operation of serial approaches requires the construction
of a Hamiltonian path; that is, a path that passes through all nodes in the network and vis-
its each one of them just once [20]. Yet, previous research has made implicit assumptions
and supposed that such a path exists [20,22], which is not true for every configuration. In
fact, even when a Hamiltonian path exists in a network of wireless nodes, finding it con-
stitutes an NP-Complete problem [23]. Furthermore, constructing such a path gradually
in a decentralized fashion while ensuring scalability can generate a prohibitive overhead,
particularly in sparse and large-scale networks. For instance, to overcome this obstacle,
the authors in [24] used space-filling curves to derive a path that is not necessarily Hamil-
tonian (nodes can be visited more than once). This serial approach, although it performs
well in dense and regular networks, cannot, in fact, handle irregular network topologies,
especially those with communication holes. In more specific words, this approach does
not ensure that all connected nodes in the network will contribute to the query, hence,
it does not ensure query completeness, which is very harmful to sensitive applications
where query accuracy is an essential requirement.

To recapitulate, we can say that despite the fact that serial approaches outperform par-
allel ones in medium and large-scale network deployments, they still raise challenging
research issues, primarily in the way the visiting path must be constructed. Actually, the
performance of a serial approach benefits from a shorter visiting path, and vice versa.
In this manuscript, the motivations that drive us is the design of novel serial structure-
free algorithms that can draw shorter visiting paths (in comparison with state-of-the-art
approaches), and exhibits better performance (i.e., less energy and time consumption)
while satisfying the three following requirements:

• Robustness: using a pre-constructed path makes the serial approach very vulnera-
ble to failures in links and nodes and completely unable to handle topology changes,
as is the case for tree-based and itinerary-based approaches [24]. Actually, in such
a scenario, when selecting the next hop, the currently traversed node has no choice
but to follow the predefined path. Hence, for example, if the next predetermined
hop is unresponsive, the node in question will have no alternative except to stop the
aggregation/querying operation.

In order for the proposed approach to support topology changes and be robust
against link and node failures, it has to be structure-free, and the visiting path must
be gradually constructed at each traversed node. In other words, instead of at-
tributing a next hop to each node, the currently traversed node must be capable of
autonomously selecting the next hop.

• Scalability: in order to be highly scalable and support a very large number of nodes
(which is a fundamental requirement in large-scale deployments), the proposed ap-
proach has to be localized; that is, when selecting the next query hop, the currently
traversed node must rely only on its local one-hop neighbors table, and no other
additional information must be needed.

• Completeness: provided that the network is connected, the proposed approach
has to be able to traverse any possible topology (e.g., with or without holes, regular
or irregular topologies, etc.) and ensure that all nodes are queried (aggregate the
data of all nodes). This requirement is fundamental in many practical applications,
particularly sensitive ones where the aggregation result must involve all nodes of
the network.

1.3. ASSUMPTIONS AND THESIS OBJECTIVE 5

These requirements were not supported by the previous serial approaches. For instance,
as mentioned above, the itinerary-based approach in which the visiting path is predefined
through the use of space-filling curves [24] does not ensure the completeness require-
ment in some network deployments with holes (an example of such a case has been
provided in [25]). In fact, even predefined paths with backtracking possibilities present
a weak robustness in face of link and node failures [26]. On the other hand, as con-
firmed by the numerous performance evaluation studies we have conducted, other serial
approaches like the one presented in [25] have the advantage of ensuring the aforemen-
tioned requirements, at the expense of drawing longer visiting paths.

1.3/ ASSUMPTIONS AND THESIS OBJECTIVE

We consider networks composed of a finite set of n connected stationary wireless nodes,
denotedN such thatN = {N1, N2, . . . , Nn}. All nodes in the network are assumed to have
the same communication range2, denoted R [27, 28]. The finite set of possible wireless
non-oriented links between nodes is denoted by L such that L = {L(i, j) | i , j ∧ Ni, N j ∈

N ∧ distance(Ni, N j) ≤ R }. We assume that all links are bidirectional; that is to say, if
link L(i, j) belongs to L, then this implies that L(j, i) also belongs to L. In other words, it
is assumed that nodes located within the communication range of each others can com-
municate. We suppose that each node is aware of (1) its own location information via
a positioning system such as GPS or by means of any other efficient localization tech-
nique [29–34] and (2) its direct (one-hop) neighbors and their corresponding locations.
For each node Ni, the neighbors set is defined as Vi = {N j | L(i, j) ∈ L}.

We consider the query mode (also known as the push mode [1]), in which the end-
user/application sends a query to the network and waits for a response. In this
manuscript, we refer to the node that issues queries (triggers serial aggregation process)
as the Query Launcher (QL), and we assume that this node can be located anywhere in
the deployment field (i.e., it can be a boundary or non-boundary node).

Our objective is to start from any node and be able to traverse the entire network using
one single packet. The latter must jump sequentially from node to node and browse
the network while reducing communications to the extent possible. That is, minimizing
or avoiding the visit of any node more than once. Also, in order to reduce communications,
the next hop of the packet must be determined locally by each traversed node using only
its local pre-collected one-hop neighbors table (no extra communications or collaboration
between nodes should be required). In simple words, the problem that we are trying
to solve can be boiled down to a distributed graph traversal. We recall that perfectly, a
network with n connected nodes should be traversed using exactly n− 1 communications.
Thus, theoretically, the path must cross every node precisely once. But, realistically, not
every graph or network contains such optimal Hamiltonian path [20], and even if it does,
determining that path constitutes an NP-complete problem [23].

2In practice, the communication range of nodes can be set to a pessimistic value (e.g., the worst case
communication range in the network).

6 CHAPTER 1. INTRODUCTION

1.4/ CONTRIBUTIONS

In this manuscript, we propose three efficient serial structure-free algorithms that fulfill
all the requirements mentioned in Section 1.2 (i.e., robustness, scalability, and complete-
ness). Actually, as for any distributed localized algorithm [35, 36], we have proven the
correctness of the proposed algorithms. More precisely, we provide in this manuscript
proofs which demonstrate that our proposed solutions (1) terminate and do not loop end-
lessly and (2) visit all connected nodes in the network (i.e., ensure query completeness).
In addition to the theoretical proofs, we have conducted several series of simulations in
order to assess/compare our proposed serial algorithms and highlight their good per-
formances. The comparisons have been made with different state-of-the-art algorithms
(PSB, PSF, SSB, and SSF approaches). The obtained simulation results confirm the ef-
ficiency of our three proposals and also validate their adequacy for large-scale network
deployments.

The first proposed algorithm, called Peeling Algorithm (PA) [18], is a serial data fusion
approach based on boundary traversal. In reality, the peeling term comes from the fact
that the traversal must start from the external boundary of the network; then gradually,
this external boundary (layer) of nodes is removed (marked as visited), hence revealing
a new internal layer which will be peeled in its turn, and so on. More precisely, the
sink node must first determine the starting point (node) of the peeling process, which is
any node located on the external boundary of the network. Once found, the visit of nodes
begins from this node through the use of a graph-free boundary traversal algorithm, called
Curved-Stick [37, 38] (Section 2.3.2.1). Actually, we have also proposed an enhanced
version of the peeling algorithm, called Enhanced Peeling Algorithm (EPA). This modified
version has been specifically tailored for non-uniform network deployments.

The second proposed algorithm, called Spreading Aggregation (SA) [39, 40], is a serial
data aggregation approach that starts information gathering by simply setting a rolling
ball [41] (Section 2.3.2.2) and letting it sequentially explore the network. Unlike the Peel-
ing technique [18], in SA, any node can issue queries without the need for external bound-
ary determination. In fact, in this boundary-based SSF approach, even a non-boundary
node can launch queries by simply creating and launching a shrunken rolling-ball. The
latter gets gradually enlarged at each hop until gaining its optimal shape.

The third proposed approach, called Geometric Serial Search (GSS) [42, 43], is a serial
processing technique that does not require any control packets. As a matter of fact, in
this algorithm, just one data packet that can be issued by any node moves from node to
node and traverses the entire network. As confirmed by the obtained simulation results,
in most of the cases, GSS approximates the optimal traversal path, which means that
GSS scales well in large networks and significantly saves energy and time. For example,
for a network of 500 nodes, GSS requires approximately 510 hops to visit each and every
node.

1.5/ THESIS STRUCTURE

This manuscript is divided into six chapters, as follows:

• Chapter 1: thesis context, motivations, thesis objective, contributions, and thesis structure.
• Chapter 2: query processing, boundary traversal, and generalities about WSNs.

1.5. THESIS STRUCTURE 7

• Chapter 3: peeling algorithm (first contribution).
• Chapter 4: spreading aggregation (second contribution).
• Chapter 5: geometric serial search (third contribution).
• Chapter 6: general conclusion and future works.

Chapter 1 (current chapter) discusses the considered problem, the motivations that drive
this work, the considered assumptions (network and communication models, ...), thesis
objective, and the main contributions proposed to solve the treated problem.

Chapter 2 introduces the necessary background and preliminaries required to understand
the considered problem as well as its solving. More specifically, this chapter provides a
brief introduction about Wireless Sensor Networks and their major challenges/issues.
Furthermore, in addition to presenting and describing boundary traversal techniques in
WSNs (which are the building block of our three proposed approaches), this chapter also
gives the operation, strengths, and weaknesses of the four main types of aggregation
techniques proposed in the literature, namely, SSF, SSB, PSF, and PSB approaches.

Chapters 3, 4, and 5 present respectively our three contributions (namely; Peeling algo-
rithm, Spreading Aggregation and Geometric Serial Search) and details their principle of
operation through algorithms and simple illustrative figures. These chapters also depict
and interpret the obtained simulation results. More specifically:

• In Chapter 3, we present our novel serial approach, called Peeling Algorithm (PA),
along with its second version, called Enhanced Peeling Algorithm (EPA), which has
been specifically designed for non-uniform networks [18]. In this chapter, we also
provide proofs that these two algorithms (1) terminate and do not loop indefinitely,
and (2) ensure query completeness by visiting all connected nodes. In order to as-
sess its performance, we have conducted several series of experiments and com-
pared PA with state-of-the-art parallel structure-based, parallel structure-free, and
serial approaches. The obtained results, presented in this chapter, confirm the
efficiency of our peeling approach and also assert the effectiveness of EPA in non-
uniform large-scale deployments.

• In Chapter 4, we present our second serial processing approach, called Spreading
Aggregation (SA) [39, 40]. Actually, as is the case for PA, this approach has been
also specifically designed to support very large WSNs. In addition to its structure-
free and localized design, the proposed approach (i.e., SA) has been proven to
fulfill the third design requirement cited in Section 1.2 (i.e., completeness). More
precisely, in this chapter, as we did with the peeling approach, we formally prove the
correctness of SA; i.e., it terminates and visits all connected nodes without falling
into looping. We also provide the results of the conducted simulations. The latter
highlight the very good scalability and efficiency of the proposed approach in terms
of time and energy in comparison with other serial approaches, especially in very
large-scale network deployments.

• In Chapter 5, we present our third scalable SSF approach that lays out very
short visiting paths and reduces communications to the maximum extent possi-
ble [42, 43]. The proposed approach, called Geometric Serial Search (GSS), has
been purposely designed to support very large, medium, or even small-scale WSNs.
The proposed approach is totally localized and does not require any control pack-
ets. Actually, as the conducted evaluations (presented in this chapter) confirm, GSS

8 CHAPTER 1. INTRODUCTION

yields shorter visiting paths when compared with state-of-the-art approaches, and
always approximates the optimal number of communications required to traverse a
network of n nodes (i.e., n − 1 packets). Furthermore, similar to PA and SA, GSS
combines path construction, query diffusion, and data fusion (while exploring the
network, nodes are queried and their answers are simultaneously gathered). The
evaluations studies we have conducted confirm that GSS is very scalable and has
better performance in terms of energy and time reduction. The conducted evalua-
tions also assert that GSS ensures aggregation completeness and query accuracy.

In the end, Chapter 6 concludes the manuscript and suggests some possible future di-
rections.

2
WIRELESS SENSOR NETWORKS

2.1/ GENERALITIES

A wireless sensor network (WSN) is composed of several wireless sensor devices
deployed in order to autonomously collect and transmit environmental information to

one or more collection points called sinks or base stations. The self-configuration and
operation features, which eliminate the need for human intervention, make WSNs a very
interesting solution for information gathering applications, especially in harsh conditions
where traditional approaches are very expensive or impossible. In this first section (2.1),
which represents a brief introduction to wireless sensor networks, we will discuss the
architecture, applications types, some areas of application, and some design constraints
of these networks. In the next two sections (2.2 and 2.3), we give the operation, strengths,
and weaknesses of the four main data processing techniques proposed in the literature
for WSNs and present the concept of boundary traversal in WSNs which is the main
ingredient of our proposed approaches.

2.1.1/ ARCHITECTURE

In a WSN, we distinguish two types of nodes: sensor nodes (data sources) and sink
nodes (data destination). A typical sensor node is composed of four basic compo-
nents [1, 2, 44]: (1) acquisition unit responsible for capturing physical quantities from
the surrounding environment (temperature, humidity, pressure, vibrations, sound, image,
etc.), (2) data processing and storage unit, (3) wireless communication unit and (4) en-
ergy unit. Depending on the application for which it was designed, a sensor node can also
have additional units, such as a localization system and a unit responsible for moving the
node. Sensor nodes are very limited in terms of resources, especially energy, so the main
objective is to maximize their lifetime. As regards the sink, this node is usually much more
powerful and has no energy constraints. Actually, in addition to its ordinary role of data
gathering point, the sink has the ability to query information from sensor nodes.

9

10 CHAPTER 2. WIRELESS SENSOR NETWORKS

2.1.2/ APPLICATIONS CLASSIFICATION

Based on how data is reported to the base station, WSN applications can fall into four
categories: event-driven, time-driven, query-driven, or hybrid applications.

• In event-driven applications, sensor nodes send their data to the base station only if
a specific event occurs (a threshold has been exceeded in sensor measurements).
For instance, in a forest fire detection system, sensor nodes alarm the sink as soon
as the temperature exceeds a certain threshold.

• In time-driven applications, sensor nodes periodically collect and send data to the
base station. The acquisition period depends on the application and can vary from
a few seconds to a few hours or even days. A good example of this class of appli-
cations is environmental data collection (agriculture, scientific experiments, etc.).

• In query-driven applications, sensor nodes send information only after an explicit
request from the base station. The end-user can request information from cer-
tain specific regions (window queries) or from the whole network. In other words,
in these applications, the network is seen as a distributed database that can be
queried via the base station. Sensor nodes receive queries, execute them, and
return the response to the base station.

• Hybrid applications combine any of the three modes described above. For example,
a combination between an event-driven and time-driven applications.

2.1.3/ EXAMPLES OF APPLICATION AREAS

Among the areas where WSNs can be very useful are the military, security, domotics,
environment, and health domains. In the following, we will succinctly present some ex-
amples of applications in these different areas.

• Military applications: the rapid deployment, self-organization and fault tolerance are
features that make WSNs a very effective tool in the military field. More specifically,
wireless sensors can be quickly deployed to help military units monitor strategic
or hard-to-reach areas such as battlefields. They can provide information regarding
the location, number, and movement of soldiers and vehicles. They can also detect
chemical or biological agents.

• Security applications: deploying wireless motion sensors constitutes a very efficient
distributed alarm system that can be used to detect intrusions into an area of inter-
est. Since there is no critical point (single point of failure), disabling this system
would not be easy.

• Domotic applications: wireless sensors can be used to monitor homes and con-
tribute to their comfort by transforming them into intelligent environments whose
parameters (temperature, humidity, brightness, etc.) can automatically adapt to the
behavior of individuals.

• Environment applications: wireless sensor nodes allow, without disturbing, a better
observation and tracking of wild animals life and movement. They can also effi-
ciently detect natural disasters such as forest fires, storms, floods, volcanoes, etc.

2.2. QUERY PROCESSING IN WSNS 11

For example, detecting a possible start of fire provides a faster and more effective
extinguishing operation.

• Health applications: the use of wireless sensors can provide continuous patient
monitoring. For instance, wireless sensors can detect abnormal behaviors (crying,
falling, screaming, etc.) in the case of elderly or disabled people.

2.1.4/ MAIN DESIGN CONSTRAINTS

The design of WSNs face different constraints such as scalability, longevity, and robust-
ness. The following points briefly describe each of these essential requirements.

• Scalability : the number of deployed sensor nodes can be of the order of hundreds
or even thousands [1, 2]. Such a large number of sensor nodes generates a lot of
transmissions and can create a lot of communication collisions. Thus, solutions and
algorithms proposed for WSNs must be able to efficiently deal with any large number
of nodes without overloading the network or exhausting its limited resources.

• Longevity : the definition of the lifetime of a WSN depends on its application. It can
be defined as the duration until the first or last node dies. It can also be defined
as the duration until a proportion of nodes die (x% of nodes has exhausted their
batteries). For a WSN to remain alive for a long period of time without human
intervention, energy consumption becomes a fundamental issue. Maximizing the
life of sensor nodes means reducing their energy consumption.

• Fault tolerance: sensor nodes can fail due to physical damage (crushed by animals,
during deployment, etc.), environmental interferences, or more frequently energy
depletion. The failure of certain sensor nodes must not affect the functionality of the
network. For instance, in critical hostile environments like battlefields, fault tolerance
must be high because sensor nodes can be easily destroyed.

2.2/ QUERY PROCESSING IN WSNS

In this section, we present the principle of tree-based data aggregation, as well as some
of the recent serial aggregation techniques proposed in the literature. In fact, in WSNs,
information gathering from sensor nodes can be fulfilled using four different approaches;
namely, parallel structure-based, parallel structure-free, serial structure-based, and serial
structure-free. This section explains in detail the operation principles of each of these
approaches, points out their strengths and weaknesses and provides examples of each
type.

We mention that most of the approaches presented here in this section have been im-
plemented and compared against our three proposed data aggregation approaches. In
actual fact, the non-considered approaches have been mainly excluded because whether
they do not ensure completeness (query accuracy) or because of their blatant inefficiency
in terms of energy/time.

12 CHAPTER 2. WIRELESS SENSOR NETWORKS

2.2.1/ PARALLEL STRUCTURE-BASED QUERYING

As their name clearly states, the operation of PSB approaches relies on structures (such
as trees, clusters, etc.) that must have the sink as a root and must encompass all nodes
in the network [3, 9, 10, 45–47]. As regards their mode of operation, these approaches
are carried out in three distinct phases: structure establishment, query diffusion, and data
fusion. Initially, the whole network must be covered by the desired structure; a spanning
tree rooted at the sink for instance. Once this is done and the tree has been successfully
built, queries can then be disseminated to all nodes of the tree ordering them to report
the result of a certain processing that must be performed on their raw captured data. At
last, once being interrogated, leaf nodes trigger data aggregation by simply forwarding
their readings to their corresponding parents. From that point on, each non-leaf interme-
diate node waits to receive the result of each of its children nodes, fuses them with its
own reading, and forwards the obtained result to its corresponding parent. This fusion
operation is repeated until the root/sink is reached.

Besides the fact that PSB approaches are not scalable, and consequently not suitable
for very large-scale dense deployments [18,25], they suffer from several other limitations
and drawbacks, among which we mention:

• Structure construction/maintenance: in these approaches, it is mandatory to
build a structure that covers the whole network and provides each node with a path
(next-hop) over which packets can be transmitted to the root. Constructing and re-
pairing a distributed structure in a wireless collision-prone environment require a
non-negligible time and energy. Several other issues need to be addressed. For
instance, the tree must be balanced in terms of depth and in terms of node de-
grees. An unbalanced structure increases collisions and leads to an unbalanced
energy consumption among nodes [48]. The energy depletion hole problem can
also occur when nodes located near the root are overused to relay the traffic. In
certain sensitive practical applications, the participation of all nodes is very crucial.
Imagine a non-connected node with very sensitive data to report. Finally, in order to
be reliable, the structure needs maintenance over time, which means more energy
and time need to be spent.

• Robustness: PSB approaches are very vulnerable to topology changes and re-
quire maintenance or even complete re-construction in case of link/node failures.
Actually, when a topology change occurs near the root, it leads to an important in-
formation loss, which can be very costly in terms of time and energy in large-scale
networks.

• Collisions and resources overuse: given their concurrent nature, PSB ap-
proaches generate a lot of collisions during their three different phases, which con-
siderably affects their performance in terms of energy conservation and delay time
reduction, particularly in dense networks [18, 25]. In addition to collisions, operat-
ing in three separate phases also increases energy consumption and delays the
response time. This becomes worse in very large deployments.

• Query launcher singularity: in these approaches, the root is the only point able
to query the network. The creation of several trees over a resource-constrained
network can quickly kill the latter. Besides, if the root changes its location whether
intentionally or not, this can render the whole structure useless.

2.2. QUERY PROCESSING IN WSNS 13

2.2.2/ PARALLEL STRUCTURE-FREE QUERYING

In these diffusion-based approaches, no routing is necessary [3, 9, 13–15]. In order to
interrogate the network, the sink launches a query by broadcasting a packet to its one-
hop neighbors. Upon receiving the query for the first time, each node rebroadcasts it to
its immediate neighbors. After query spreading, each node exchanges raw data with its
immediate one-hop neighbors. Actually, this last step depends on the used approach.
In flooding approaches, each node exchanges data with all nodes in the network (via its
immediate neighbors). In consensus-based approaches, each node keeps exchanging
data in an iterative way with its one-hop neighbors until convergence (i.e., until reaching
the desired result). In both approaches, in the end, each node in the network will acquire
the answer of the query.

Due to their non-reliance on any routing structure and their use of one-hop diffusion
among nodes, PSF approaches are very robust to topology changes [16, 17]. Nonethe-
less, these approaches are not suitable for WSNs because they excessively use the net-
work resources and require a significant execution time [18, 25]. In parallel approaches,
nodes perform their assigned tasks concurrently. So, from a theoretical perspective, this
can be seen as an asset because it can presumably enhance the response time. Never-
theless, as shown by recent research [18,25], even when a sophisticated MAC protocol is
utilized [49], parallel information gathering creates a lot of collisions, which considerably
dissipates energy and wastes time, especially in large-dense networks.

2.2.3/ SERIAL STRUCTURE-BASED QUERYING

As is the case for PSB approaches, using a predefined path contributes to the vulnerability
of SSB approaches. For instance, if at some point the next designated hop is unavailable,
the traversal process will inevitably stop at the currently explored node. In the following,
we will briefly describe two examples of these approaches, namely, Space-Filling Curve-
based and Depth-First Searches.

• Depth-First Search (DFS) [26]: the distributed version of this straightforward well-
known approach expands the path, as far as possible, towards the unvisited nodes,
and when it gets stuck at a certain hop (i.e., when all neighbors of the currently
traversed node have been visited), it backtracks to the parent of that node and so
forth. In fact, this basic technique constructs a path for each launched query and re-
quires 2 ∗ (n−1) communications to interrogate a network of n nodes and report the
answer to the QL/sink. Among the main drawbacks of this technique, we cite the
very poor robustness in front of node/link failures during the backtracking process.

• Space-Filling Curve-based Search [24]: this serial data aggregation technique,
as its name implies, uses space-filling curves to lay out an itinerary through the net-
work. When compared with DFS, this approach performs better in dense regular
topologies and can traverse a sensor network more efficiently in terms of commu-
nications [24]. Nonetheless, besides its poor scalability and its weak robustness
against topology changes (link and node failures, . . .), it cannot handle irregular
network topologies with communication holes. An example in which space-filling
curve-based approach fails to ensure full network exploration and thus fails to ag-
gregate all the data present in the network can be found in [25].

14 CHAPTER 2. WIRELESS SENSOR NETWORKS

We mention that this approach was not considered (implemented) in the conducted
simulations because it does not ensure aggregation completeness.

2.2.4/ SERIAL STRUCTURE-FREE QUERYING

In SSF approaches, a path passing through every node in the network must be gradually
built, and each traversed node must be able of autonomously choosing the next hop. More
precisely, the query launcher sends its reading to the next autonomously determined
hop. The latter, first, fuses the received data with its own reading, second, autonomously
determines the next hop, and finally sends the result to that node and so on. In the end,
after complete network traversal, the result owned by the last node in the path is sent to
the query launcher via an independent geographic routing.

SSF approaches have proven their effectiveness and shown interesting results in terms
of avoiding collisions, reducing communications, and saving energy and time. Actu-
ally, recent research has confirmed the outperformance of SSF approaches in large-
deployments and demonstrated that latency is not an intrinsic drawback as intuitively
expected. The following points summarize the major advantages of SSF approaches:

• Completeness: SSF approaches can be proven to ensure the traversal of any
possible topology (e.g., irregular hole-topologies, regular hole-free topologies, etc.).
This feature makes SSF approaches very suitable for many practical sensitive ap-
plications in which the expected result must involve all nodes of the network.

• Localizability: SSF approaches are highly scalable and can support a very large
number of nodes because they have a localized distributed nature. As previously
mentioned, in these approaches, the next hop determination is done only through
the use of the one-hop neighbors’ table of the currently traversed node.

• Structure-independency: as indicated by their name, SSF approaches do not rely
on any predefined itinerary; each time a query is launched, a new path is drawn.
Creating the path on the fly gives SSF approaches huge advantages over the other
approaches. First, it allows them to rapidly query networks. Second, it makes
them maintenance-free, more robust against links/nodes failures and other topol-
ogy changes, and thus very suitable for large dense WSNs and their specificities.
Finally, queries can be issued from different spots and not just from the root/sink
as is the case for other approaches. Actually, any node whatever its location can
interrogate the network without wasting time and creating/fixing any structure. This
characteristic is essential in multi-owner-multi-user WSNs in which many nodes can
be in charge of distributing management commands and/or updating configuration
parameters [50].

• Compactness: in serial approaches, queries are disseminated and processed at
the same time. This merge significantly reduces the amount of sent packets, con-
serves energy and enhances query responsiveness. If we assume the existence of
a path that passes exactly once by each node, then n − 1 packets are sufficient to
query a network of n nodes and collect their answers.

• Collision-freeness: given the fact that only one node can transmit at any given
instant in time, SSF approaches are collision-free. The total absence of collisions

2.3. BOUNDARY TRAVERSAL IN WSNS 15

facilitates communications, saves energy and improves query responsiveness. Ac-
tually, since SSF approaches do not witness any collisions, no sophisticated MAC
layer is required in these approaches. This interesting feature can further improve
the network traversal time.

In the remaining of this section, we will briefly present one of the recent SSF approaches
proposed in the literature, namely Greedy and Boundary Traversal (GBT) [25]. This serial
aggregation approach operates in two alternating phases: greedy forwarding and bound-
ary traversal. In the beginning, during the greedy forwarding phase, the path is extended,
as much as possible, towards the unvisited nodes. The idea here consists of starting from
the sink and, at each step, adding the nearest unvisited node to the sink/QL to the path.
When there are no more unvisited neighbors left at some hop (i.e., when the currently tra-
versed node has no unvisited one-hop neighbors), the second boundary traversal phase
begins looking for other possible unvisited nodes in the network. If a non-visited node
has been found, the alternative greedy traversal phase will be resumed. This way, GBT
switches between the two phases until visiting all nodes. In the end, after browsing the
entire network, the boundary traversal phase will produce a cycle, indicating thus the end
of the information gathering process.

2.3/ BOUNDARY TRAVERSAL IN WSNS

Since the key idea and essential ingredient of our serial data aggregation approaches is
boundary traversal, the aim of this section is to provide an overview of this concept. More
specifically, in this section, we explain the principle of operation of the boundary traversal
algorithms used throughout the manuscript. In addition to this, we also cover the basic
concepts of communication holes, boundaries, and boundary nodes in WSNs.

2.3.1/ BASIC CONCEPTS

In a wireless network, a boundary can be either the boundary of a hole inside the network
or the external boundary of the network. Fig. 2.1 gives an illustrative example of holes
and boundaries in a wireless network. For instance, the orange regions in the network
deployment of Fig. 2.1 represent four holes. Note that the boundary of the network and
that of holes are both composed of a set of nodes called boundary nodes. For example,
the boundary of hole 1 is composed of the boundary nodes N1 , N2 , N3 , and N4.

We define a hole within a wireless network, as follows:

Definition 1: Hole

In a wireless connected network, a hole is a closed region empty of nodes and
delimited by the non-intersecting links of at least four nodes.

For instance, in Fig. 2.1, hole 1 is delimited by the following non-intersecting links: L(1,2),
L(2,3), L(3,4), and L(4,1).

According to the localization of nodes inside the network, we can define three categories
of nodes: (a) boundary nodes, (b) network boundary nodes and (c) internal non-boundary
nodes. In order to identify the boundary nodes in a wireless network, several definitions

16 CHAPTER 2. WIRELESS SENSOR NETWORKS

Figure 2.1: Example of holes and boundaries in a wireless sensor network.

have been proposed in the literature [18, 38, 41]. We underline that our three proposed
serial approaches utilize different definitions of boundary nodes. To ease the manuscript
reading, the details and definition utilized by each of our approaches will be provided in
its corresponding chapter.

It is worth mentioning that the identification of network boundary nodes is not a process
that can be done locally by each node as is the case for the identification of boundary
nodes (where each node can rely only on its one-hop neighbors to perform this task).

2.3.2/ BOUNDARY TRAVERSAL ALGORITHMS

The main role of a boundary traversal algorithm is to sequentially visit all nodes of a
boundary, one by one. In fact, originally, in WSNs, boundary traversal has primarily been
studied in the context of data routing around communication holes and has been pro-
posed as a solution for this void problem encountered in geographic routing [41]. For
instance, as demonstrated in Fig. 2.2, in order to reach the destination Nd, node N1 which
is a local minimum1 creates a virtual disc (rolling-ball) and spins it counterclockwise. The
first touched neighbor, i.e., node N2, in turn, spins the received disc and determines the
next hop. This process is repeated at each visited node until the greedy routing is re-
sumed or until the whole boundary is traversed.

According to the requirements set beforehand (Section 1.2), the boundary traversal solu-
tion to be utilized in our approaches must adhere to the following criteria. First, in order to
ensure a complete network search, the considered boundary traversal algorithm must not
skip any boundary node in its path, and must also maintain the traversal process on the
same boundary. Second, in order to achieve time and energy efficiency, the used bound-
ary traversal technique must be localized (i.e., does not require any additional knowledge
except the pre-collected one-hop information).

To the best of our knowledge, in the literature, two major categories of boundary traver-

1N1 is the nearest node to the destination Nd (among its one-hop neighbors).

2.3. BOUNDARY TRAVERSAL IN WSNS 17

Figure 2.2: Anti-void routing.

sal algorithms have been proposed: (a) graph-based approaches such as GPSR [51],
GOAFR [52], etc., and (b) graph-free approaches such as GAR which employs a Rolling-
Ball [41], and CS which uses a Curved-Stick [38]. In order to traverse boundaries and
avoid holes, graph-based approaches, as their name suggests, require the construction
and maintenance of the underlying planar graph, and hence they require an extra over-
head. To be precise, graph-based boundary traversal approaches require the construc-
tion of a planar graph that represents the same connectivity as the network graph (i.e.,
without altering the network connectivity, all crossing links must be removed). Actually,
whilst graph-based approaches generate an important overhead due to the construc-
tion/maintenance of planar graphs, graph-free approaches are of a localized memory-
less2 nature (which fulfills our scalability requirement specified in Section 1.2). Further-
more, graph-free approaches have been theoretically proven to ensure boundary traver-
sal whatever the boundary configuration [37, 38, 41] (which satisfies our completeness
requirement specified in Section 1.2).

Based on what has been said, in this thesis, we totally disregard the first category of
algorithms (obviously because of their graph construction/maintenance overhead) and
adopt graph-free techniques (to implement our approaches) because they are much more
suitable for our case; they fulfill our requirements, and serve our objective of (1) proposing
a localized approach and (2) ensuring network traversal completeness. In other words,
what attracts us to graph-free approaches is not just their localized nature but also the
fact that they have been theoretically proven to ensure boundary traversal, which allows
us to guarantee the exploration of all nodes.

To the extent of our knowledge, in the literature, only two distributed localized graph-free
boundary traversal approaches have been proposed, namely the curved-stick (CS) [38]
and the rolling-ball (GAR) [41]. In the following, we describe these two well-known algo-
rithms.

2They do not rely on any local storage (any additional information) except the one-hop neighbors tables
of the concerned nodes.

18 CHAPTER 2. WIRELESS SENSOR NETWORKS

Boundary

Curved Stick

N i
N i+1

SP i
SP i+1

BTI

N i-1

SP i-1

Figure 2.3: Curved-stick boundary traversal started by BTI.

2.3.2.1/ CURVED-STICK

The authors in [38] proposed a curved stick boundary traversal algorithm that is (as its
name indicates) based on a curved-stick that can be swept clockwise or counterclock-
wise. More specifically, in this graph-free approach, the process of boundary traver-
sal must always start from a boundary node, called BTI (Boundary Traversal Initiator),
which is responsible for setting (initiating) the curved-stick (Fig. 2.3). Initially, as shown
in Fig. 2.3, the curved stick (arc with radius R) is hinged at the BTI inside the boundary
to be crossed. From this position, the BTI sweeps the curved stick counterclockwise until
a neighbor is hit (node Ni−1). The latter which is selected as next hop (and hence will
receive the traversal packet), in turn, must compute the new starting point of the curved-
stick (point SP i−1), sweep it to determine its next hop, and so forth. The same process is
repeated by each traversed node until visiting the whole targeted boundary.

Note that each traversed node must start sweeping the curved-stick from its correspond-
ing starting point defined as follows:

Definition 2: Curved stick starting point

The starting point SPi of a node Ni is the intersection point between the two
circles, of radius R, centered at Ni and Ni−1 (previous hop of Ni), such that SPi is
located in the left side of the oriented line→ NiNi−1.

This localized boundary traversal technique has been shown to be very efficient in terms
of saving energy and time, and deriving shorter routing paths around communication
holes [37, 38]. More details about the curved-stick, in particular, the ones related to its
proof of correctness, can be found in [37,38].

2.3.2.2/ ROLLING-BALL

With regard to GAR [41], its operation is identical to that of CS [38] except a rolling-ball is
used instead of the curved-stick. More precisely, this approach uses a virtual void3 circle
(of R/2 radius) that is hinged at a node (owned by one node) and must be empty of any
other node. Fig. 2.2 shows a rolling-ball hinged at node N1 with c1 ∈ IR2 as its center and
R/2 as its radius (where R is the communication range of nodes [27, 28]). As depicted in

3It does not contain any node, neither initially, nor at any given time.

2.3. BOUNDARY TRAVERSAL IN WSNS 19

Figure 2.4: Rolling-ball boundary traversal triggered by node N1.

Fig. 2.4, in order to traverse a given boundary, this circle, called rolling-ball and hinged at
a boundary node (node N1), is spun counterclockwise. The first hit neighbor (node N2),
which is chosen as next hop, repeats the same operation and so on. All nodes hit by
either the curved-stick or rolling-ball are identified as boundary nodes. We also note that
for both the curved-stick and rolling-ball, the clockwise direction can be used.

The rolling-ball radius value of R/2 is justified by the fact that when the current boundary
node, holding the rolling-ball, spins the latter, it must be ensured that it hits neighbors.
If the rolling-ball, hinged at the current node, does not touch any node, this necessarily
means that the current node is isolated and does not have neighbors. This property has
been used to formally demonstrate that GAR ensures boundary traversal. For the rest of
this manuscript, we will use the term ”optimal” when referring to this value of the rolling-
ball radius (i.e., R/2). In the same context, we underline that the ball’s emptiness is an
essential requirement for a valid boundary traversal. In other terms, in order to guarantee
a correct boundary detection/traversal, the rolling-ball must be, initially and all the time,
empty of active nodes.

Finally, we recall that the operation of our proposed serial approaches has been built on
boundary traversal in order to ensure their completeness (i.e., ensuring the traversal of
all nodes in the network). Furthermore, we underline that in order to achieve a good per-
formance, in particular, scalability, the distributed localized nature of the utilized boundary
traversal algorithm must be maintained throughout the network exploration process. In
the next chapter, we will start by presenting our first querying approach called the Peeling
Algorithm.

3
PEELING ALGORITHM

3.1/ INTRODUCTION

In WSNs, serial data aggregation approaches, in which a parameter of interest is es-
timated through a serial set of communications between nodes, have shown their ef-

fectiveness over both, parallel structure-based and parallel structure-free approaches.
Nevertheless, they still suffer from two major drawbacks: (i) they require the construction
of a path that must cross every node in the network exactly once, which is known to be an
NP-Complete problem [23] and (ii) they experience a poor scalability, which is an impor-
tant concern in large-scale WSNs. In this chapter, we tackle these issues by proposing
a novel serial localized approach, called Peeling Algorithm (PA) [18]. In this approach,
a packet travels serially from node to node carrying with it the parameter estimate, and
each visited node can locally determine the next hop of the packet while not needing to
store any information about the network topology. This unique feature allows a very good
scalability of PA. In this chapter, we also present a second algorithm, called Enhanced
Peeling Algorithm (EPA) [18]. More specifically, we will discuss the implementation de-
tails of PA and EPA, provide their proofs of correctness and report their performance
evaluation results. Actually, the extensive OMNeT++ simulation experiments, we have
conducted, indicate clearly that our proposed algorithms outperform the existing ones.

Briefly, this chapter is structured in six sections, as follows. The next section (3.2) in-
troduces the preliminaries and background required throughout the chapter. Section 3.3
presents and details the operation of the proposed localized approach through illustrative
examples, while Section 3.4 provides its proof of correctness. In Section 3.5, we present
and discuss the EPA approach. Section 3.6 presents and comments on the performance
evaluation results of both PA and EPA. Finally, Section 3.7 concludes the chapter.

21

22 CHAPTER 3. PEELING ALGORITHM

Hole 1

1

8

2

7

Hole Boundary Nodes
Network Boundary Nodes

Nodes

3

4
5 6

Hole 2

Figure 3.1: Boundary and non-boundary nodes in a wireless network.

3.2/ BACKGROUND AND GENERAL IDEA

This section presents the essential ingredients required for the proper opera-
tion/understanding of our peeling approach PA, namely the adopted definitions of bound-
ary nodes and network boundary nodes. This section also succinctly presents the utilized
boundary traversal algorithm (namely the curved-stick), and the general idea of the pro-
posed peeling algorithm.

The localized distributed nature of PA imposes that each node, upon receiving the query,
must execute a defined set of rules that are selected according to the localization of
nodes inside the network. As previously mentioned in Section 2.3.1 (boundary traversal
basic concepts), in a wireless network, three categories of nodes can be distinguished:
(a) boundary nodes, (b) network boundary nodes and (c) the rest of nodes in the network,
i.e., non-boundary nodes (Fig. 3.1). Before defining each category of nodes, let us first
recall what is a hole in the world of wireless networks. Actually, a hole is an empty closed
region delimited by the non-intersecting links of at least four nodes (see Section 2.3.1
and Definition 1 for more details). For example, the grey regions in the network of Fig. 3.1
represent two holes. The boundary of Hole 1 is formed by nodes N1, N2, N3, N4, N5, N6,
N7, and N8.

In the same context, we recall that in order to identify boundary nodes, several definitions
can be applied [18,38,41]. The definition that we propose in PA is the following:

Definition 3: Boundary Node (BN)

A node N is said to be a boundary node in the direction ∠NiNN j, iff it has at least
two angularly adjacent neighbors Ni and N j, so that Ni cannot communicate with
N j or the angle ∠NiNN j ≥ π.

We mention that we assume that all one-hop neighbors (Vi set) of a node Ni are ordered
counterclockwise. Hence, two consecutive one-hop neighbors of Ni are said to be angu-
larly adjacent. For instance, in Fig. 3.1, node N1 has two angularly adjacent neighbors;
N8 and N2, that cannot communicate, so N1 is facing a hole in this direction. Similarly,
the two angularly adjacent neighbors of node N8; N7 and N1 are forming an angle greater
than π, hence node N8 is facing a hole in this direction, and this, despite the fact that
these two neighbors can communicate. We note that all (grey and yellow) shaded nodes

3.3. PROPOSED APPROACH: PEELING ALGORITHM 23

Figure 3.2: Curved-stick network traversal started by node N1.

in Fig. 3.1 are boundary nodes.

Definition 4: Network Boundary Node (NBN)

In a wireless connected network, the network boundary nodes are defined as
the set of BNs such that the polygon formed from the corresponding set of links,
considered as straight non-intersecting line segments, contains all nodes of the
network.

For example, the NBN set of Fig. 3.1 is composed of all the dark shaded nodes. In
our proposed approach (detailed in Section 3.3), the serial visiting (i.e., peeling) pro-
cess must begin from a NBN node. However, the identification of such a node is not
straightforward and cannot be done locally by each node as is the case for boundary
nodes. In Section 3.3.3, we present the distributed localized algorithm that we propose
to determine whether a node is NBN or not. Once the starting point of the peeling has
been determined, the network can then be peeled layer-by-layer starting from that point
(Section 3.3).

We mention that as a network traversal tool, PA makes use of the boundary traversal
algorithm described in Section 2.3.2.1. Actually, as shown in Fig. 3.2, this localized dis-
tributed algorithm [38] utilizes a curved-stick that hinged at a node (N1) and swept coun-
terclockwise until a neighbor is hit (N2). The latter, which is selected as next hop, in turn,
computes the new starting point of the curved-stick, sweeps it to determine its next hop,
and so forth. A more detailed description of the curved stick can be found in Section 2.3.2.

3.3/ PROPOSED APPROACH: PEELING ALGORITHM

In this section, we present our proposed serial approach, named Peeling Algorithm (PA).
We first begin by sketching the overall peeling behavior through illustrative examples in
different network topologies. We then provide details of the mechanism utilized to select
the peeling starting point/node.

The proposed approach operates in three steps, as follows:

24 CHAPTER 3. PEELING ALGORITHM

(a)

Starting Node
(SN)

Ω Ω

Visited Nodes

(b)

Ending Node

(c)

QIN

(d)

QIN

Figure 3.3: Peeling process.

• First, the Query Launcher (QL), called also the Query Initiator Node (QIN) sends
the query packet to a node, named Starting Node (SN), which is located on the
external boundary of the network (Fig. 3.3 (a)). The determination of the starting
node of the peeling will be described in details in Section 3.3.3.

• Second, from this node (i.e., SN), the boundary traversal of the unvisited nodes
starts, leading at each step to visit a node located on the external boundary of the
network, which is changing over time (shaded region in Fig. 3.3 (b)). The process
stops when the immediate one-hop neighbors of the currently traversed node have
all been visited. (Fig. 3.3 (c)).

• Finally, by means of any efficient geographic routing mechanism [1], the query result
is sent from the last node in the path to the QL ((Fig. 3.3 (d)).

The key idea of the peeling approach is to serially visit the network, node by node, using
the curved-stick [38]. The latter guarantees that whenever the traversal process starts
from a boundary node, it remains on the same boundary.

In order to find the next appropriate hop, every node must maintain a flag for each of its
neighbors. This flag indicates whether the corresponding neighbor has been visited by
the query process or not. Thus, each node, upon receiving the query, will know which
of its neighbors have been visited, and hence will not consider them when it selects the
query next hop.

We note that thanks to the broadcasting nature of wireless communications, the process
of updating the flags does not require any communications or overhead other than the
query packet itself. In fact, in this communication model of WSNs [1], when a node sends
a packet, all nodes within its transmission range will hear it and hence can receive it.
This interesting feature is used in our approach to update, without any additional cost, the
visiting flags of each node.

The initial boundary from which the proposed peeling algorithm starts is the boundary of

3.3. PROPOSED APPROACH: PEELING ALGORITHM 25

(a)

Starting Node (SN)

Ω

(b)

Starting Node (SN)

Ω

Ending Node

Figure 3.4: Peeling disconnectivity issue. (a) The node in the middle ensures the con-
nectivity of Ω. (b) If this node marks itself as visited (i.e., no longer participates in the
traversal process), Ω will be partitioned, leading to missed unvisited nodes.

the unvisited sub-network, defined as follows:

Definition 5: Unvisited sub-network

We define the current unvisited sub-network, denoted by Ω, as the set of all
currently unvisited nodes.

3.3.1/ HOLE-FREE TOPOLOGIES

Initially, we have Ω = N and the starting node SN is located on the external boundary
of Ω. Then, at each step of the process, the currently traversed node marks itself as
visited (i.e., removed from Ω), and in turn selects the next unvisited neighbor located on
the boundary of Ω. Consequently, the external boundary of Ω changes in each step of
the peeling process1. This rule is reapplied by each node receiving the query until visiting
all nodes in the network.

We underline that although the clockwise direction can be used, in this chapter, as il-
lustrated in Fig. 3.3, we adopt only the counterclockwise (trigonometric) direction of the
peeling.

The network traversal process described above, whereas it behaves very efficiently in
dense and hole-free topologies, does not nevertheless ensure query completeness for
any network topology. A simple example in which this process fails is when a node that
connects two parts of the network marks itself as visited (Fig. 3.4 (a)). Actually, once
this node is being marked as visited, the unvisited region connectivity will no longer be
ensured, leading thus to missed unvisited nodes as shown in Fig. 3.4 (b).

To prevent such a scenario from happening and preserve the connectivity of Ω, certain
nodes have to be maintained alive (involved in the traversal) despite the fact that they
have been visited. To this end, the notion of bridge nodes has been introduced.

1The term ”peeling” comes from the fact that, at each step, the visited node is removed from the external
boundary of Ω.

26 CHAPTER 3. PEELING ALGORITHM

Bridge Node Not Bridge Node

Visited NodeNot Visited Node Bridge Node

Figure 3.5: Bridge and non-bridge nodes.

(a)

Ω

Ending Node

(b)

Figure 3.6: Peeling connectivity maintenance. (a) Bridge nodes maintain the connectivity
of Ω. (b) The process continues, at each moment, on the boundary of Ω.

Definition 6: BRidge Node (BRN)

A node is called bridge node when it satisfies the two following conditions:
1/ At least two of its unvisited or BRN neighbors cannot communicate, and
2/ None of the other unvisited or BRN neighbors are able to connect these two
neighbors.

In other words, a bridge node is the only node able to ensure the connectivity of at least
two of its neighbors. An illustration of bridge and non-bridge nodes is given in Fig. 3.5.
We note that according to the considered network model presented in Section 1.3, each
node can locally2 decide whether or not it is a BRN. Nevertheless, when the connectivity
of two nodes does not depend only on the distance between them (e.g., the presence of
obstacles), the node in question has to further be aware of the effective communication
links between its immediate neighbors.

To maintain the connectivity of Ω and consequently ensure query completeness/accuracy,
bridge nodes must not be removed from Ω and must be considered by the currently
traversed node when selecting the next hop. This means that the next hop of the currently
traversed node can be either an unvisited or BRN node. Fig. 3.6 shows how the peeling
algorithm behaves in the presence of BRN nodes. Actually, when a node detects locally
that it is a BRN (black nodes in Fig. 3.6 (a)), it continues the process and will not be
removed from Ω (it ensures its connectivity). When a BRN node receives the peeling
packet once again, it changes its status according to the ones of its immediate neighbors
and lets the process continues on the boundary of Ω (Fig. 3.6 (b)).

Property 1. Bridge nodes ensure the connectivity of the unvisited sub-network Ω.
2based only on its neighboring information.

3.3. PROPOSED APPROACH: PEELING ALGORITHM 27

1
2

3
4

5

6

7

(a)

1
2

3
4

5

6

7

(b)

BRN

1
2

3
4

5

6

7

(c)

BRN

Figure 3.7: Example of artificial holes. (a) Once node N2 is marked as visited, it creates
an artificial hole. (b) Artificial holes lead to looping. (c) Links crossing the boundary and
causing artificial holes (dashed line) must be deactivated.

Proof. We prove this property by contradiction. We assume that removing the currently
traversed node Ni from Ω breaks its connectivity, and we assume that node Ni is not a
BRN. Initially, thanks to the network connectivity assumption made in Section 1.3, we
know that Ω is connected. According to Definition 6, being not a BRN means that among
each pair of neighbors of node Ni, there exists a link connecting them without passing by
Ni. Consequently, Ω is connected, which contradicts the fact that removing Ni breaks the
connectivity of Ω. �

Although bridge nodes resolve the disconnectivity problem, they, however, bring another
problem to the surface that we call the artificial holes problem. Fig. 3.7 (a) illustrates the
formation of such holes. In fact, when node N2 receives the peeling packet from node
N1, it considers itself as visited, because all its unvisited neighbors (N3, N4, N5, N6, and
N7) can communicate with each other without its help. As a matter of fact, removing
node N2 from Ω will create an artificial hole between the unvisited nodes N3, N4, N5, N6,
and N7. Afterward, when node N3 receives the peeling packet, it considers itself as a
BRN because its two unvisited neighbors, i.e., N7 and N4, cannot communicate with each
other. From that point on, according to Definition 6, all the other nodes will be considered
as BRNs, leading hence to a looping situation (Fig. 3.7 (b).)

The creation of artificial holes is due to the conjunction of two facts. First, node N2 is
not a boundary node in the sense that all its unvisited neighbors can communicate with
each other. Removing node N2 (i.e., marking it as visited) will create a hole between its
unvisited neighbors. Second, some links, which are crossing the boundary of Ω, are still
considered, in particular, within the BRN decision. For instance, in our example, link L(7,3)
is crossing the boundary of Ω when the peeling packet is sent from N1 to N2 to N3. When
node N3 receives the packet, it takes into account link L(7,3), which is actually behind its
decision of being a BRN.

To alleviate this problem, links which are behind the creation of artificial holes have to be
deactivated. Before diving into the details of how to identify these links, we first introduce
the notion of potential boundary nodes.

Definition 7: Potential Boundary Node (PBN)

A node Ni is said to be a potential boundary node iff when considering only its
alive neighbors (i.e., unvisited or BRNs), it is a boundary node per Definition 3.

In this definition, the goal is to capture whether or not the currently traversed node is
located on the actual external boundary of Ω. To this end, the currently traversed node

28 CHAPTER 3. PEELING ALGORITHM

has to consider only its alive neighbors and see, according to Definition 3, whether it is
located on a boundary (i.e., external boundary of Ω). Consequently, if a node is a PBN,
it cannot create an artificial hole. On the opposite case, i.e., when a node is not a PBN,
there is a risk of artificial hole formation.

Moreover, some links may cross the current boundary of Ω, as is the case of link L(7,3) in
Fig. 3.7 (a). To handle this situation, we introduce the following definition:

Definition 8: Alive Neighborhood

We denote by Vi(Ω) = {N j | N j ∈ Vi ∧ N j ∈ Ω} the current alive neighborhood of
node Ni.

Based on Vi(Ω), the currently traversed node Ni can determine which links among Vi(Ω)’s
links are crossing the boundary of Ω. For instance, in our example of Fig. 3.7, node N2
can easily determine that link L(7,3) is crossing the current boundary of Ω. Hence, when a
node Ni receives the peeling packet from the previous hop Nprev, and find out that it is not
a PBN and that there exist some links crossing the current boundary of Ω, it executes the
two following steps:

• Construct two sets. The first one contains all nodes involved in the crossing links
that are on the right side of the segment [Ni, Nprev]. The second set is formed by
the other nodes. In our example, the two sets are: {N7} and {N3}.

• Send the peeling packet with this additional information about the two sets.

Upon receiving the peeling packet, the neighbors of the currently traversed node must
perform the following step. Each node checks first to which set it belongs. If it belongs
to one of these two sets, then, it deactivates (deletes) its links with the nodes belonging
to the other set. For example, as shown in Figure 3.7 (c), node N3 will deactivate its link
with N7, and vice versa. Consequently, node N3 will not identify itself as a BRN, avoiding
thus the previously observed looping situation. We underline that this link deactivation
concerns only the current executed query.

Property 2. PBN rules do not raise artificial holes.

Proof. Let us suppose that the currently traversed node is Ni, the previous hop is Nprev,
and that an artificial hole has been created. We note that this assumption implies that
Nprev has necessarily been marked as visited, otherwise an artificial hole cannot be cre-
ated. In more details, we have two cases to consider; Nprev is a PBN or a non-PBN.

• Nprev is a PBN: according to Definition 7, this implies that nodes in VNprev(Ω) do not
form a closed region, which contradicts the assumption of existence of a hole (cf.
Definition 1).

• Nprev is not a PBN: also according to Definition 7, this implies the existence of a path
connecting all alive neighbors of Nprev without passing through it. However, Nprev was
located on the boundary of Ω and consequently, there exists a link belonging to the
created hole and crossing this boundary. This is in contradiction with PBN rules
because such a link would have necessarily been deactivated. Consequently, a
hole cannot exist, which is in contradiction with the initial assumption.

Therefore, in all cases, an artificial hole cannot exist. �

3.3. PROPOSED APPROACH: PEELING ALGORITHM 29

Hole
Unvisited

Node

Figure 3.8: Example of peeling misbehavior (caused due to the use of bridge nodes
concept).

Hole
3

Hole
2

Hole
1

HRN 1

HRN 2

HRN 3
HLN 2

HLN 1

HLN 3

Current node

Figure 3.9: Example of hole selection by HGN.

3.3.2/ HOLE TOPOLOGIES

Network topologies with holes are usually much more complex to handle with distributed
and localized algorithms. If we apply the peeling process described above on network
topologies with holes, then, as depicted in the example of Fig. 3.8, it will fall into a hole
looping situation and, consequently, will not be able to visit nor the potential nodes located
inside that hole nor the rest of nodes in the network. For instance, in the given example,
the node located inside the hole cannot be accessed/traversed because bridge nodes
(black nodes) are creating a looping situation around the hole and preventing thus the
peeling process from going inside. Essentially, the problem comes from Definition 6,
because according to this latter, all nodes, which are located on the boundary of a hole,
will be marked as BRNs.

To overcome this looping issue and render the peeling process able to visit all nodes, the
nodes responsible for such a misbehavior have to be identified, and the rules associated
with these nodes have to be defined. Of course, the connectivity of Ω must be maintained
all the time.

Definition 9: Potential Hole Boundary Node (PHBN)

Every Boundary Node (BN) which is not a Network Boundary node (NBN) is
defined to be a potential hole boundary node.

In other words, as previously explained, each PHBN is facing a hole that can create a
looping case. We mention that, as shown in Fig. 3.9, each PHBN node has two hole
neighbors: Hole Right Neighbor (HRN) and Hole Left Neighbor (HLN).

To avoid looping and ensure that all nodes in the network will be visited, the idea is to
break holes (cycles) and allow the peeling process to go inside. We emphasize that
the peeling must also be able to leave holes (avoid inner looping). These goals are not

30 CHAPTER 3. PEELING ALGORITHM

obvious to meet, especially with a localized serial algorithm. To solve this issue, we
introduce the following definition:

Definition 10: Hole Gate Node (HGN)

We define the Hole Gate Node of a hole as the first PHBN node of this hole to
receive/possess the peeling packet.

The HGN notion has a twofold role: (a) it allows the peeling process to discover holes (and
visit any potential inner nodes), and (b) it guarantees that the peeling can leave holes. To
meet these two requirements, while still using a serial boundary traversal algorithm, some
particular links in Ω have to be deactivated. In other terms, the boundary of Ω must be
modified without altering its connectivity.

3.3.2.1/ HOLE GATE NODES IDENTIFICATION

According to Definition 10, two steps are necessary for a node to identify itself as HGN:

• First, it must determine whether it is facing a hole or not (Definition 3). For instance,
the node of Fig. 3.9 is facing three holes. We underline that each node can locally
perform this step (thanks to its neighboring information).

• Second, once this node is aware that it is located on the boundary of a hole, it can
determine if it is the HGN of this hole when it receives the peeling packet. More
precisely, if the peeling packet arrives at the currently traversed node from a node
that does not belong to the same hole, the currently traversed node is certainly the
first visited node of the hole and consequently, it is the HGN of this latter. Otherwise,
the hole has already got an HGN. We note that this second step can be performed
locally and does not require any extra-information other than the one-hop informa-
tion.

In the case where the currently traversed node is facing more than one hole, the selec-
tion of the hole to be explored is made according to the counterclockwise direction. For
instance, in Fig. 3.9, the peeling packet came to the currently traversed node from hole 1,
which means that hole 1 has already got an HGN and consequently, hole 2 will be the
one to be explored next.

3.3.2.2/ HOLE GATE NODES RULES

Upon receiving the peeling packet from the previous hop Nprev, if node Ni detects that it is
an HGN, it executes the four following steps:

1. Creates two sets from its immediate neighbors.

• The first set, called Front Set (FS), contains all neighbors located in the sector
defined by the angle ∠NprevHGNHLN. In the example of Fig. 3.10, all grey
nodes belong to this set, including the HRN.

3.3. PROPOSED APPROACH: PEELING ALGORITHM 31

(a) (b)

Hole
Current Boundary

HRN

HLN HGN

New Boundary

HRN

HLN HGN

Figure 3.10: Rules applied by HGNs. (a) Before performing HGN rules. (b) After changing
the boundary of Ω.

• The second set called Back Set (BS) is composed of the rest of neighbors,
including the HGN itself and its HLN. In Fig. 3.10, all white nodes belong to
this set.

2. Virtually deletes links with every node of FS. This means that, for the currently
executed query, the HGN will not consider these nodes as its neighbors. Formally
speaking, the set D = {L(HGN, i) | Ni ∈ FS (HGN)} is removed from L for this query.

3. Initializes a packet which contains: (1) its identity as the HGN of this hole, and (2)
the two previously constructed sets FS (HGN) and BS (HGN).

4. Broadcasts this packet to neighbors.

Upon receiving the HGN packet, each neighbor must perform which follows:

1. Determines to which set it belongs; FS (HGN) or BS (HGN).

2. Based on membership, virtually deletes its links with every node belonging to the
other set (as previously done by the HGN).

Fig. 3.10 gives an illustrative example of the rules applied by HGNs. Actually, when a
HGN receives the query packet (Fig. 3.10 (a)), it performs the above-mentioned steps
and broadcasts a packet to its neighbors. Upon receiving this packet, each neighbor of
the HGN, in turn, performs the corresponding steps (Fig. 3.10 (b)). Afterward, the query
process continues in the direction of the HLN.

Property 3. The rules applied by HGNs maintain the boundary of Ω. That is; when
exploring (opening) a hole, no link remains that crosses the newly created boundary.

Proof. We denote by Nprev the previous node that delivers the peeling packet to the HGN.
We also denote by σ = {VHGN ∩ VPrev} the common neighbors of the HGN and Nprev. Ini-
tially, we know that the HGN and Nprev belong to the boundary of Ω (see Fig. 3.10). This
means by construction that there cannot exist any node, in the direction of the boundary
and outside the communication range of the HGN and Nprev (i.e., it does not communicate
with both of them), that can communicate with any node belonging to σ. Formally speak-
ing, @Ni | L{i, HGN} < L ∧ L{i, prev} < L ∧ L{i, n} ∈ L ∧ ∠NprevNiHGN ≤ π, where Nn ∈ σ. On
the other hand, thanks to the second step performed by the HGN and all its neighbors

32 CHAPTER 3. PEELING ALGORITHM

Previous
Node

1

2

3
4

10

11

12

13
14 15

16

17

18

5
9

8
7

6

False HGN

True HGN

Deactivated links

Hole 1

Hole 2
(a)

(b)
1

2

3
4

10

11

12

13
14 15

16

17

18

Dectivated links

Hole 1

Hole 2

Hole Control
Packet (HCP)

9

8
7

6

5

Figure 3.11: Nested holes. (a) Peeling the network without using HCP packets. (b) Peel-
ing the network using HCP packets.

(i.e., links deletion), there cannot exist any link between the FS and BS sets. In addition,
by construction, there cannot exit a link between the HLN and HRN (otherwise, a hole
cannot exit). Finally, there cannot exist a link crossing the new boundary including Nprev,
HGN, and HLN. �

The peeling approach described above has ensured query completeness on the numer-
ous network configurations that have been randomly generated in our performance eval-
uation study (cf. Section 3.6). All alive connected nodes were visited. Nevertheless, from
a theoretical point of view, we have constructed by hand, some particular topologies in
which this version of PA fails to ensure query completeness. Fig. 3.11 (a) illustrates an
example of such topologies. In this figure, when node N1 receives the query, it considers
itself as the HGN of hole 1 and applies the corresponding rules. That is, link L(1, 17) is
deleted and the query is oriented towards node N2. Similarly, when node N4 receives the
query, it considers itself as the HGN of the hole located to the left, deletes link L(4, 5), and
then sends the query to node N10. Consequently, all nodes located on the boundary of
hole 2 will be lost and can never be visited.

This false HGN detection comes from the fact that node N4 treats a single hole (hole 1)
as being two different holes. To solve this problem, an additional rule must be executed
by the HGNs. Actually, before performing steps 2, 3 and 4 described above, the HGN
sends a control packet, named Hole Control Packet (HCP), which travels along the hole

3.3. PROPOSED APPROACH: PEELING ALGORITHM 33

in question, and visits all nodes located on its boundary. Eventually, due to its nature, the
HCP will get back to the HGN (Fig. 3.11 (b)). In fact, the HCP packet plays a twofold role:

• First, it informs all nodes located on the boundary of the hole that this latter has
an HGN. Consequently, these nodes will not consider this hole later on when they
receive the query packet.

• Second, the HCP packet allows nodes to detect if their local stored holes constitute
the same hole. For instance, node N4 will know that its left and right holes are
actually one single hole that has already got an HGN. This way, N4 will not consider
itself as the HGN of this hole and will allow the peeling process to continue after
contributing to it.

In the same context, later on, when the query packet gets to node N5, it will identify
itself as the HGN of hole 2, and consequently will apply the corresponding rules.
That is, sending a HCP packet inside this hole and deleting the link with its right
neighbor (Fig. 3.11 (b)).

Property 4. The rules applied by HGNs do not partition the set of unvisited nodes Ω.

Proof. Let us assume that the deleted links partition Ω and let us try to arrive at a contra-
diction. Further, let us suppose that there exists only one link between FS and BS sets
(i.e., link connecting HGN and HRN). Actually, in this case, our initial assumption means
that after links deletion, no path can connect the nodes of FS and BS sets. Which, thanks
to the HCP packets sent by the HGN of the hole contradicts the existence of another path
connecting HGN with HRN. Also, by construction, each hole has one and only one HGN.
Consequently, there exists a path, passing through the HLN, connecting the HGN to ev-
ery node in the hole, in particular, the HRN. In other words, the HGN and the HRN are
connected through the hole. In addition to that, based on (1) the fact that the BS and the
FS are internally connected (i.e., nodes inside them are connected), and (2) the fact that
HGN and HRN belong respectively to the BS and FS, we can deduce that the FS and BS
are connected. This contradicts the initial assumption. �

The overall peeling algorithm, executed by each node receiving the query packet, is de-
picted in Algorithm 1.

3.3.3/ STARTING NODE DETERMINATION

As previously mentioned, the peeling approach must start from a node that is located on
the external boundary of the network. To this end, in this section, we propose a distributed
localized technique able to efficiently identify the network boundary nodes. Actually, this
approach is inspired from the work presented in [37, 38], and its key idea is to try to
reach a virtual node located outside the network area using a geographic greedy routing
(Fig. 3.12).

In more details, a packet aiming to reach the virtual node is initiated by the sink/query
launcher. Actually, at first, the query launcher Ni sets the location of the virtual node
and sends the created packet to its one-hop neighbor N j which is the closest to the set
virtual node (among Ni itself and all its neighbors). Knowing the virtual node location
(from the received packet), every node in the path repeats this process until the packet

34 CHAPTER 3. PEELING ALGORITHM

Hole

Virtual Node

Sink

Last Local
Minimum

Figure 3.12: Network boundary nodes determination.

Algorithm 1 Peeling Algorithm.
Require: Receive peeling packet from previous hop.
1: if (current node not visited for this query) then
2: Contribute to this query;

3: Mark itself as visited for this query;

4: if (current node is HGN) then
5: // If current node is located on more than one unexplored hole (Fig. 3.9)
6: Select the first counterclockwise hole among local unexplored holes;

7: Send an HCP packet inside the selected hole;

8: Upon receiving the HCP packet back, select the HLN as next hop;

9: else
10: if (current node is not PBN and crossing links exist) then
11: Add necessary information to the peeling packet; // cf. artificial holes.
12: end if
13: Select next hop among unvisited and BRN neighbors;

14: end if
15: else
16: Select next hop among unvisited and BRN neighbors;

17: end if
18: Determine the current node status; // BRN or not?
19: Send peeling packet to next hop;

falls into a local minimum situation (i.e., the packet cannot be delivered to the next hop
as the current node is the closest one to the virtual node). From this node, also called
the local minimum node, the recovery process is launched using the curved-stick bound-
ary traversal approach [38] (Section 2.3.2.1). This process is repeated until the currently
selected node is closer to the virtual node than the local minimum node. From this mo-
ment, the greedy forwarding is used again, and so on. For instance, in Fig. 3.12, plain
arrows represent greedy communications and hollow ones represent boundary traversal
(curved-stick) communications.

Following this approach and knowing that the virtual node is unreachable by construction,
the packet will make a cycle and get back to the last local minimum node, denoted by Nl.

Property 5. The last local minimum node Nl is a network boundary node (NBN).

Proof. Initially, all nodes in the network are connected (connectivity assumption made in
Section 1.3). Also, given the fact that (1) the curved-stick ensures boundary traversal [38],
and (2) the greedy rule selects the closest node to the virtual node, we conclude that the

3.4. PROOF OF CORRECTNESS 35

last local minimum node Nl has the shortest distance to the virtual node among all nodes
in the network. Hence, Nl is located on the network boundary. �

Once a node has been identified as a network boundary node (NBN); e.g., the grey node
in Fig. 3.12, the process of identifying all the other NBNs in the network can be triggered
from this node using the curved-stick boundary traversal algorithm. In fact, upon receiving
the curved-stick packet, each node (which is necessarily a NBN) must locally update its
list of local holes (i.e., mark the external boundary of the network as explored), and this
in order to avoid considering the external boundary of the network as a hole boundary.

It is worth emphasizing that the process of NBNs determination must be done only once
and it is not necessary to repeat it each time the network is queried unless of course, the
network topology has changed.

3.4/ PROOF OF CORRECTNESS

In this section, we provide proofs that demonstrate the peeling algorithm correctness.
More precisely, we first prove that our approach terminates and does not fall into looping.
In other words, we prove that PA generates a finite set of hops. Second, we prove that PA
ensures query completeness (i.e., visits all nodes in the network).

The main facts on which the proof of correctness of PA is built are: (a) iteratively shrink-
ing Ω while maintaining its connectivity (Property 1), (b) avoiding looping situations that
can be caused by the creation of artificial holes (Property 2), and (c) transforming Ω (us-
ing the HGN rules) from a connected sub-network with holes (cycles) to a one without
holes (Properties 3 and 4).

Formally, PA iteratively constructs (shrinks) the set Ωi, following the recurrent relationship
defined as follows:

Ω0 = N ,

Ωi+1 = Ωi − {Nv},

where Nv is the first traversed node which is not a BRN during the scan of Ωi. For instance,
in Fig. 3.11(b), if we denote the sub-network of nodes N1 to N18 by Ωk, then:

Ωk+1 = Ωk − {N1},
Ωk+2 = Ωk+1 − {N2},
Ωk+3 = Ωk+2 − {N3},
Ωk+4 = Ωk+3 − {N9},
Ωk+5 = Ωk+4 − {N8},

. . .

Lemma 1:

At each iteration i, PA finds a non-BRN node Nv.

36 CHAPTER 3. PEELING ALGORITHM

Proof. Let us suppose that at step i, node Nv does not exist. In fact, since the curved-
stick ensures boundary traversal, this assumption means that all the traversed nodes are
BRNs. In other words, the traversed nodes form a hole. This, however, contradicts the
non-existence of holes (cycles) guaranteed by the HGN rules. Therefore, we conclude
that at each step i, Nv exists. �

Based on the previous lemma, we have:

Theorem 1:

PA generates a finite sequence of hops H =
⋃k

i=0 Ni (i.e., PA terminates).

Proof. Initially, PA starts with a finite set Ω0 = N . Then, at each iteration i, Lemma 1
ensures that a non-BRN node Nv exists. This means that the number of nodes in Ω is
strictly decreasing at each iteration:

∀ | N | > i > j > 0, | Ωi | < | Ω j |

Since PA starts with a finite set of nodes, then, it exits a k such that Ωk+1 = ∅. Hence, we
prove that H is finite and PA terminates. �

We define the set of external boundary nodes of Ωi, denoted by B(Ωi), as follows:

Definition 11: Boundary of Ωi

The boundary of Ωi is a cyclic sequence of unvisited or BRN nodes such that
the closed region bounded by this non-self-intersecting polygonal sequence con-
tains all the nodes of Ωi.

Lemma 2:

At each iteration i, the next visited node Nv belongs to B(Ωi). That is, Nv is
located on the boundary of the current sub-network Ωi.

Proof. We know that, initially, the peeling algorithm starts from a node that is located on
the boundary of Ω0. Based on this and given the fact that the curved-stick is a bound-
ary traversal tool [38], each traversed non-BRN node Nv will be certainly located on the
boundary of Ωi. This can be proven as follows. In fact, initially, the peeling algorithm
keeps scanning the nodes located on the boundary of Ω0 until it hits a non-BRN node Nv.
That is, initially, Nv is located on the boundary of Ω0 and the property is true for i = 0.
Now, let us suppose that the property is true for i and let us try to show that it remains as
such for i + 1. First, since the property is true for i, this means that the currently removed
node Nv is located on the boundary of Ωi. Second, as previously mentioned, using the
curved-stick as a traversal algorithm guarantees that the next hop Nw of Nv is located on
the boundary of Ωi. Consequently, it is clear that this next hop Nw is also located on the
boundary of Ωi+1. In fact, if Nw is not a bridge node (non-BRN) then it can be removed
from Ωi+1 (marked as visited). Otherwise, starting from Nw, PA will keep scanning the
boundary of Ωi+1 until it finds a non-bridge node that can be marked as visited. Hence,
we conclude that the property is also true for i + 1. �

3.5. PEELING EFFICIENCY AND ROBUSTNESS ENHANCEMENT 37

Theorem 2:

The sequence of hops H , generated by PA, contains all nodes of the network
(i.e., H = N).

Proof. To prove that PA visits all nodes in the network, let us assume that H (set gen-
erated at the end of network traversal) is different than N (set of all connected nodes in
the network) and then let us seek to derive a contradiction. First, let us denote by Nv,
each traversed non-BRN node that will be removed from Ω without altering its connec-
tivity. Second, let us denote by Nm, one of the unvisited nodes that might be missed by
PA (Nm , Nv, ∀ v). Third, let us consider an unsigned integer j (0 < j < n) such that Nm

belongs to Ω j and does not belong to Ω j+1. That is, Nm has been missed at iteration j.
Actually, since at iteration j, PA hits only nodes that are located on the boundary of Ω j

and does not miss any one of them (Lemma 2 and Theorem 1); therefore, Nm cannot, in
any case, be located on the boundary of Ω j. Thus, Nm belongs to Ω j+1. This, however,
contradicts the initial assumption which says that Nm does not belong to Ω j+1 (Nm < Ω j+1).
Consequently, we conclude that PA guarantees network traversal completeness in spite
of the considered topology. �

To recapitulate, thanks to Theorems 1 and 2, we have the guarantee that, regardless
of the considered network topology (irregular or regular, large-scale or sparse, with or
without holes,etc.), the proposed peeling algorithm terminates (does not fall into looping)
and ensures query completeness/accuracy.

3.5/ PEELING EFFICIENCY AND ROBUSTNESS ENHANCEMENT

As confirmed by the simulation results presented in the next section, the proposed peeling
approach performs very efficiently in uniformly dense networks. Nevertheless, we have
noted that in sparse networks with different densities, some nodes/links (because of their
positions as BRNs) participate more often in the query evaluation than others. An exam-
ple of such topologies is given in Fig. 3.13 (a), which illustrates one peeling round (grey
nodes have been marked as visited, black nodes are bridges, and white ones have not
been visited yet). Actually, in this example, it is clear that bridge nodes will be accessed
more frequently than the others. For instance, if the peeling process continues until the
end, the bridge black nodes and their related links will be accessed/used five times. Such
a situation occurs because the peeling algorithm does not consider the visited nodes
(which are not bridges). In other words, PA keeps only one alive path of bridges and uses
it all the time.

As a matter of fact, this path linearity phenomenon brings with it several drawbacks and
issues. First, it increases the communications required to accomplish a query. Second,
and more importantly, it contributes somehow to the vulnerability of the peeling process.
For instance, when a link in such a linear path of bridges is broken, the unvisited region
will be partitioned despite the existence of other paths that can be formed by the already
visited nodes. Actually, in such a scenario, since the current version of the peeling al-
gorithm does not consider this solution or any other one, the peeling packet will be sent
back to the previous hop and a false peeling termination will be detected.

38 CHAPTER 3. PEELING ALGORITHM

BRN Linearity

(a): First Round

(b): Second Round

Cyclic Node

Ω

Ω

Figure 3.13: Peeling linearity phenomenon.

Repairing the connectivity of Ω (when it is partitioned due to the unavailability of a path)
is a very challenging issue that deserves much research efforts. We mention that in the
present section, our goal is just alleviating the impact of path linearity phenomenon on
the peeling process. To this end, we have added a new rule that must be performed by
certain specific nodes defined, as follows:

Definition 12: Cyclic Node (CN)

A node Ni is said to be cyclic, iff it conforms to the following two conditions:
(a) it is a BRN (bridge node) and (b) it has received the peeling packet from two
different directions.

In other words, as illustrated in Fig. 3.13 (b), the peeling process must pass, at least
twice, by a cyclic bridge node Ni. Actually, when the peeling process gets back to a cyclic
node (i.e., has accomplished a cycle), it defines a closed unvisited region (Fig. 3.13 (b)).
The objective of the new rule that must be performed only by cyclic nodes is to peel
this closed region before continuing the process somewhere else. This, as shown by
Fig. 3.13 (b), means that each cyclic node must re-orient the peeling process towards the
closed unvisited region. This way, the new applied rule ensures that the peeling process
remains inside the region in question until visiting all its nodes. Eventually, once the
desired region has been completely visited, the cyclic node in question will change its
status from bridge to visited node and forwards the peeling packet.

Clearly, from a theoretical standpoint, the new applied rule noticeably reduces the serial
path length, which considerably enhances the peeling performance. Yet, to confirm this
point, in our experiments, in addition to PA, we have also implemented this improvement,
calling it Enhanced Peeling Algorithm (EPA). For instance, applying the new rule to the
network of Fig. 3.13 leads to more than 8% of communications reduction. Further, as it
will be shown in the next section (3.6), this reduction is more substantial in large-scale
network deployments.

3.6. PEELING PERFORMANCE ASSESSMENT 39

3.6/ PEELING PERFORMANCE ASSESSMENT

In order to evaluate the performance of our proposed peeling algorithms, we have con-
ducted several series of simulations using OMNeT++ [53] and its WSNs framework
Castalia [54]. For comparison purposes, in addition to PA and EPA, we have also im-
plemented the three following approaches:

1/ Tree-based querying: in this approach, called also centralized in-network query-
ing [3], a tree rooted at the sink must be constructed. In fact, in the resulting tree, each
node can have one or several children but must have only one parent, except for leaf
nodes which will have no children and the sink which must have no parent. Once the tree
is created and all nodes in the network are connected to it, query processing can be per-
formed following two phases. The first phase is dedicated to query dissemination through
the tree (starting from the sink). More specifically, upon receiving the query, each inter-
mediate node forwards the query to its children. When the query arrives at leaf nodes,
the latter trigger the second phase by sending their readings to their corresponding par-
ents. From this point on, upon receiving data from its children, each intermediate node
aggregates these measurements with its own reading and sends the result to its parent,
and so on. This process stops when all data is received by the sink.

2/ Iterative querying: in this approach, called also distributed in-network query-
ing [14,15], the QL can launch a query by simply broadcasting a packet to its immediate
neighbors. Upon receiving the query, each node re-broadcasts it and starts exchanging
its own estimate with those of its immediate neighbors. More precisely, at each iteration of
the process, the local estimate of each node is updated with the weighted data received
during the previous iteration, and so on. This process terminates when each node detects
that the difference in values between two consecutive terms of the estimated parameter
is smaller than a certain predetermined threshold.

3/ Depth-First Search: this well-known serial technique [26] constructs for each query
a path that stems from the QL and extends, as much as possible, toward the unvisited
nodes. In other words, DFS explores the network as far as it can, and when it gets stuck,
it backtracks (looking for other possible unvisited nodes). To be able to do so, each node
must be aware of its unvisited neighbors as well as the identity of its parent. We recall
that DFS requires 2∗ (n−1) hops to explore a network of n connected nodes and get back
to the sink/QL.

3.6.1/ EVALUATION METRICS

Note that, regardless of the considered network configurations, all the implemented ap-
proaches have been proven to ensure query completeness (all nodes contribute to the
query). In the same context, note also that, except DFS, we have not considered any
other serial approaches such as space-filling curves algorithm [24], because they do not
satisfy this requirement (they do not guarantee query accuracy).

For a single query, in addition to completeness, the other considered comparison metrics
are:

• Required communications: total number of packets (transmissions) used to query
the network and aggregate data (i.e., control and data packets).

40 CHAPTER 3. PEELING ALGORITHM

Table 3.1: Peeling simulation configuration and parameters

Parameter Value(s)

Field dimensions (m2) 1000 x 1000
Nodes number 100, 150, 200, . . . , 500
Nodes deployment Uniform
Nodes transmission range (m) 150
Nodes initial energy (J) 100
Query launcher location Random
Query packet size (byte) 50
Radio type CC2420
Radio data rate (kbps) 250
MAC protocol CSMA/CA
Sensed values interval [0, 0.4]
Convergence threshold (for Iterative approach) 10−2

• Response time: time that elapses between the instant when the QL issues a query
and the instant when it receives the corresponding answer.

• Consumed energy: total energy consumed by the network during the querying pro-
cess. In fact, in order to estimate the energy required by each node to transmit and
receive packets, we have used the energy consumption model proposed in [55].
The radio in this model dissipates Eelec = 50 nJ/bit to run the transmitter or receiver
circuitry and εamp = 100 pJ/bit/m2 for the transmitter amplifier. Thus, to transmit a
k-bit packet a certain distance d using this model, the radio consumes:

ET X(k, d) = k ∗ Eelec + k ∗ d2 ∗ εamp

and to receive this same packet, the radio consumes:

ERX(k) = k ∗ Eelec.

In addition to these metrics, we consider the number of queries a network can support
before one of its nodes runs out of energy. This metric represents the network lifetime in
terms of supported queries.

3.6.2/ SIMULATION PARAMETERS

The considered simulation parameters are summarized in Table 3.1. Note that the sensed
values interval, which impacts only the iterative querying approach (described above),
has been set to [0, 0.4]. Actually, as explained below in Section 3.6.3.1, the length of
this interval has been purposely set to a small value in order to not penalize the iterative
approach. In the same context, we mention that the sensed values, taken from the chosen
interval, are normalized uniform random values.

As regards Table 3.2, it shows the average degree of nodes in the different deployments;
i.e., the average number of neighbors of each node. More precisely, in this table, the first

3.6. PEELING PERFORMANCE ASSESSMENT 41

Table 3.2: Peeling average nodes’ degree.

100 150 200 250 300 350 400 450 500
8 12 16 20 25 29 33 37 42

line represents the number of nodes in the network, whereas the second one represents
the corresponding average degree.

3.6.3/ SIMULATION RESULTS

For each query configuration (i.e., network deployment and query launcher location), we
have run the studied approaches and recorded the obtained results. Actually, the results
presented below represent the mean values of 30 runs on each configuration.

3.6.3.1/ SINGLE QUERY PERFORMANCE

Figures 3.14, 3.15, and 3.16 summarize the obtained single query evaluation results.
These curves clearly confirm the effectiveness of serial approaches over centralized (i.e.,
parallel tree-based) and iterative (i.e., parallel structure-free) ones. Although the improve-
ment is minor in sparse network configurations, it becomes more noticeable when the
network density increases. For instance, in terms of communications, PA is about 6 times
better than the iterative approach and 4 times better than the centralized one. As a matter
of fact, even though the centralized approach allows concurrent transmissions, the gen-
erated collisions (during tree construction, query answering, etc.) prevent this approach
from exhibiting better performance. The obtained results also reveal that the iterative ap-
proach (because of its intrinsic iterative behavior) is more costly in comparison with the
other approaches. Actually, we have concluded (from other results not reported in this
manuscript) that when the standard deviation between sensed data is important and the
network is large, the iterative approach will need more iterations to reach convergence.
In fact, this happens particularly when nodes with important differences in sensed data
are located far away from each other.

We note that, in all the studied approaches, the three considered metrics increase with the
increase of the number of nodes in the network. This trend, however, is less pronounced
in serial approaches, which means that they are more scalable than the centralized and
iterative techniques.

Now, if we consider only the studied serial approaches (PA versus DFS), the obtained
results clearly display the outperformance of our algorithm in terms of communications,
time, and energy consumption. This improvement, while minor in sparse configurations
(from 100 to 150 nodes), becomes more significant in dense networks (from 70% to 90%).
Actually, this is primarily due to the fact that our approach is localized and structure-free
(only one-hop information is required and no predetermined visiting path needs to be
followed). As regards DFS, in fact, its bad performance comes mainly from its costly
mandatory backtracking process.

42 CHAPTER 3. PEELING ALGORITHM

 0

 500

 1000

 1500

 2000

 2500

 3000

 100 150 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
T

ra
n
s
m

is
s
io

n
s

Number of Nodes

Iterative
Centralized

DFS
Peeling

Figure 3.14: Peeling one query performance: number of transmissions.

 0

 5

 10

 15

 20

 25

 30

 100 150 200 250 300 350 400 450 500

S
in

g
le

 Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e
 (

in
 s

)

Number of Nodes

Iterative
Centralized

DFS
Peeling

Figure 3.15: Peeling one query performance: average response time.

3.6.3.2/ NETWORK LIFETIME

In these series of simulations, we measure the effect of the different studied approaches
on the overall network lifetime. To this end, prior to deployment, we have provided each
node with the same initial energy provision of 5J. Then, we have run the considered
approaches by launching a query every 2 minutes. The network is assumed to be dead
when any of its nodes (i.e., the first node) runs out of energy. Fig. 3.17 plots the recorded
number of supported queries. In fact, as this figure shows, the obtained results confirm
the effectiveness of our peeling approach in terms of prolonging the network lifetime and
supporting more queries compared with the other approaches. More specifically, the

3.6. PEELING PERFORMANCE ASSESSMENT 43

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 150 200 250 300 350 400 450 500

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

in
 J

)

Number of Nodes

Iterative
Centralized

DFS
Peeling

Figure 3.16: Peeling one query performance: total energy consumption.

 0

 100

 200

 300

 400

 500

 600

 100 150 200 250 300 350 400 450 500

N
e

tw
o

rk
 L

if
e

ti
m

e
 (

#
 o

f
Q

u
e

ri
e

s
)

Number of Nodes

Iterative
Centralized

DFS
Peeling

Figure 3.17: Peeling performance: network lifetime.

improvements are nearly 500%, 300% and 50% in comparison, respectively, with the
iterative, centralized, and DFS approaches.

3.6.3.3/ COLLISIONS IMPACT

As previously mentioned, one of the main interesting features of serial approaches is
that they do not generate collisions. Actually, in these approaches, all transmissions
are sequential and at any moment in time, only one node is allowed to send data. To
quantify the effect of this collision-free feature on query responsiveness, in this section,
we compare the studied serial approaches (i.e., PA and DFS) while enabling and disabling

44 CHAPTER 3. PEELING ALGORITHM

 0

 2

 4

 6

 8

 10

 100 150 200 250 300 350 400 450 500

S
in

g
le

 Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e
 (

in
 s

)

Number of Nodes

DFS with MAC
DFS without MAC
Peeling with MAC

Peeling without MAC

Figure 3.18: Peeling query response time while enabling and disabling MAC functions.

 0

 200

 400

 600

 800

 1000

 100 150 200 250 300 350 400 450 500

N
u

m
b

e
r

o
f

T
ra

n
s
m

is
s
io

n
s

Number of Nodes

DFS

PA

EPA

Figure 3.19: PA and EPA one query performance: number of transmissions.

the MAC layer. We recall that the considered MAC is the CSMA/CA protocol provided by
Castalia [54] (Table 3.1).

The obtained results confirm that disabling the MAC layer does not affect either the re-
quired number of communications nor the consumed energy, but actually, impacts the
query response time (Fig. 3.18). More specifically, a clear time improvement can be at-
tained when no MAC layer is utilized, especially in dense networks (about six times of
improvement). The reality of this enhancement being more noticeable in large-scale de-
ployments validates the appropriateness of serial approaches for this kind of networks.
However, the only downside here is that the MAC layer can be disabled only in the case
where just one query is present in the network.

3.6. PEELING PERFORMANCE ASSESSMENT 45

 0

 2

 4

 6

 8

 10

 100 150 200 250 300 350 400 450 500

S
in

g
le

 Q
u

e
ry

 R
e

s
p

o
n

s
e

 T
im

e
 (

in
 s

)

Number of Nodes

DFS
PA

EPA

Figure 3.20: PA and EPA one query performance: average response time.

 0

 1

 2

 3

 4

 5

 6

 7

 100 150 200 250 300 350 400 450 500

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

in
 J

)

Number of Nodes

DFS
PA

EPA

Figure 3.21: PA and EPA one query performance: total energy consumption.

3.6.3.4/ PA VERSUS EPA

The objective of this section is to compare the performance of PA and EPA in non-uniform
networks. To this end, the field dimensions and nodes deployment have been set, as
follows. At first, the area of interest has been split into three horizontally adjacent regions.
Then, the obtained left and right regions were given the same network densities (i.e.,
uniform distribution) and the same size (300 x 1000 m2). As regards the middle region, it
was given a different density and size (400 x 1000 m2).

The obtained single query evaluation results are depicted in figures 3.19, 3.20, and 3.21.
Exactly as expected, EPA outperforms PA in non-uniform networks. The reason behind

46 CHAPTER 3. PEELING ALGORITHM

this (as previously explained) is that EPA uses the notion of cyclic nodes to optimize the
visiting peeling path. The improvement is about 4% in sparse configurations and about
10% in dense ones, which validates the effectiveness of EPA in large-scale and non-
uniform networks.

We mention that the obtained results (not shown here in this manuscript) also confirm
that PA and EPA have almost the same performance when the network deployment is
uniform.

3.7/ CONCLUSION

In WSNs, serial query processing approaches have shown their effectiveness in terms
of reducing communications and energy consumption. Nevertheless, besides the fact
that query completeness was not ensured (i.e., visiting all nodes in the network) [24],
previous research works have not explicitly addressed the key issue of constructing the
visiting path [20,22]. In this chapter, we have tackled these important issues by proposing
a serial localized approach, named the Peeling Algorithm (PA) [18]. The main advantage
of this proposed approach is that it does not require any additional knowledge other than
what is traditionally available in WSNs. That is to say, PA is a one-hop approach that does
not require any information about the network topology. In this chapter, we have formally
proven that PA ensures query completeness and is free of looping. In addition to this,
the obtained simulation results have clearly highlighted the effectiveness of PA in terms
of reducing communications and energy/time consumption.

Despite its good performance and efficiency, PA still raises several research challenges
that deserve further investigations. Among these issues, we mention that the perfor-
mance of PA can be further enhanced by reducing the traversal path length. In fact, this
is precisely the aim of the next chapter.

4
SPREADING AGGREGATION

4.1/ INTRODUCTION

Recently, numerous works have shown that serial aggregation in large WSNs is scal-
able and very efficient, in terms of avoiding collisions and conserving energy and,

more importantly, in terms of reducing response time [18, 25]. In this chapter, a novel
serial data aggregation approach, called Spreading Aggregation (SA), is proposed with
the aim of shortening the traversal path and further reducing communications [39, 40].
First, given the fact that it is not based on a pre-established itinerary, SA is maintenance-
free and does not require any communications in this regard. Each time an aggregation
process is launched, a new path is built, which decreases vulnerability to failure in links
and nodes and allows the approach to handle topology changes. Second, SA is a local-
ized approach that relies only on the one-hop neighbors’ table of each node to gradually
construct the path, which makes it very scalable. A third interesting feature of SA is the
merge of path construction and data processing. While the path is progressively con-
structed, data is simultaneously aggregated, saving a considerable amount of time and
energy. In addition to all that, SA also saves energy and time due to its collision-free
nature. In fact, in SA, only one packet is present in the entire network at any given time.

In this chapter, we formally prove the correctness of SA (i.e., free of looping and ensures
the traversal of all connected nodes). Furthermore, the extensive OMNeT++ simulations,
we performed, confirm that the proposed approach reduces communications, scales well
in large networks, and conserves time and energy. The obtained results also show that
SA outperforms state-of-the-art serial approaches.

Briefly, this chapter is structured in five sections, as follows. The next section (4.2) in-
troduces the preliminaries and background required throughout the chapter. Section 4.3
presents and details the operation of the proposed approach, while Section 4.4 provides
its proof of correctness. Section 4.5 presents and comments on the evaluation results.
Finally, Section 4.6 concludes the chapter.

47

48 CHAPTER 4. SPREADING AGGREGATION

Figure 4.1: Illustration of SA: starting from the launcher node, the traversal mechanism
extends the visited region as a ”stain” until reaching the entire network (and this indepen-
dently of the topology as shown in the rest of the chapter).

4.2/ BACKGROUND AND GENERAL IDEA

Indeed, different from previous serial approaches, our second proposal does not rely on
(1) any initialization phase as is the case in the peeling algorithm [18] (i.e., finding and
marking the external boundary of the network) or (2) any intermediate initialization phases
as is the case in GBT [25] (i.e., searching for unvisited nodes). Rather, it can immediately
commence query processing from any node in the network whatever its location. As
a matter of fact, as shown in Fig. 4.1, the main intuition behind our new proposal is
to start from the query launcher (considered as the initial visited region) and then, at
each step, extend this region by exploring the unvisited nodes located on its boundary.
In fact, as explained later in Section 4.3.2, at each step, each explored node is added
to the visited region, except some particular nodes that are mandatory to preserve the
network connectivity. The process of expanding the visited region is gradually repeated
until reaching all nodes in the network (i.e., process stopping criterion). In other terms, our
new approach, by means of a boundary traversal tool, serially traverses the network and
visits nodes, hence creating a virtual boundary between visited and unvisited nodes.
This boundary is progressively enlarged, at each node traversal, until all nodes in the
network are visited.

SA relies on two fundamental concepts: (1) the use of a boundary traversal algorithm
capable of keeping the visiting process always on the boundary of unvisited nodes,
and (2) the available information about the status of the neighbors of each node (i.e.,
visited or not). First, to maintain the status of nodes, a flag has been added to each
neighbor showing its current status. The process of updating this flag is done thanks
to the broadcasting nature of communications in WSNs. That is, when a node sends a
packet, all its neighbors can overhear and receive it. Consequently, this process does not
incur any additional communication cost [56,57]. Second, as for the considered boundary
traversal algorithm, we recall that it has to fulfill two essential requirements:

• In order to ensure complete network traversal, the most important requirement that
must be fulfilled is correctness. That is to say, the algorithm must not miss any
boundary node. A good example of such misbehavior has been illustrated in [37].

• In order to propose a time and energy-efficient serial approach and to ensure scala-

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 49

bility for large-scale deployments, the other requirement that must be fulfilled by the
used boundary traversal algorithm is localizability. This means that the boundary
traversal algorithm must rely only on the local information available at each node
(node’s position and that of its one-hop neighbors).

In this chapter, the rolling-ball [41] has been selected as a network traversal tool because,
as it has been demonstrated in [37, 38], it can visit more nodes than the curved-stick.
Actually, while this is a drawback in data routing context1, it can be seen as an advantage
in the case of data aggregation since the prime objective in this context is to visit/query
nodes as quickly as possible. The rolling-ball details can be found in Section 2.3.2.

The proposed spreading approach because of its localized nature on one hand and the
requirements mentioned in Section 1.2 (particularly completeness) on the other hand,
raises several research issues that this chapter covers in details. For instance, the main
problem in our case was how to start query processing (or more precisely network traver-
sal) from a non-boundary or inner node (i.e., a node that cannot hold an empty valid
rolling-ball)? To this end, as shown later in the chapter, we have developed an adaptive
rolling-ball mechanism that is able to cope with this difficulty (Section 4.3.3). Furthermore,
starting from any node in the network, the proposed network traversal mechanism has to
be designed to be able to effectively deal with all kind of network configurations; i.e., han-
dle all possible topologies that a random deployment can generate including those with
communication holes.

4.3/ PROPOSED APPROACH: SPREADING AGGREGATION

In this section, we present our second serial data fusion approach, called Spreading
Aggregation (SA), and explain its operation through algorithms and illustrative examples.

At first, all nodes in the network are considered unvisited. That is, the set of unvisited
nodes, denoted Ω, is equal to the set of nodes (Ω = N) and the set of visited nodes, de-
noted Γ, is empty (Γ = ∅). To start the serial aggregation process, the QL sets a rolling-ball
on one of its boundaries and lets it serially visit the network. As illustrated in Fig.4.2, the
rolling-ball (aggregation packet) launched by N0 moves in a localized fashion from node to
node, while marking them as visited. To find the next appropriate hop, each node must be
aware of the status of its neighbors; visited or not (e.g., node N21). As a matter of fact, as
previously mentioned, the broadcast nature of wireless communications renders this op-
eration effortless; i.e., all of a node’s neighbors can clearly hear the communication when
a rolling-ball is delivered to the next hop; consequently, they will know the status of that
node. We underline that because nodes have to listen for a packet that is not addressed
to them (idle listening), a low power listening mechanism (LPL) can be utilized [56, 57].
Actually, since only one packet is present in the entire network at any given point in time,
no sophisticated MAC protocol is required.

In the end, once the rolling-ball has successfully browsed the entire network, the last node
in the path can send the obtained result (aggregated data) to the QL using any efficient
geographic routing.

1The curved-stick outperforms the rolling-ball in the context of anti-void data routing and derives shorter
paths around holes.

50 CHAPTER 4. SPREADING AGGREGATION

Figure 4.2: Rolling-ball network traversal launched by node N0.

Although the approach described above is localized, it faces, however, two major is-
sues: (i) ensuring the connectivity of unvisited nodes while traversing the network, and
(ii) launching the aggregation from a non-boundary QL (i.e., a node on which a valid
empty rolling-ball cannot be hinged). We examine these two issues respectively in sub-
section 4.3.2 and 4.3.3. In the last subsection 4.3.4, we present the technique proposed
to solve the looping issue created by the connectivity maintenance solution proposed in
subsection 4.3.2. Before getting into the details of our approach, and in order to ease the
chapter understanding, in the next subsection, we give a quick overview of SA.

4.3.1/ BRIEF DESCRIPTION OF SA

In the beginning, all nodes including the QL must be aware/create their lists of bound-
aries2. These lists are used later in the algorithm to detect and remove cycles. In order
to launch a query, the node in question, called QL, checks whether it is a boundary node
or not3, and acts accordingly. First, let us begin by briefly describing the steps performed
starting from a boundary QL, then, the ones carried out starting from a non-boundary QL.

A boundary QL starts by placing a rolling-ball on one of its boundaries and after that
sending an IBS (Initial-Boundary Scan) packet to mark this initial boundary. The aim
behind using the rolling-ball to traverse and mark the initial boundary, node by node, is
to help find any possible cycles in the network. Once this step is done, the QL launches
query processing by again spinning the rolling-ball counterclockwise (inside the initial
boundary) and selecting the first hit one-hop neighbor as next hop. Upon receiving the
aggregation packet, each node in the network repeats the same process of spinning the
received ball and selecting a next recipient. Actually, in addition to these two steps, each
node determines whether it can leave the querying process, or must remain involved in
it if it is necessary for the network connectivity (Section 4.3.2). Furthermore, to prevent
looping around communication holes (Section 4.3.4), each node upon receiving the ball

2A boundary is defined by a right neighbor, a left neighbor, and a Boolean indicating whether the boundary
has been traversed by the rolling-ball.

3A boundary node is able of holding at least one valid empty rolling-ball and its list of boundaries must
contain at least one item.

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 51

checks if it has an unmarked disjoint boundary (that is, a boundary that has not been
explored by the IBS packet sent by the QL). If this is the case, a cycle has been detected
and the current owner of the rolling-ball (called in this situation portal node) must start
cycle-removal by first sending a DBS (Disjoint-Boundary Scan) packet responsible for
marking the disjoint boundary. We mention that the role of both IBS and DBS packet is to
allow nodes to detect cycles. In fact, after receiving the rolling-ball DBS packet back, the
portal node removes the found cycle by (1) cutting some specific links with its one-hop
neighbors, and (2) sending an LC (Link-Cut) packet to those neighbors ordering them to
do the same.

Since a non-boundary QL is unable of initiating/launching an empty optimal rolling-ball
with radius R/2, it sets a smaller empty rolling-ball and launches it in the network (Sec-
tion 4.3.3). This shrunken non-optimal rolling-ball performs like the optimal one by grad-
ually spreading the visited region. The only difference is that the non-optimal ball gets
enlarged if possible at each hop. As a matter of fact, in order to guarantee the correct-
ness of our approach, the objective is to reach the optimal value (i.e., create a boundary)
as quickly as possible. Once the optimal radius of the rolling-ball is reached, the traver-
sal process continues on the boundary of the unvisited region as previously described.
The algorithm ends at a node when the neighbors of the latter have all left the traversal
process.

4.3.2/ CONNECTIVITY MAINTENANCE DURING NETWORK TRAVERSAL

The distributed network traversal algorithm, shown in Fig. 4.2, performs efficiently in
dense deployments but fails to visit all nodes in the case of sparse networks. More
specifically, this serial aggregation technique fails when the unvisited nodes, which are
mandatory for the connectivity of other unvisited nodes, mark themselves as visited and
no longer participate in the traversal. For example, in Fig. 4.3, nodes N4 and N5 are
mandatory for the connectivity of Ω. If they consider themselves as visited, data ag-
gregation will not be complete. We recall that the traversal termination is detected at a
node when the neighbors of this latter have all been marked as visited (e.g., node N6 in
Fig. 4.3). To solve the partitioning problem, a new status has been introduced, namely
linking nodes. A linking node is defined as follows:

Definition 13: Linking-Node (LN)

A node is said to be a Linking-Node if at least two of its one-hop unvisited or
linking neighbors cannot communicate without its help.

In other words, a linking node is the only connection point or path between at least two of
its immediate unvisited or linking neighbors. In Fig. 4.3 nodes N4, N5, and N7 are linking
nodes, while the others are not. We note that by considering the network model described
in Section 1.3, a node can locally (based only on its one-hop neighborhood information)
decide whether or not it is a linking node.

To ensure the connectivity of Ω and consequently guarantee aggregation completeness,
linking nodes must remain involved in the traversal. As Fig. 4.4 shows, when the owner
of the rolling-ball detects locally that it is a linking node, it marks itself as such and selects
the next hop (linking or unvisited neighbor). When a linking node receives the aggrega-
tion packet again, it does not contribute to the query but changes its status to visited or
remains as a linking node and so forth.

52 CHAPTER 4. SPREADING AGGREGATION

Figure 4.3: Disconnectivity of Ω during network traversal. Nodes N1, N3, N7, and N8 are
left unvisited.

Figure 4.4: Network traversal with the use of the linking nodes concept.

Lemma 3:

Linking nodes ensure the connectivity of Ω.

Proof. This lemma can be proven by contradiction, as follows. First, at the beginning,
we have Ω = N and thanks to the network connectivity assumption made in Section 1.3,
we know that Ω is connected. Second, let us assume that the removal of the currently
explored node Ni from the traversal process disconnects Ω. Third, let us suppose that this
node Ni is not a linking node. In fact, according to Definition 13, being a non-linking node
means that for each pair of neighbors of Ni, there is a path of nodes that can connect
them without passing by Ni. Therefore, we conclude that Ω can be connected without
considering node Ni, which contradicts the hypothesis that assumes that excluding Ni

from the traversal process disconnects Ω. �

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 53

Figure 4.5: Shrunken rolling-ball setting and enlargement.

Algorithm 2 setShrunkenRollingBall()
1: // set shrunken ball’s center
2: center = currentNode.location;
3: // set shrunken ball’s radius
4: radius = distance(currentNode, nearestNeighbor);
5: // check obtained ball
6: if (radius > optimalValue){
7: adjust rolling ball to optimal shape while keeping it attached to

nearestNeighbor;

8: }

4.3.3/ AGGREGATION LAUNCH BY NON-BOUNDARY NODES

On one side, in order to ensure a correct boundary traversal, the main requirement of
the rolling-ball is to be empty of unvisited and linking nodes both initially, and all the
time. On the other side, one of the interesting features of the proposed approach is that
it does not make any restriction or assumptions about the QL’s location (Section 1.3).
Provided that the network is connected, the QL can be any node in the network. As a
consequence of these two points, being non-boundary means that the QL cannot set a
valid rolling-ball, and hence cannot launch the aggregation process. For instance, as
Fig. 4.5 demonstrates, the red rolling-ball set by the non-boundary QL is invalid (contains
nodes N2 and N7).

To overcome this issue, we proposed the following solution. The non-boundary QL cre-
ates a shrunken rolling-ball. As shown in Fig. 4.5 and Algorithm 2, this ball is centered at
the QL’s location, and its radius d is equal to the distance between the QL and its nearest
neighbor. Setting the ball this way respects its emptiness requirement (i.e., it does not
contain unvisited or linking nodes). In fact, we have the guarantee that the only node
located inside the shrunken rolling-ball is the QL which is a visited node and could not
be a linking node since it is a non-boundary node. It should be noted that sometimes the
distance between the QL and its nearest neighbor can be larger than the optimal radius
of the ball (i.e., R/2). In this case, the QL has to adjust the rolling-ball to its optimal shape
(i.e., d = R/2) while keeping it hinged to the nearest neighbor (Algorithm 2).

54 CHAPTER 4. SPREADING AGGREGATION

Algorithm 3 checkReceivedRollingBall()
1: if (rolling ball is optimal) { // radius == R/2
2: call Algorithm 7;

3: }
4: else {
5: // rolling-ball is shrunken (radius < R/2)
6: enlarge rolling ball;

7: if (rolling ball is optimal) {
8: call Algorithm 7;

9: }
10: else {
11: // rolling-ball is still shrunken
12: change status to VISITED or LINKING NODE;

13: spin rolling ball;

14: sendAggregationPacket(next hop);
15: }
16: }

Lemma 4:

A non-boundary QL cannot be a linking-node.

Proof. We recall that being non-boundary means that node Ni cannot hold an optimal
rolling-ball. To illustrate our point, let us first assume that the only nodes present in the
network are node Ni and its one-hop neighbors. Second, let us imagine that this non-
boundary node Ni has set an optimal rolling-ball on the external network boundary. More
specifically, the rolling-ball is owned by node Ni but is hinged at its farthest (most distant)
neighbor (to ensure its emptiness of any other neighbor). Under those circumstances,
being non-boundary means that if node Ni rolls the ball starting from its farthest neighbor
and ending at this same neighbor, then node Ni will not be hit by the ball. This last state-
ment also means that a path of one-hop neighbors exists surrounding node Ni, preventing
the rolling-ball from touching it. That is, for each pair of neighbors of Ni, a path exists that
connects them without passing by Ni. Consequently, according to Definition 13, we con-
clude that a non-boundary QL can never be a linking-node. �

Once the shrunken (or optimal) rolling-ball has been set, the non-boundary QL marks
itself as visited (Lemma 4) and forwards the aggregation packet to its nearest neighbor
(Algorithm 4). This latter, upon receiving the packet (Algorithm 6), checks the received
ball (Algorithm 3). In the case of an optimal rolling-ball, the neighbor simply continues
the aggregation process by calling Algorithm 7 (explained later). Otherwise, as shown
in Fig. 4.5, first, the nearest neighbor of the QL enlarges the received ball as much as
possible. Afterward, it again checks the rolling-ball. If it became optimal, it executes
Algorithm 7, otherwise, it (1) changes its status to visited or linking node, (2) spins the
shrunken ball, and (3) delivers the packet to the first hit unvisited neighbor (node N3 in
Fig. 4.5). The same process is applied by any subsequent traversed node. That is, each
node that receives the aggregation packet checks the received ball and acts accordingly.
It is worth highlighting that in order to remain in the same boundary and ensure network
traversal, the received shrunken-ball must be enlarged as much as possible by its owner
before being spun to choose the next hop.

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 55

Figure 4.6: Example of cycles. Looping due to the use of linking nodes concept.

4.3.4/ CYCLES DETECTION AND REMOVAL

The notion of linking nodes (Definition 13) ensures the connectivity of Ω (Lemma 3) and
respects the design requirement of proposing a localized aggregation approach. Never-
theless, due to its reliance on the local limited knowledge of nodes, it creates a risk of
looping. In the present section, we exhibit the looping problem along with the proposed
solution.

The most important condition for a node to be truly a linking node necessary for the
connectivity of Ω is not to be contained in a cycle. For example, node N3 in Fig. 4.6 is
not required to maintain the connectivity of Ω, but given its limited knowledge (i.e., its
one-hop neighbors and their locations), this node believes the opposite, thus creating a
looping scenario. The same applies for nodes N6, N7, N8, and N9. Actually, as Fig. 4.6
clearly shows, looping situations occur in the presence of disjointed boundaries in the
network (e.g., the external boundary of the network and the boundary of a hole)4. In
these cases, due to the use of linking nodes concept, the rolling-ball will get stuck (loop)
inside the currently traversed boundary and will not be able to leave it.

In order to ensure a proper identification of disjoint boundaries (cycles) in the network and
to avoid looping, each node must first be aware of its boundaries. From the local limited
perspective of a node, a boundary is defined by a right side, a left side, and a Boolean
indicating whether the boundary has been explored. For instance, node N2 of Fig. 4.6 has
three boundaries, whereas N6 has two (the first defined respectively by N7 and N4 as its
right and left sides, while the second has N4 and N7 as its respective right and left sides).
Initially, all boundaries must be marked as unexplored. The last step that must be taken
to verify the existence of disjoint boundaries is to mark as explored the initial boundary
from which the aggregation process will be launched. To do so, as Algorithm 4 depicts,
the boundary-QL issues a rolling-ball control packet, named IBS (Initial-Boundary Scan)
Packet.

As shown in Fig. 4.7 and Algorithm 5, the IBS packet traverses the initial boundary node-

4Note that the number of cycles in a network is equal to its number of disjoint boundaries, minus one.

56 CHAPTER 4. SPREADING AGGREGATION

Figure 4.7: Initial boundary marking via IBS Packet issued by boundary-QL (node N2).

Algorithm 4 - Spreading Aggregation Initialization.
1: To trigger serial data aggregation, the QL calls the following method:
2: void initializeAggregation(){
3: if (currentNode.isBoundaryNode()){
4: set a rolling ball on any boundary;

5: send IBS Packet(); // to mark initial boundary
6: }
7: else {
8: // current node is not a boundary node
9: setShrunkenRollingBall(); // Algorithm 2

10: currentNode.status = VISITED; // Lemma 4
11: sendAggregationPacket(nearestNeighbor);
12: }
13: }

by-node and orders them to locally mark the boundary in question as explored. Once the
initial boundary has been successfully marked, the determination of disjoint boundaries
can be done locally by each node. Simply, if the currently traversed node (including the
QL) has an unexplored boundary, then this latter is certainly a disjoint boundary (cycle)
that must be opened, and the node in question is a portal node responsible for this cycle
removal.

Definition 14: Portal Node (PN)

A node is said to be a Portal Node if it has at least two disjoint boundaries.

In the case of a non-boundary QL as described earlier in Section 4.3.3 (aggregation
launch by non-boundary nodes) and shown here in this section in Algorithm 4, instead
of issuing an IBS packet, the non-boundary QL sets a shrunken rolling-ball, marks itself
as visited, and delivers the ball to its nearest neighbor by broadcasting an aggregation
packet. Upon receiving the aggregation packet, each neighbor of the QL executes the
steps described in Algorithm 6. Note that no initial boundary needs to be marked in
the case of non-boundary QL in Algorithm 4. In fact, in this case, a new boundary will be

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 57

Algorithm 5 receive IBS Packet()
1: mark locally the currently traversed boundary as explored;
2: if (currentNode is not the QL){
3: forward IBS Packet to next hop;

4: }
5: else {
6: // current node is the QL
7: if (previous hop is not the expected node){
8: // initial boundary not totally explored
9: forward IBS Packet to next hop;

10: }
11: else {
12: // initial boundary has been totally explored
13: call Algorithm 7;
14: }
15: }

Algorithm 6 receiveAggregationPacket()
1: if (currentNode is not destination){
2: // overhear aggregation packet
3: updates locally the status of source node according to the received packet

(i.e., mark it as VISITED or LINKING NODE);

4: }
5: else {
6: // current node is the destination
7: update locally the status of source node according to the received packet

(i.e., mark it as VISITED or LINKING NODE);

8: aggregate data(); // if visited for the first time
9: checkRollingBall(); // Algorithm 3

10: }

created in the network. Therefore, during the aggregation process, any other encountered
unexplored boundary is disjoint and must be opened by the rolling-ball owner.

We underline that due to the limited knowledge of nodes, and given the radius of the
optimal rolling-ball (R/2, where R is the communication range of nodes), the owner of this
latter cannot be aware of all nodes surrounding the ball, and hence, cannot locally detect
the existence of cycles. However, this is not the case for the shrunken rolling-ball. In fact,
because of its small size, its owner is well aware of all nodes that surround it, along with
their corresponding statuses (visited or linking nodes).

Lemma 5:

Shrunken rolling-ball does not loop.

Proof. This lemma means that at each iteration, the shrunken rolling-ball finds a non-
linking node Nk that can be removed from Ω. To prove this point, let us assume that
the shrunken ball is owned by node Ni. Actually, given the fact that the shrunken radius
”d” is smaller than the optimal one (d < R/2), the farthest distance between each pair
of neighbors of Ni which surround the shrunken ball and prevent it from being optimal is
smaller than the communication range of nodes R (2 ∗ d < R, where 2 ∗ d is the shrunken
ball diameter). Consequently, we conclude that each pair of neighbors of Ni surrounding

58 CHAPTER 4. SPREADING AGGREGATION

Algorithm 7 continueAggregationProcess()
1: spin rolling ball;
2: if (next hop is undefined){
3: // aggregation ends here; no other nodes to visit
4: currentNode.status = VISITED;

5: send result to QL; // using geographic routing
6: return;

7: }
8:
9: if (not currentNode.isPortalNode()){

10: // current node has no disjoint boundaries
11: change status to VISITED or LINKING NODE;

12: sendAggregationPacket(next hop);

13: }
14: else {
15: // current node is a portal node
16: create right and left sets;

17: send DBS Packet(); // to mark disjoint boundary
18: }

the shrunken ball can directly communicate with each other. Hence, even if we suppose
that a cycle can occur in this case, determining and removing that cycle can be done
locally by each node without recourse to control packets. �

In the case of an optimal rolling-ball, the idea of avoiding looping around cycles consists
of opening any encountered disjoint boundary by portal nodes. More specifically, as
shown in Algorithm 7, in the case where the currently traversed node is not portal (i.e.,
has no disjoint boundaries), this node changes its status to visited or linking node, and
forwards the aggregation packet. On the other hand, a portal node must execute the
three following steps (upon receiving the aggregation packet) in order to break the cycle:

Step 1 - Creation of the left and right sets. The portal node Ni divides the set of its
immediate neighbors into two subsets: left and right sets.

• Left set (X ⊂ Ω): this set contains all neighbors located in the sector defined by the
angle ∠Nleft,Ni,Nprev (see Fig. 4.8). Where Nleft is the left side of the unexplored
disjoint boundary, and Nprev is the previous hop from which node Ni has received
the aggregation packet. In Fig. 4.8, all orange nodes belong to the left set X. Note
that Nprev (if it has not been visited), as well as Ni, and Nleft belong to X.

• Right set (Y ⊂ Ω): this second set is composed of the rest of neighbors of node
Ni including the right side of the unexplored boundary. In Fig. 4.8, all blue nodes
belong to Y.

Step 2 - Disjoint boundary scan: after having created the left and right sets, the portal
node issues a rolling-ball control packet named DBS (Disjoint-Boundary Scan) packet,
which traverses the unexplored boundary node by node (see Fig. 4.9 and Algorithm 8).
Similar to the IBS, DBS packet marks the disjoint boundary as explored and allows nodes
to determine whether their local stored boundaries constitute the same boundary. For
instance, in Fig. 4.9, DBS packet informs node Nx that the boundary defined by Ny as its

4.3. PROPOSED APPROACH: SPREADING AGGREGATION 59

Figure 4.8: Left and right sets creation by portal node Ni.

Figure 4.9: Disjoint boundary scan using DBS Packet issued by portal node Ni.

right side, and the one defined by Nz as its right side, are actually the same boundary.
Hence, when node Nx later receives the aggregation packet, it will not consider these two
boundaries as disjoint.

Step 3 - Cycle removal: after receiving the DBS packet back, the portal node (which
belongs to the left set X) virtually deletes its links with every node of the right set Y (Algo-
rithm 8). In other words, the portal node Ni will not consider nodes of Y as its neighbors.
Formally, the set of links that need to be deleted from L is D = {L(i, j) | N j ∈ Y(Ni)}. Once
the appropriate links have been removed, the portal node changes its status to visited
or linking node, and broadcasts an LC (Link-Cut) packet to its immediate neighbors. To
finish the cycle break process, each neighbor of the portal node performs the following
steps upon receiving the LC packet (Algorithm 9). First, it determines the set to which it
belongs (X or Y). Then, it virtually deletes its links with every node of the other set (when-
ever such a link exists). Fig. 4.10 gives an example of disjoint boundary opening (cycle
removal). Once the cycle has been broken, the aggregation process continues from the
left side of the opened boundary (i.e., Nleft).

Property 6. Portal nodes ensure cycles removal from Ω.

60 CHAPTER 4. SPREADING AGGREGATION

Figure 4.10: Cycle removal using LC packet broadcasted by portal node Ni.

Algorithm 8 receive DBS Packet()
1: locally mark the currently traversed boundary as explored;
2: if (currentNode is not the portal node){
3: forward DBS Packet to next hop;

4: }
5: else {
6: // current node is the portal node
7: if (previous hop is not the expected node){
8: // disjoint boundary not totally explored
9: forward DBS Packet to next hop;

10: }
11: else {
12: // disjoint boundary has been totally explored
13: cut links with nodes of right set;

14: change status to VISITED or LINKING NODE;

15: send LC Packet();
16: }
17: }

Algorithm 9 receive LC Packet()
1: update locally the status of source node according to the received packet
(i.e., mark it as VISITED or LINKING NODE);

2: determine membership set; // right or left
3: cut links with nodes of the other set;
4: if (currentNode is destination){
5: aggregate data(); // if visited for the first time
6: call Algorithm 7;

7: }

Proof. Let us assume that Ni, which is a portal node, has detected the existence of a
cycle C1 in Ω. Before removing C1, initially thanks to the issued DBS packet we are sure
that two paths exist connecting the left set X and the right set Y of C1. The first path is
comprised of direct communication links between the nodes of X and those of Y, while
the second is composed of Nle f t and each node located on the disjoint boundary until
Nright (i.e., nodes visited by DBS packet). After removing C1 from Ω thanks to the cycle

4.4. PROOF OF CORRECTNESS 61

removal process performed by portal node Ni and its corresponding neighbors (three
steps described above), no direct communication links can exist between the left and
right set of C1. Consequently, the only path that remains connecting X with Y is the DBS
packet path. In addition to that, it is worth mentioning that using the rolling-ball guarantees
that portal node Ni and its previous-hop Nprev belong to the boundary of Ω. This formally
means that: @N j | L{ j,i} < L ∧ L{ j,prev} < L ∧ L{ j,k} ∈ L such that Nk ∈ Vi ∩ Vprev (i.e.,
Nk belongs to the set of common neighbors of Ni and Nprev). Thus, by construction, there
cannot exist a node N j such as (1) N j cannot communicate with Ni and Nprev, but (2) can
communicate with Nk. �

Property 7. Portal nodes do not partition Ω.

Proof. This property can be proven by contradiction. First, let us assume that cutting the
direct communication links between X and Y during cycle removal process disconnects
Ω. Second, let us assume that only one direct communication link exists that connects X
and Y, which is L(i, right) (the link between portal node Ni and right side of disjoint boundary
Nright). In such a scenario, the first assumption means that there is no other path that con-
nects X and Y except L(i, right), which thanks to the DBS packet sent beforehand contra-
dicts the existence of another path connecting Ni with Nright. Given the fact that (1) nodes
belonging to X or those belonging to Y are internally connected (thanks to Lemma 3 and
the connectivity assumption made in Section 1.3) and (2) Ni and Nright belong respectively
to X and Y, we deduce that X and Y can be connected thanks to the DBS packet path,
and hence without requiring the deleted direct links between them. This contradicts the
assumption that suggests that links cut, during cycle removal process, disconnects Ω. In
addition to what has been said, thanks to the use of IBS and DBS packets, we have the
guarantee that each disjoint boundary (cycle) has only one portal node. �

4.4/ PROOF OF CORRECTNESS

In this section, we prove the correctness of the proposed algorithm. More specifically,
we prove that SA visits all connected nodes in the network, without falling into looping.
Proving that SA visits all nodes is based on (1) the use of a proven boundary traversal
algorithm and (2) the fact that the network is initially connected (Ω = N) and its con-
nectivity is maintained throughout the data aggregation process (Lemmas 3 and 4, and
Property 7). In contrast, the proof that SA does not loop and terminates is based on the
fact that all possible cycles in Ω (which can be generated because of the use of linking
nodes notion) are detected and properly removed (Lemmas 4 and 5, and Property 6).

Initially, all nodes in the network are marked as unvisited. Therefore, we have the set of
unvisited nodes Ω equal to the set of nodes N and the set of visited nodes Γ is empty
(Ω = N and Γ = ∅). To accomplish data aggregation, SA iteratively visits nodes by gradu-
ally filling up Γ and emptying Ω. The traversal of the network can be expressed formally
via the following recurrent formula:Γ0 = ∅ and Ωn = N ,

Γi+1 = Γi + {Nk} and Ω j−1 = Ω j − {Nk} : i f i < n and j > 0

where n is the number of nodes in the network and Nk is the first traversed non-linking
node that can be removed from the current set of unvisited/linking nodes Ω j without alter-

62 CHAPTER 4. SPREADING AGGREGATION

ing its connectivity. For example, in Fig. 4.4, initially, we have:

Γ0 = ∅ and Ω8 = N = {N1,N2,N3,N4,N5,N6,N7,N8}. The traversal of N is done through the
following respective iterative filling of Γ0 and emptying of Ω8:

Γ1 = Γ0 + {N2} and Ω7 = Ω8 − {N2}

Γ2 = Γ1 + {N6} and Ω6 = Ω7 − {N6}

Γ3 = Γ2 + {N8} and Ω5 = Ω6 − {N8}

Γ4 = Γ3 + {N7} and Ω4 = Ω5 − {N7}

Γ5 = Γ4 + {N5} and Ω3 = Ω4 − {N5}

Γ6 = Γ5 + {N4} and Ω2 = Ω3 − {N4}

Γ7 = Γ6 + {N3} and Ω1 = Ω2 − {N3}

Finally, Γ8 = Γ7 + {N1} = N and Ω0 = Ω1 − {N1} = ∅.

To prove that the proposed algorithm always generates, at its termination, a finite set of
visited nodes Γn that is equal to the set of nodes in the network N , and at the same
time it also produces an empty set of unvisited nodes Ω0, we will proceed in the following
manner. First, we will consider the case of non-boundary QL. More precisely, we consider
the case of shrunken rolling-ball. Next, we will move to the optimal rolling-ball, which of
course includes the case of boundary-QL.

As mentioned before, we initially have a set of unvisited nodes Ωn composed of all nodes
of the network, and we have an empty set of visited nodes Γ0. Thanks to Lemma 4, the
non-boundary QL cannot, in any case, be a linking-node, and hence it is not necessary
for the connectivity of Ωn. Consequently, in all cases, regardless of its location in the
network, the non-boundary QL can be removed from Ωn and added to Γ0:

Γ1 = Γ0 + {QL} and Ωn−1 = Ωn − {QL}

Given the fact that the non-boundary QL is always removed from Ωn and added to Γ0
ensures the main requirement of the rolling-ball (which is the permanent emptiness from
any node) and guarantees a correct boundary traversal process. Once the non-boundary
QL has been excluded from the traversal process (Algorithm 4), the rolling-ball will be
delivered to its nearest neighbor. Hence, this latter will have a new boundary in which
the received rolling-ball can be released. We emphasize that the ball given to the nearest
neighbor of the non-boundary QL can be shrunken or optimal (Algorithms 6 and 3). As
previously mentioned, we will consider only the first case. The optimal rolling-ball scenario
will be treated later on in this section.

When the shrunken rolling-ball leaves the non-boundary QL, it moves in a localized fash-
ion from node to node, and if possible, it becomes enlarged at each hop. We underline
that the traversed nodes by the shrunken rolling-ball can be marked as visited or linking
nodes, and as previously shown, the existence of linking nodes in Ω means the potential
presence of cycles. Nonetheless, thanks to Lemma 5, we have the assurance that the
shrunken rolling-ball does not generate looping situations.

Theorem 3:

After a certain number of iterations (i ≥ 1), shrunken rolling-ball gains its shape
and becomes optimal.

Proof. Let us suppose that while traversing the network with the use of a shrunken rolling-

4.4. PROOF OF CORRECTNESS 63

ball, the latter cannot be enlarged. In such a case, the fact that the shrunken-ball (like
the optimal one) traverses the boundary of Ωn−i signifies that all nodes that have been
explored are linking nodes that form a cycle. According to Lemma 5, this is not true;
at each iteration, a non-linking node Nk exists. This means that, at each iteration, the
number of nodes in Ω j strictly decreases by one, and the number of nodes in Γi strictly
increases by one:

| Ω j−1 | < | Ω j | and | Γi+1 | > | Γi | such as j > 0 and i < n.

Therefore, we deduce that, at each iteration, the shrunken-ball creates more space for
itself by finding a non-linking node Nk that can be removed from Ω j. Given the fact that (1)
the shrunken-ball does not generate looping cases, and (2) it can be enlarged, in the end,
after a certain number of iterations i, the shrunken-ball can gain its shape and becomes
optimal. �

After having treated the case of shrunken rolling-ball, and proved that it does not loop
and produces a finite set of hops, we move to the case of optimal-ball to prove that it
also does not loop. Next, we will prove that SA ensures the exploration of all nodes.
But before this, it is worth mentioning that the shrunken rolling-ball, like the optimal one,
ensures boundary traversal and does not miss any non-linking node in its way. The formal
proofs demonstrating that the rolling-ball ensures boundary traversal can be found in [41].

Lemma 6:

Optimal rolling-ball does not loop.

Proof. To prove this by contradiction, let us assume that at some point during network
traversal, the optimal-ball cannot find a non-linking node Nk. This means that the rolling-
ball has become stuck between at least two disjoint boundaries, and is jumping (looping)
from a linking node to another inside one of the boundaries. This assumption can be
simply denied because it contradicts the fact that portal nodes guarantee a proper de-
tection/removal of cycles (disjoint boundaries) from Ωn−i. More precisely, according to
Property 6, we deduce that, at each iteration i, the optimal-ball finds a non-linking node
Nk. That is, after each iteration, the number of nodes in Ωn−i will be strictly decreased by
one, and the number of nodes in Γi will be strictly increased by one:

| Ωn−(i+1) | < | Ωn−i | and | Γi+1 | > | Γi | such as i < n. �

Theorem 4:

SA does not loop.

Proof. First, thanks to Lemma 5 and Theorem 3, we have the assurance that the
shrunken-ball does not loop. Actually, regardless of the considered scenario, the
shrunken-ball progressively gets enlarged and will eventually gain its optimal form. Sec-
ond, if we consider the rolling-ball in its optimal shape, then, according to Lemma 6,
we have the guarantee that it does not loop and at each iteration, it finds a non-linking
node. Based on what has been said and given the fact that in SA, the ball can be either
shrunken or optimal, and its radius can never be larger than R/2, we conclude that SA
does not loop and generates a finite set of hops. �

64 CHAPTER 4. SPREADING AGGREGATION

Lemma 7:

At each iteration i ≥ 1, the currently visited node Nk belongs to the boundary of
Ωn−i.

Proof. In the case of a shrunken-ball, the non-boundary QL (located inside the ball) can-
not be in any case a linking node (Lemma 4), hence creating a boundary for its near-
est neighbor to exploit (launch the ball inside it). Therefore, in both cases (optimal and
shrunken-ball), the algorithm is triggered by a boundary node. Based on this and given
the fact that the rolling-ball is a boundary traversal tool [41], each visited non-linking node
Nk will be certainly located on the boundary of Ωn−i. To prove this, let us assume that this
property is true for i and let us demonstrate that it remains as such for i + 1. First, saying
that the property is true for i means that the currently traversed node Nk is located on
the boundary of Ωn−i. Second, as previously mentioned, the used rolling-ball boundary
traversal algorithm guarantees that the next hop Nsucc of Nk is located on the boundary of
Ωn−i [41]. Consequently, it is clear that this next hop Nsucc is also located on the boundary
of Ωn−(i+1). More precisely, if Nsucc is not a linking node (i.e., can be marked as visited)
then:

Γi+1 = Γi + {Nsucc} and Ωn−(i+1) = Ωn−i − {Nsucc}

Otherwise, starting from Nsucc, the rolling-ball has to continue its boundary browsing of
Ωn−(i+1) until it finds a non-linking node that can be marked as visited. Hence, we conclude
that the property is also true for i + 1. �

Theorem 5:

SA visits all nodes in the network.

Proof. First, thanks to the assumption made in Section 1.3, we have the guarantee that
the initial network is connected (Ωn = N). Second, thanks to Lemmas 3 and 4, we have
the guarantee that for both shrunken and optimal-ball, the notion of linking-nodes ensures
the connectivity of Ω j. Third, according to Property 7, we know that the cycle removal
process (which takes place only in the case of optimal-ball) does not partition Ω j. To
prove that SA visits all nodes in the network, let us assume that the set Γi generated at
the end of network traversal is different than the set of nodes N (i.e., i , n) and then let
us seek to find a contradiction. First, let us denote by Nk the first traversed non-linking
node that can be removed from Ω j without altering its connectivity (Lemmas 3 and 4,
and Property 7). Second, let us denote by Nm, one of the unvisited nodes that might be
missed by SA (i.e., Nm , Nk, ∀ k). Third, let us consider an unsigned integer j (0 < j < n)
such that Nm belongs to Ω j and does not belong to Ω j−1. That is, Nm has been missed
at iteration j. In actual fact, since at iteration j, the rolling-ball touches only nodes that
are located on the boundary of Ω j and does not miss any one of them (Lemma 7 and
Theorem 4), Nm cannot, in any case, be located on the boundary of Ω j. In other words,
given the fact that the use of the rolling-ball guarantees that there cannot exist a node Nm

that can be missed, Nm must surely belong to Ω j−1. However, this contradicts the initial
assumption, which says that Nm does not belong to Ω j−1 (Nm < Ω j−1). Consequently, we
conclude that SA guarantees network traversal completeness in spite of the considered
topology. �

4.5. SPREADING PERFORMANCE ASSESSMENT 65

To recapitulate, according to Theorems 4 and 5 and regardless of the network topology
(irregular or regular, large-scale or sparse, with or without holes, etc.), we conclude that
SA ensures query completeness/accuracy and terminates without looping indefinitely.

4.5/ SPREADING PERFORMANCE ASSESSMENT

As it has been previously mentioned, in this manuscript, OMNeT++ and its WSNs frame-
work Castalia [53,54] have been opted for as a performance evaluation tool. This choice
is motivated, among others, by the fact that Castalia offers a realistic wireless channel
(e.g., interference, mobility of nodes, path loss, etc.) and radio models (e.g., realistic
modeling of RSSI and carrier sensing, probability of reception based on SINR, packet
size, modulation type, etc.), and also a realistic node behavior, especially pertaining to
radio access. Besides the proposed spreading approach, the following aggregation tech-
niques have been implemented: tree-based aggregation [3], Depth-First Search [26],
Peeling Algorithm [18], and Greedy-Boundary Traversal [25]. We note that all the con-
sidered serial techniques have been formally proven to ensure complete exploration of
nodes, regardless of the network topology.

4.5.1/ EVALUATION METRICS

In addition to the completeness criterion, the three other metrics with which all parallel and
serial approaches cited above have been evaluated are energy, time and communication
efficiency.

• Energy: this metric, which represents the most precious resource in WSNs, mea-
sures the total energy spent by the network during data aggregation. To allow each
node to estimate the energy required to transmit and receive packets, the model
proposed by Heinzelman et al. [55] has been considered. In this energy consump-
tion model, in order to send a packet of a k-bit size a certain distance x, the radio
consumes ET X(k, x) = Eelec ∗ k + εamp ∗ k ∗ x2. And to receive this same packet, it
consumes ERX(k) = Eelec ∗ k. Where Eelec = 50 nJ/bit is the energy required to run
the transmitter/receiver circuitry, and εamp = 100 pJ/bit/m2 is the energy consumed
by the transmitter amplifier.

• Time: this evaluation metric measures the time required to aggregate all the data
present in the network. That is, the time that passes between the moment data ag-
gregation is triggered and the moment the desired result is delivered to the sink/QL.
For instance, in the conducted simulations, nodes have been ordered to find the
average temperature of the whole network.

• Transmissions: this last metric represents the total number of packets issued by
the network in order to aggregate data (including control and data packets).

4.5.2/ SIMULATION PARAMETERS

To evaluate the scalability of SA and the other considered techniques, simulations have
been conducted in different network size and density scenarios. More specifically, the de-

66 CHAPTER 4. SPREADING AGGREGATION

Table 4.1: Spreading simulation configuration and parameters

Parameter Value(s)

Field dimensions (m2) 1000 x 1000
Nodes number 100, 150, 200, . . . , 500
Nodes deployment Uniform
Nodes transmission range (m) 150
Nodes initial energy (J) 100
Query launcher location Random
Query packet size (byte) 50
Radio type CC2420
Radio data rate (kbps) 250
MAC protocol CSMA/CA

Table 4.2: Spreading average nodes’ degree.

100 150 200 250 300 350 400 450 500
6 9 12 15 18 21 25 27 31

ployment field has been fixed to 1000 x 1000 meters throughout simulations. As regards
the network, initially, 100 sensor nodes have been randomly deployed, and then, 50 other
sensor nodes were progressively added, to a maximum of 500 nodes. Table 4.1 summa-
rizes the simulation parameters and Table 4.2 shows the average degree of nodes (i.e.,
the average number of neighbors of each node). To be more specific, the first line of Ta-
ble 4.2 depicts the number of nodes in the network, whereas the second one represents
the corresponding average degree.

4.5.3/ SIMULATION RESULTS

In this section, the obtained simulation results are compared and evaluated. Actually,
for the sake of clarity, and given the obvious difference between the results of serial and
parallel approaches (particularly in terms of energy consumption), we first start by plotting
and comparing the results of our spreading algorithm with those of the implemented tree-
based approach [3]. Next, we will plot the same results of our approach and compare
them with the implemented serial techniques, namely: Depth-First Search [26], Peeling
Algorithm [18], and Greedy-Boundary Traversal [25]. We mention that in both cases,
all results, whether those relating to required transmissions, time or energy, are plotted
against the number of nodes specified in Table 4.1.

4.5.3.1/ SPREADING ALGORITHM VERSUS TREE-BASED AGGREGATION

Fig. 4.11 plots the number of packets that our proposed serial technique of Spreading
Aggregation (SA), and the tree-based approach [3] (denoted here as T-BA), have both
issued to accomplish data aggregation. Concerning Fig. 4.12 and Fig. 4.13, they respec-
tively plot the time and energy that each of these two approaches has taken in order to
aggregate data and deliver the response to the sink.

4.5. SPREADING PERFORMANCE ASSESSMENT 67

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

100 150 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
s
e
n
t
p
a
c
k
e
ts

Number of nodes

SA
T-BA

Figure 4.11: Transmissions required by Spreading and Tree-based approaches to aggre-
gate data.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

100 150 200 250 300 350 400 450 500

A
g
g
re

g
a
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of nodes

SA
T-BA

Figure 4.12: Time required by Spreading and Tree-based approaches to aggregate data.

In actual fact, for both approaches (SA and T-BA), the considered transmissions include
(1) transmissions used to construct the tree or respectively traverse the network, (2) trans-
missions used to query the network, and (3) transmissions used to deliver the processed
data to the sink. As previously mentioned, structure construction, query diffusion and data
processing in tree-based approaches are three independent phases. First, the network
must be properly covered with a spanning tree (to ensure query accuracy all nodes must
be attached to the tree). Then, after being queried via the constructed tree, sensor nodes
start data processing and response delivery to the sink/root. Conversely, in our serial
approach, these three phases are all merged into one unique phase. At the same time,

68 CHAPTER 4. SPREADING AGGREGATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

100 150 200 250 300 350 400 450 500

A
g
g
re

g
a
ti
o
n
 e

n
e
rg

y
 (

J
o
u
le

s
)

Number of nodes

SA
T-BA

Figure 4.13: Energy required by Spreading and Tree-based approaches to aggregate
data.

while gradually traversing the network, sensor nodes are queried and the proper treat-
ment is applied to data. This compact performance considerably minimizes the number
of packets that need to be issued, conserves energy, and improves processing time.

As Fig. 4.13 confirms, there is a big gap between T-BA and SA in terms of energy
consumption. Actually, given their parallel and non-collision-free nature, tree-based ap-
proaches do not consume energy only to construct/maintain the tree, disseminate queries
and report the processed data to the sink, but also to re-transmit collided packets. With
respect to aggregation time, due to their parallel concurrent operation, tree-based ap-
proaches should defeat serial algorithms, even with a large number of issued packets.
Nonetheless, as Fig. 4.12 demonstrates, because of collisions essentially among other
reasons, this is not the case; in fact, SA presents better results than T-BA in terms of
aggregation time reduction.

To illustrate the difference between serial and tree-based approaches in terms of required
transmissions, let us consider a sensor network composed of n wireless nodes. If we
assume that each node in tree-based approaches is involved in the query diffusion phase
(i.e., it forwards the received query), this means that n packets will be broadcast. On the
other hand, during the data or query processing phase, n additional packets will be sent,
because obviously during this phase each node is obliged to forward a packet. Therefore,
without taking into account the packets used to construct or probably maintain the tree,
and without counting the retransmissions of collided packets, we can say that in total,
2∗n packets need to be issued to accomplish data aggregation in tree-based approaches.
We emphasize that building and fixing a distributed structure in a wireless environment
that is prone to errors and interference, is not a straightforward task, and non-negligible
time and overhead must certainly be spent to accomplish this process. Regarding serial
approaches, if we consider the same network composed of n wireless nodes, and if we
assume that these approaches can lay out an itinerary that crosses each node once at
any given moment in time, then, without generating any collisions or requiring a separate

4.5. SPREADING PERFORMANCE ASSESSMENT 69

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100 150 200 250 300 350 400 450 500

N
u
m

b
e
r

o
f
s
e
n
t
p
a
c
k
e
ts

Number of nodes

DFS
GBT

PA
SA

OPT

Figure 4.14: Spreading Aggregation versus serial approaches. Comparison in terms of
required transmissions for data aggregation.

structure construction phase or maintenance, only n − 1 packets need to be issued to
diffuse a query and process data.

To recapitulate, besides their bad scalability, their inadequacy for dense large-scale net-
works, and their robustness and imbalance issues, tree-based approaches suffer primar-
ily from collisions. First, due to their parallel concurrent mode of operation, tree-based
approaches undergo a lot of communication collisions, especially in dense deployments.
The retransmissions of collided useless packets waste a noticeable amount of energy
and time, and negatively affect these approaches. Second, apart from collisions, tree-
based approaches also suffer from the problem of unbalanced energy consumption. This
issue takes place due to the creation of an unbalanced spanning tree in the first place, or
because sensor nodes that are located near the sink/root are excessively used to pass
the traffic [12]. Third, a distributed tree is a set of pre-established itineraries that are frag-
ile and very sensitive to node and link failures. Therefore, the implementation of a tree
maintenance operation is a requirement that can fix the problem from one side, but can
be very expensive in terms of energy and time from the other side, especially in dense
large-scale networks.

4.5.3.2/ SPREADING ALGORITHM VERSUS SERIAL APPROACHES

Fig. 4.14 shows the number of packets issued to accomplish data aggregation by the
proposed approach, Depth-First Search (DFS) [26], Peeling Algorithm (PA) [18], and
Greedy-Boundary Traversal (GBT) [25]. We mention that for all four serial approaches,
the counted transmissions include path construction, query diffusion, and result delivery
to the sink. Fig. 4.14 also plots the number of packets that an optimal theoretical serial al-
gorithm (denoted as OPT) would have issued to aggregate data if it existed. Actually, the
number of packets required by both DFS and the optimal theoretical algorithm OPT have
been plotted to measure the effectiveness of the evaluated serial algorithms in terms of

70 CHAPTER 4. SPREADING AGGREGATION

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

100 150 200 250 300 350 400 450 500

A
g
g
re

g
a
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Number of nodes

DFS
GBT

PA
SA

Figure 4.15: Spreading Aggregation versus serial approaches. Comparison in terms of
required time for data aggregation.

transmissions. The curve of a good serial approach must be located between those of
OPT and DFS.

We recall that the optimal algorithm OPT necessitates n−1 packets to traverse and aggre-
gate data from a network of n connected nodes. Nevertheless, as previously mentioned,
such an optimal Hamiltonian path does not exist in every network; even if it does, finding
this path constitutes an NP-complete problem [20]. DFS, because of its backtracking na-
ture, requires double the number of OPT, i.e., 2∗(n−1) packets to aggregate and deliver the
result to the sink. The number of transmissions required by the other serial approaches
(i.e., SA, PA, and GBT) cannot be expressed using a mathematical expression.

As demonstrated by Fig. 4.14, SA outperforms all the other serial approaches and neces-
sitates a number of transmissions that is closer to the optimal number of OPT. However, in
sparse low-density networks, DFS slightly outperforms SA. In reality, this is due to the fact
that in low-density deployments, it is more likely that the network contains more disjoint
boundaries (i.e., more cycles). In such a scenario, the bad performance of SA stems from
the excessive use of DBS packets sent to scan the disjoint boundaries. So, the presence
of disjoint boundaries in the network results in a greater expenditure of control packets by
SA. But, in contrast, a denser network will contain fewer holes and disjoint boundaries,
and will improve the performance of SA. Note that when the number of nodes increases,
SA approximates the optimal number of transmissions, and the difference between SA
and DFS becomes more and more noticeable. For instance, in the case of 500 nodes,
the improvement is over 40%.

Fig. 4.15 and Fig. 4.16 respectively show the time and energy required to aggregate
data by all the considered serial approaches. If these latter are compared together in
terms of data delivery time, one can say that, due to their sequent behavior, a serial data
aggregation algorithm will need more time to finish when it necessitates a larger number
of transmissions, and vice versa (provided that the issued packets have approximate or
identical sizes). As depicted in Fig. 4.15, since SA necessitates the smallest number of

4.6. CONCLUSION 71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 150 200 250 300 350 400 450 500

A
g
g
re

g
a
ti
o
n
 e

n
e
rg

y
 (

J
o
u
le

s
)

Number of nodes

DFS
GBT

PA
SA

Figure 4.16: Spreading Aggregation versus serial approaches. Comparison in terms of
required energy for data aggregation.

transmissions, it performs better than all the other serial algorithms and aggregates data
more rapidly.

As shown in Fig. 4.16, SA also performs better than the other serial approaches in terms
of energy consumption. Actually, in WSNs, energy is consumed by the various tasks car-
ried out by nodes (chiefly, sensing, computing, and communicating). So, if one considers
simple sensing systems and plain aggregation queries, communications dominate and
become the most energy consuming task [1], and thus, the energy consumed by serial
algorithms will be mainly related to the number of issued transmissions. That is, the more
a serial algorithm requires packets, the more it will consume energy (provided that the
issued packets have identical or approximate sizes). Since SA necessitates the lowest
number of packets compared with the other serial algorithms, it is superior from the point
of view of energy consumption.

4.6/ CONCLUSION

In this chapter, we presented a new serial algorithm called Spreading Aggregation (SA).
The attractiveness of this in-network data processing technique comes from several fac-
tors. First, SA is maintenance-free and collision-free; hence, it does not require any
transmissions in these regards. Second, SA is a path-free localized approach that relies
only on the limited knowledge of each node to progressively traverse the network. In
other terms, for each query, a new path will be laid out, which decreases the vulnerability
to topology changes and link/node failures. Third, as in any other serial approach, SA
fuses path construction, query dissemination, and data processing. That is to say; while
crossing the network, sensor nodes are simultaneously queried, and their answers are
collected. The conducted OMNeT++ simulations confirm that SA is scalable and very
efficient in terms of energy conservation and response time reduction. The simulation
results also assert that SA ensures aggregation completeness, and therefore query ac-

72 CHAPTER 4. SPREADING AGGREGATION

curacy. In addition to simulations, the proposed approach has been theoretically proven
to visit all connected nodes in the network and to terminate without looping indefinitely.

Despite the efficiency of the proposed approach compared with tree-based aggregation
and state-of-the-art serial algorithms, some other issues still remain to be addressed,
such as robustness against node/link failures, imprecision of nodes’ locations, etc. In
addition to this, the performance of the proposed approach can be further enhanced by
eliminating the use of control packets (i.e., IBS and DBS packets). This will be the object
of the next chapter.

5
GEOMETRIC SERIAL SEARCH

5.1/ INTRODUCTION

Considering large WSNs and comparing data aggregation approaches in terms of scal-
ability, robustness, completeness, and time/energy effectiveness, recent research

has asserted the superiority of serial structure-free approaches over serial structure-
based ones, and over both parallel structure-free and parallel structure-based tech-
niques [18,25,39,40]. But, in spite of the fact that serial structure-free approaches excel
in large and medium-scale networks, their underlying path-construction algorithms are
not optimal and can be improved by reducing the involved communications and further
shortening the visiting path. To respond to this need, this chapter presents Geometric
Serial Search (GSS); a new serial structure-free algorithm specifically designed to ef-
ficiently gather information from large wireless resource-constrained networks [42]. In
addition to its completeness (i.e., visiting all nodes), collision-free nature, high scalability,
energy/time efficiency, and robustness against topology changes (failures in links/nodes,
...), the main advantage distinguishing GSS is that it considerably reduces communica-
tions and always approaches the optimal number of hops (i.e., n −1). More precisely, in
GSS, no control packets or complex data structures are required, instead, one packet
hops from node to node and explores the entire network. While gradually finding its way
through the network, this packet interrogates nodes and collects their responses at the
same time. The followed path is not established in advance, can stem from any node in
the network, and requires only the one-hop neighborhood information of each traversed
node to be gradually drawn. The obtained OMNeT++ simulation results presented in this
chapter demonstrate the efficiency of GSS and confirm all the previously cited claims.

This chapter is sectioned into four parts, as follows. Section 5.2 introduces the necessary
preliminaries required throughout the chapter (to understand the considered problem as
well as its solving). Section 5.3 details the proposed solution (i.e., GSS) through algo-
rithms and simple illustrative figures. Section 5.4 depicts and interprets the obtained
OMNeT++ simulation results. In the end, Section 5.5 concludes the chapter.

73

74 CHAPTER 5. GEOMETRIC SERIAL SEARCH

Figure 5.1: Boundary-first network traversal.

5.2/ BACKGROUND AND GENERAL IDEA

In brief, as demonstrated in Fig. 5.1, in order to efficiently traverse any randomly deployed
wireless network, our approach sees it as a set of layers (boundaries). Once all nodes of
the initial boundary have been explored, the latter (i.e., initial boundary) will be supplanted
by a new boundary, and the same process will be reapplied to this new boundary and so
forth. Thus, the network will be traversed layer by layer (boundary by boundary). In the
end, the estimated parameter (query response) owned by the last node in the path can
be sent to the query launcher via any desired efficient geographic routing.

Similar to SA, the whole operation of our third proposal is based on a geometric shape
called rolling-ball (or rolling-disc) [41], which is simply a virtual circle that is hinged at
a node and must, all the time, be empty of any other nodes. More details about this
geometric concept can be found in Section 2.3.2. We mention that, aside from the rolling-
ball, any other efficient boundary traversal tool can be utilized in our approach, provided
that it adheres to the following. In order to ensure completeness and scalability, the
utilized boundary traversal tool must (1) not miss any boundary node in its path, (2) keep
the traversal process on the boundary of unvisited nodes, and (3) operate while relying
only on the local information available at each node. Our choice has been specifically
made on the rolling ball because in addition to the fact that this traversal tool is localized1

and guarantees the visit of all boundary nodes in its path [41], it, actually, can visit more
nodes than the curved-stick [38]. As a matter of fact, while this can be seen as a drawback
in the case of anti-void routing (i.e., when data is routed around communication holes),
it is in fact an advantage in the context of query processing (and data fusion), because
the main objective in those circumstances is to query nodes and get their responses as
quickly as possible.

Although the general idea of GSS is somehow similar to that of the previously proposed
approaches (i.e., PA and SA), its uniqueness and outperformance come from its time
and energy efficient technique with which it keeps the network connected while gradually
traversing it using the rolling-ball (Section 5.3.2). In addition to the difficulty of ensuring
the exploration of all nodes while maintaining the connectivity and reducing the required
energy/time, the other encountered problem in our approach was how to begin query
processing from an internal non-boundary node (i.e., a node that is unable of holding an

1Other than the one-hop neighbors table of its owner, it does not require any other information to move to
the next node.

5.3. PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH 75

Figure 5.2: Optimal rolling-ball network traversal.

empty valid rolling-ball)? As shown later in this chapter (Section 5.3.1), we have proposed
an efficient distributed technique that is able to effectively deal with this difficulty.

5.3/ PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH

In all our three proposed query processing techniques, initially, for any query Q j to be
issued by node Ni, all nodes are considered as unmarked (did not contribute to Q j yet).
Formally speaking, the initial set of unmarked nodes for Q j is equal to the set of all nodes
in the network and its initial set of marked nodes is empty:

Ωn(i, j) = N ∧ Γ0(i, j) = φ.

In fact, similar to SA, in GSS, in order to trigger network querying, node Ni marks itself
and launches a rolling-ball:

Ωn−1(i, j) = Ωn(i, j) − {Ni} ∧ Γ1(i, j) = Γ0(i, j) + {Ni}

The launched ball rolls in a localized fashion over nodes and marks each one of them
(Fig. 5.2). The details of the difference between GSS and SA (and which one is the most
effective) will be revealed throughout this chapter.

Note that, here also, as it has been already mentioned in the previous chapter, in order
to autonomously determine the ball’s next-hop, each traversed node must be aware of
the status of its neighbors (marked or not). To do so, when the rolling-ball is delivered
(broadcast) by the current node, all of its neighbors can ”hear” this notification and can
thus update the status of their neighbors accordingly. This interesting feature of wireless
communications preserves the localized nature of GSS and does not incur any overhead.
Note also that the existence of one query in the entire network does not require any
elaborated MAC layer. However, since nodes are obliged to overhear the communications
of each other, a low power listening (LPL) MAC protocol must be considered [56,57].

In GSS, in the end, once the rolling-ball has successfully explored the whole network, the
last visited node forwards the obtained response to the query launcher via any efficient

76 CHAPTER 5. GEOMETRIC SERIAL SEARCH

geographic routing. We point out that the ball stops rolling when the currently traversed
node has no unmarked neighbors. In other words, the traversal’s ending point is a node
of which all the neighbors have been marked (Fig. 5.2).

In the following, we will provide details of our third approach. First, in Section 5.3.1, we
show how GSS is able to launch queries from non-boundary nodes (i.e., nodes unable
of holding a valid empty rolling-ball). Second, in Section 5.3.2, we present the new effi-
cient solution we propose to preserve the connectivity during network search. Third, In
Section 5.3.3, we summarize the operation of GSS. Finally, in Section 5.3.4, we explain
the mechanism we propose to detect and remove the looping situations created by the
(localized) connectivity maintenance technique proposed in Section 5.3.2.

5.3.1/ INTERNALITY OF NODES

The fact that from one side the query launcher can be any node, and from the other side,
the rolling-ball must be initially empty2 [41] means that nodes can be divided into two
categories: internal and external.

Definition 15: Internal and external Nodes

Given a set of wireless nodes with R as their communication range, a node Ni is
said to be external (resp. internal), if at least one rolling-ball (resp. no rolling-ball)
with radius R/2 can be attached to it.

In simple words, external nodes can hold a rolling-ball (and hence can launch queries),
while internal ones cannot. To solve this issue and give internal nodes the ability to
launch queries, we propose a straightforward technique that consists of finding another
starting point for Q j. The objective is to rapidly find the closest external node to the
internal query launcher Ni without compromising the localizability (fewer transmissions
means less time/energy consumption). Several techniques can be utilized (see Sec-
tions 3.3.3 and 4.3.3). In this chapter, we propose a new approach that aims the external
network boundary to find an external node (potential starting point for Q j). To explain this
point, let us suppose that all nodes are aware of the fact that their deployment area is a
rectangle defined by two points. In this scenario, to find the shortest path to the exter-
nal boundary, internal node Ni starts by determining its closest perpendicular projection
(Fig. 5.3). Once found, node Ni sends an initialization packet to the nearest neighbor
to this point. Upon receiving this packet, each node N j checks whether it is external
or internal, and acts accordingly (Algorithm 10). Note that the initialization packet stops
traveling towards the external network boundary as soon as it finds an external node (e.g.,
communication hole depicted in Fig. 5.3).

5.3.2/ DISCONNECTIVITY OF UNMARKED NODES

As it has been previously demonstrated in Chapter 4, combining the rolling-ball traversal
with the concept of excluding (marking) each visited node is not an effective solution.
Indeed, when cut-nodes mark themselves and leave the traversal, they lead to the dis-
connectivity of Ωk(i, j) and thus to the incompleteness (inaccuracy) of Q j. For instance,

2In order to guarantee a correct boundary detection, the rolling-ball must be empty of active nodes both
initially and all the time.

5.3. PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH 77

Figure 5.3: Query launch by internal non-boundary nodes.

Algorithm 10 GSS Setup
1: To launch a query, node Ni executes the following if-else statement:
2: if (currentNode.isExternal()) then
3: call Algorithm 11;
4: else
5: // currentNode is internal
6: find nearest projection P (Fig. 5.3);
7: find nearest neighbor N j to P;
8: sendInitPacket(N j);
9: end if

10:
11: Upon receiving initPacket, node N j calls Algorithm 10;

in Fig. 5.4, once N3 is marked, it leads to data aggregation stopping at N4 (the unique
neighbor of N4, which is N3, has been removed).

To avoid the partitioning of Ω and eliminate any early termination of queries, in addition to
the concept of unmarked and marked nodes, two new states must be introduced, namely
the potential and actual-cuts. Whilst marked nodes are inactive and do not collaborate
in any way, the rest of the nodes (i.e., unmarked, potential and actual-cuts) are seen as
active. To facilitate the understanding, in the following, we begin by defining actual-cuts
and explaining the reason behind their use. Later on, we will explain what are potential-
cuts and what is their role.

Definition 16: Actual-cut node (ACN)

An actual-cut Ni in a connected network is a node whose removal (marking)
disconnects the set of all alive active nodes Ωk(i, j) into two or more sub-sets.

For example, node N10 of Fig. 5.5 is an actual-cut that must remain involved in the process
given its importance for the connectivity of Ω. Once no longer needed (i.e., after the visit
of N9 or N11), this actual-cut marks itself to indicate its exclusion. The rolling-ball traversal
combined with the concept of actual-cuts is sufficient to traverse any connected wireless
network. Nevertheless, the main issue faced here is determining the actual-cuts. As a
matter of fact, actual-cuts identification is not a straightforward operation, especially while

78 CHAPTER 5. GEOMETRIC SERIAL SEARCH

Figure 5.4: Disconnectivity example.

Figure 5.5: Example of actual-cuts. Considering node N10 as QL, nodes N7, N8, N9, and
N10 are actual-cuts, while the others are not (they can leave the traversal process).

trying to preserve the localizability and save both energy and time. In other words, based
only on its one-hop neighbors’ information, a node Ni cannot apply Definition 16 and say
whether it is an actual-cut or not (Fig. 5.6). An intuitive way out of this dilemma is nodes
collaboration. This technique, however, requires extra packets, time and energy. The
solution we propose in this chapter does not require any overhead and actually depends
only on the rolling ball. In addition to its initial traversal role, the latter contributes to the
process of actual-cuts identification as a probing packet. Before getting into the details,
let us first explain the notion of potential-cuts which is the building block of the proposed
solution.

Definition 17: Potential-cut node (PCN)

A potential-cut Ni in a connected network is a node whose removal (marking)
disconnects the set of its alive active one-hop neighbors Wi into two or more
sub-sets.

A potential-cut is simply the unique possible connection between at least two of its active
direct neighbors. For example, node N10 of Fig. 5.5 is a potential-cut, as well as node N3
in Fig.5.4, 5.5 and 5.6. Note that each node Ni can locally3 decide whether or not is a
potential-cut. As regards the relationship PCN-ACN, an ACN is perforce a PCN, but the
opposite is not true (i.e., a PCN is not necessarily an ACN).

3Based on itsWi ⊂ Vi.

5.3. PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH 79

Figure 5.6: Example of potential-cuts. Exactly, as depicted in this figure, N3 is a potential-
cut that has no idea about the overall network topology and hence it does not know if it is
an actual-cut.

We remind that our aim is an SSF approach that excludes control packets and counts
exclusively on the rolling-ball and theVi of each traversed node. To this end, as previously
mentioned, the solution we propose to determine the actual-cuts in Ωk assigns a twofold
role to the rolling ball. We describe it briefly: upon receiving the rolling-ball, if node Ni is
a potential-cut (Definition 17), it changes its status as so and forwards the rolling-ball as
usual. Being given the boundary traversal of the rolling-ball, it will surely return to node
Ni. Once it got the rolling-ball back, Ni does not contribute to Q j but chooses to whether:
(1) mark itself and leave the traversal, (2) declare itself as an actual-cut, or (3) stay as a
potential-cut. For instance, in Fig. 5.6, based on which side the rolling-ball has returned
to N3, this node can properly determine its new status. Concretely speaking, if the ball
returns from the same side (i.e., N5), N3 is an actual-cut; there is no other path connecting
its neighbors. Otherwise, N3 is not an actual-cut.

5.3.3/ GSS OVERVIEW

Algorithm 11 summarizes the operation of our proposal. In fact, GSS can be split into
two major steps: (1) rolling-ball owned for the first time, or (2) rolling-ball has already
been owned. This last case, in turn, can be divided into two sub-cases: (a) the re-visited
current owner of the rolling-ball is no longer a potential-cut, or (b) is still a potential-cut
(Algorithm 11). These three scenarios are detailed in the following:

• First of all, when a node Ni receives a rolling-ball for the first time, it starts by con-
tributing to its corresponding query. Then, this node changes its status from un-
marked to one of the following statuses: marked, ACN, or PCN. At last, node Ni

rolls the ball and delivers it to the chosen new owner.

• Second, in the case where the rolling-ball has already been received before by a
node that is no longer PCN, the latter simply changes its status to marked and
forwards the rolling-ball. Note that the fact that node Ni is no longer a PCN signi-
fies also that this node cannot be either an ACN (relationship PCN-ACN). In Algo-
rithm 11 (statement 16), in order to check whether the currently traversed node is
PCN or not, we do not check its local status (currentOwner.status), but instead
we re-apply Definition 17 (isPCN() method).

80 CHAPTER 5. GEOMETRIC SERIAL SEARCH

Algorithm 11 Boundary-First Search
1: The starting point of Q j, which must be external, performs the following steps:
2: contribute to Q j;

3: change its status to MARKED or PCN;

4: forwardRollingBall(newOwner);

5:
6: Upon receiving the rolling-ball, currentOwner executes which follows:
7: // case 1: rolling-ball owned for the first time.
8: if (currentOwner.status == UNMARKED) then
9: contribute to Q j;

10: change its status to MARKED, PCN or ACN;

11: forwardRollingBall(newOwner);

12: return;
13: end if
14:
15: // case 2: rolling-ball has already been owned.
16: if (not currentOwner.isPCN()) then
17: // currentOwner is no longer PCN
18: currentOwner.status = MARKED;

19: forwardRollingBall(newOwner);

20: else
21: if (currentOwner.status == ACN) then
22: call Algorithm 13;

23: else
24: // currentOwner.status == PCN
25: call Algorithm 12;

26: end if
27: end if

• Finally, in the case where the rolling-ball has already been received before by a node
that is still PCN, the latter needs to check its local status to determine whether it is an
ACN or PCN. Because having already received the ball and being PCN according to
isPCN() method means that the current node can be either PCN or ACN. Once the
status has been determined, the last step consists of executing the proper piece of
code. Algorithm 12 and Algorithm 13 summarize respectively the instructions that
need to be followed by the PCNs and ACNs.

When the rolling-ball returns to a PCN, it brought with it valuable information, allowing
hence this node to properly determine whether it can become ACN, remain PCN or leave
the process by marking itself. As a matter of fact, a PCN decides about its new status not
only according to the set from which the rolling-ball has returned but also according to its
one-hop neighbors status. The behavior of a PCN Ni when it re-owns the rolling-ball is
summarized in the following paragraph (Algorithm 12).

A potential-cut is a node that may or may not partition the set of unmarked nodes. The
main objective behind the use of this concept (i.e., potential-cuts) is the efficient determi-
nation of actual-cuts in Ωk (time and energy-efficiency). So, first, when a PCN Ni receives
back the rolling-ball, the first performed step by this node is checking whether or not it
is an ACN (isACN() method in Algorithm 12). If so, Ni changes its status as such and
forwards the rolling-ball to the new owner. As it has been previously cited, a node is an
ACN when it is PCN only to guarantee the connectivity of other ACNs (i.e., without its
ACN neighbors, this node is not a PCN and can be marked). In the opposite case, i.e., if

5.3. PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH 81

Algorithm 12 PCN code
1: if (currentOwner.isACN()) then
2: currentOwner.status = ACN;
3: forwardRollingBall(newOwner);

4: return;
5: end if
6:
7: switch (oldOwner.status){
8: case MARKED: {
9: if (rolling-ball has returned from same set X and X , φ){

10: currentOwner.status = ACN;

11: }
12: break;
13: }
14:
15: case PCN: {
16: if (rolling-ball has returned from same set X){
17: currentOwner.status = ACN;

18: }
19: else {
20: cut link with oldOwner;

21: change status to MARKED or PCN;

22: sendCycleRemovalPacket(oldOwner);

23: return;
24: }
25: }
26: }
27:
28: forwardRollingBall(newOwner);

Ni is not an ACN according to the previous rule, the execution of Algorithm 12 continues
according to the status of the old owner (of the rolling-ball) and other criteria, as follows:

• First, in the case where the old owner of the ball is a marked inactive node, there
are only two possible scenarios; the currently traversed node Ni which is a PCN
can become an ACN or will keep the same status (of being PCN). The first scenario
takes place when (1) the rolling-ball returns to Ni from the same set X ⊂ Vi to
which it was sent, and (2) X still contains alive active neighbors (X , φ). In such
a scenario, it is obvious that node Ni is essential for the connectivity of X. Con-
sequently, Ni changes its status to ACN and forwards the rolling-ball. The second
opposite scenario happens (1) when the rolling-ball returns to Ni from the same set
X ⊂ Vi to which it was delivered, but X is empty and no longer contains any alive
active neighbors (X = φ), or (2) when the rolling-ball returns from a different set
Y ⊂ Vi. In both cases, node Ni keeps its old status (i.e., PCN) and forwards the
rolling-ball.

• Second, in the case where the old owner of the ball is a PCN, two possible scenarios
can be distinguished; the currently traversed node Ni which is also a PCN can
become an ACN or there is a cycle that needs to be broken. The first scenario
happens when the rolling-ball returns to Ni from the same setX ⊂ Vi to which it was
intended. Note that here there is no need to check whether or not X still contains
alive active neighbors (for sure X , φ because the old owner is an alive active node).

82 CHAPTER 5. GEOMETRIC SERIAL SEARCH

Algorithm 13 ACN Code
1: switch (oldOwner.status){
2: case MARKED: {
3: if (set for which currentOwner is ACN == φ){
4: currentOwner.status = PCN;

5: }
6: break;
7: }
8:
9: case PCN: {

10: if (rolling-ball has returned from a different set Y){
11: cut link with oldOwner;

12: change status to MARKED or PCN;

13: sendCycleRemovalPacket(oldOwner);

14: return;
15: }
16: }
17:
18: case ACN: {
19: if (rolling-ball has returned from a different set Y){
20: currentOwner.status = PCN;

21: }
22: break;
23: }
24: }
25:
26: forwardRollingBall(newOwner);

In this first scenario, the currently traversed node Ni, which is fundamental for the
connectivity of set X, changes its status from PCN to ACN and as usual forwards
the rolling-ball. The second alternative scenario (i.e., that is when the rolling-ball
returns to node Ni from a different set Y ⊂ Vi) creates a looping case that must be
properly treated and removed (next Section; 5.3.4).

Note that the previous two points have talked only about the cases where the old owner
N j can be a marked or PCN node but did not mention the third case in which N j can be an
ACN. Actually, the reason behind this is the fact that even when the old owner is an ACN,
this does not signify that the currently traversed node Ni is also an ACN. As demonstrated
in Algorithm 12, when the old owner N j is an ACN but the current owner Ni is not, the
latter simply remains as a PCN and delivers the rolling-ball.

Being an ACN does not mean that node Ni will stay as so throughout the whole process.
In fact, similarly to PCNs, when the rolling-ball returns to an ACN, the latter determines
to whether (1) stay an ACN, (2) return to its initial state of being PCN, or finally (3) mark
itself to indicate its non-involvement. The new status of an ACN node is determined
according to its one-hop neighbors’ statuses (including the old owner) and the set from
which the rolling-ball has returned to it. The actions performed by an ACN, upon receiving
the rolling-ball, are described in Algorithm 13.

5.3. PROPOSED APPROACH: GEOMETRIC SERIAL SEARCH 83

Figure 5.7: (a) Example of looping caused by the use of PCNs concept. (b) Appliance of
cycle removal process.

5.3.4/ LOOPING AVOIDANCE MECHANISM

The concept of potential-cuts (Definition 17) keeps Ω connected and contributes to the
localizability of GSS. Nonetheless, since this concept relies onWi (which is a very limited
knowledge), sometimes, it creates looping scenarios. In order to better explain the looping
issue and the proposed solution, let us consider Fig. 5.7(a). In this example, according
to Algorithm 11, node N3 which is the query launcher changes its status to PCN and
forwards the rolling-ball to N2 ∈ X (X ⊂ W3 represents the connected subset of one-hop
active neighbors of N3 to which node N2 belongs; X = {N2}). The launched ball travels all
around the initial boundary and gets back to N3. Note that the latter which is still PCN has
received the ball from another PCN (N4 ∈ Y , X). This, actually, means that there are
not only N3 and N4 that are PCNs but, in fact, a whole path of PCNs that connects these
two nodes throughout the boundary. In such a situation, the rolling-ball will definitely get
stuck, and will keep traversing the same boundary and re-marking each touched node as
PCN (Fig. 5.7(a)).

In general, the looping issue occurs when (1) the rolling-ball is forwarded by a node Ni

to a node Nk which belongs to a set X ⊂ Vi, but returns to Ni from N j which belongs
to a different set Y ⊂ Vi, and (2) Ni and N j are both PCNs. To break this kind of
cycles, as demonstrated by Algorithm 12, each node Ni which detects the existence of
a cycle performs the following instructions (Fig. 5.7(b)). First of all, node Ni virtually

84 CHAPTER 5. GEOMETRIC SERIAL SEARCH

deletes its link with the old owner N j. In other terms, Ni will no longer consider N j as a
neighbor. Second, after having done this, Ni changes its status (to marked or remains
as a PCN) and broadcasts a cycle removal packet which orders the old owner N j and
the other nodes in range to virtually delete links responsible for this cycle creation. Once
the looping issue has been properly removed, the old owner N j updates its status and
continues the process by delivering the ball to the next hop (Fig. 5.7(b)). Note that given
the fact that another path exists connecting Ni and N j, deleting links during the cycle
removal process does not partition Ω. Note also that the main condition for a PCN to be
an ACN is not to be contained in a cycle. For instance, in Fig. 5.7, node N1, which is a
PCN, can never be an ACN because it belongs to a cycle, and thus it is not required to
maintain the connectivity of Ω.

5.4/ GSS PERFORMANCE ASSESSMENT

As it has been previously discussed in Chapters 3 and 4, in order to conduct the evalu-
ations and assess the proposed solutions, we have opted for OMNeT++ [53]. Actually,
among the different WSN frameworks proposed for this simulator, the selection has been
made on Castalia [54], because besides its realistic radio/channel models (e.g., realistic
modeling of RSSI and carrier sensing, interference, path loss, etc.), it also gives nodes a
realistic behavior particularly with regard to medium access. We recall that we have used
the well-known energy consumption model proposed by [55]. More specifically, in order
to send a packet of k-bit size for a certain distance x, node Ni consumes ET X(k, x) Joules
and consumes ERX(k) Joules to receive this same packet, such that:

ET X(k, x) = Ec ∗ k + εamp ∗ k ∗ x2

ERX(k) = Ec ∗ k

where Ec and εamp are respectively the energy required to run the transmitter/receiver,
and the energy needed to run the transmitter amplifier.

For comparison and evaluation purposes, in addition to the proposed SSF technique
(i.e., GSS), we have implemented several other aggregation approaches among which,
in the present chapter, we consider the Peeling Algorithm [18], Spreading Aggrega-
tion [39], Greedy Boundary Traversal [25], Depth-First Search [26], and Tree-based Ag-
gregation [3]. Note that whatever the network topology, all the considered serial tech-
niques in this section have been proven to ensure full network browsing. We, actually, did
not implement the serial approach named space-filling curve-based search (described
in Section 2.2) [24] nor the one called PEGASIS proposed in [22] because they do not
ensure complete network traversal, which harm query completeness. On the other hand,
apart from tree-based aggregation, no other parallel technique (such as the flooding or
consensus-based aggregation) has been considered because, in addition to Chapter 3,
many other works have already shown their ineffectiveness in terms of communications,
time and energy, especially in large deployments [18,25].

5.4.1/ EVALUATION METRICS

Besides the completeness metric, the four other criteria that were utilized to evaluate GSS
and the other considered aggregation approaches are communications, time, energy, and

5.4. GSS PERFORMANCE ASSESSMENT 85

scalability.

• The communication criterion, which represents the number of packets issued to
gather information from all sensor nodes, directly affects the three other ones (i.e.,
time, energy, and scalability). More precisely, the less an aggregation approach
spends packets, the more efficient it is, and vice versa.

• The measured time criterion represents the delay that elapses between the moment
when information gathering has been launched by the query initiator and the instant
when the response is received by that node. The goal is always to have a very low
latency.

• The energy criterion represents the sum of energy spent by all nodes in the network
to gather and deliver the required information. We recall that the energy consumed
by each node has been estimated using the model proposed in [55] (described
earlier).

Energy is the most precious resource in WSNs, preserving it is the main aim of
every approach proposed for this kind of networks.

• In order to assess the scalability of GSS and the other implemented aggregation
techniques, different network size and density scenarios have been considered in
the conducted simulations. At first, only 100 wireless nodes were randomly placed
in a 1000 x 1000 meters field. Then, gradually, at each step, 50 new wireless nodes
were randomly inserted in the field, to a maximum of 500 nodes.

We point out that GSS has not been evaluated only in the aforementioned ran-
dom configurations, but also in different communication range and different network
size and topology (e.g., linear, ring, different grids, regular networks with and with-
out holes, irregular topologies, etc.). All the network configurations we generated
whether manually or randomly have been successfully and efficiently browsed by
GSS.

5.4.2/ SIMULATION PARAMETERS

Table 5.1 and Table 5.2 list respectively the different simulation parameters considered in
the present chapter, and the average degree of nodes in the different deployments. The
first line of Table 5.2 depicts the number of nodes in the network whereas the second one
represents the corresponding average number of neighbors of each node.

5.4.3/ SIMULATION RESULTS

In the following two subsections, the obtained simulation results of the considered aggre-
gation approaches are compared and evaluated. For the sake of reading ease and figures
clarity, we begin by plotting and comparing the results of our proposal with only those of
the implemented serial approaches (Section 5.4.3.1). Afterward (in Section 5.4.3.2), we
plot the results of GSS and compare them with mainly the implemented tree-based ap-
proach. We point out that in both sections, communication, time and energy results have
been plotted against the number of nodes specified in Table 5.1.

86 CHAPTER 5. GEOMETRIC SERIAL SEARCH

Table 5.1: GSS simulation configuration and parameters

Parameter Value(s)

Field dimensions (m2) 1000 x 1000
Nodes number 100, 150, 200, . . . , 500
Nodes deployment Uniform
Nodes transmission range (m) 150
Nodes initial energy (J) 100
Query launcher location Random
Query packet size (byte) 50
Radio type CC2420
Radio data rate (kbps) 250
MAC protocol CSMA/CA

Table 5.2: GSS average nodes’ degree.

100 150 200 250 300 350 400 450 500
6 9 12 15 18 21 25 27 31

5.4.3.1/ GSS VERSUS SERIAL INFORMATION GATHERING TECHNIQUES

Fig. 5.8 depicts the transmissions that have been spent to fulfill information gather-
ing by the different implemented serial approaches, namely GSS (proposed approach),
PA (Peeling Algorithm) [18], SA (Spreading Aggregation) [39], GBT (Greedy-Boundary
Traversal) [25], DFS (Depth-First Search) [26], and finally OPT (Optimal Algorithm). The
latter represents an imaginary optimal serial algorithm4 that spends n−1 transmissions to
browse and query a network of n wireless connected nodes. In fact, both DFS and OPT
are staples when it comes to serial approaches comparison. In exact words, the results
of these two algorithms serve as an evaluation gauge for the efficiency of serial fusion
approaches in terms of communications. An efficient serial algorithm must lay between
OPT and DFS.

The calculated number of transmissions plotted in Fig. 5.8 includes path construction,
query diffusion, data fusion, and result delivery to the query launcher. We underline that
while the transmissions required by DFS and OPT can be expressed mathematically, the
ones required by whether GSS, PA, SA, or GBT cannot because of the adaptive localized
nature of these approaches. Recall that due to its inherent backtracking behavior, DFS
consumes 2∗(n−1) packets to query n wireless connected nodes and deliver the response
to the query launcher (i.e., double the packets required by OPT).

When compared to DFS, GBT, PA, and SA from the standpoint of communications, the
proposed approach is much more efficient. The obtained results depicted in Fig. 5.8
affirm the outperformance of GSS and its very low communication requirement. As a
matter of fact, the denser the wireless network, the lower the consumption of GSS in
terms of packets will be. This, however, does not mean that GSS loses its effectiveness
in small-sized networks. In fact, the performance result of GSS is very close to that of
OPT even in low-density sparse networks. For instance, GSS needs approximately 120

4Laying out a Hamiltonian path that does not exist in every network topology is an NP-complete prob-
lem [20].

5.4. GSS PERFORMANCE ASSESSMENT 87

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 t

ra
n

s
m

is
s
io

n
s

Nodes

DFS
GBT
GSS

PA
SA

OPT

Figure 5.8: GSS versus serial approaches. Comparison in terms of required communica-
tions (sent packets).

hops to explore a network of 100 wireless nodes, and 510 hops to traverse 500 nodes.

In sparse low-density networks, GSS is slightly different than OPT because the loop-
ing scenarios created by potential-cuts have a high probability of occurrence (see Def-
inition 17 and Fig.5.7). In such situations, due to the limited knowledge of nodes, the
rolling-ball must travels all around the current boundary to inform the currently visited
node about the existence or absence of a cycle. We recall that the optimality of GSS
stems mainly from the originality of the idea we proposed to overcome the limited knowl-
edge of nodes and to preserve the connectivity of the network. Concretely speaking,
the trick was assigning a twofold role to the rolling ball. In addition to its main traver-
sal mission, the latter was given a probing role, which considerably contributes to saving
communications, time and energy. As Fig. 5.8 demonstrates, despite the certain pres-
ence of cycles in low-density networks, GSS is not drastically affected as is the case for
the other serial approaches. As a matter of fact, in sparse networks, DFS which is a non-
sophisticated serial approach outperforms PA, SA, and GBT. This is due, as previously
mentioned, to the fact that in low-density deployments, it is more likely that the network
contains more cycles, and hence requires more communications to get traversed. For
instance, the bad performance of SA in sparse networks comes from the excessive use
of DBS packets aimed to detect the existence of potential cycles. The presence of cy-
cles results in greater packets expenditure by SA, PA, and GBT. A denser deployment,
in contrast, yields fewer holes and hence fewer cycles, which improves the performance
of these approaches. Actually, when the number of nodes increases, SA, PA, and GBT
approximates the optimal number of transmissions, and the difference between them and
DFS becomes more noticeable. For example, in the 500-nodes deployment, SA, PA, and
GBT require almost third the communications consumed by DFS, while GSS requires al-
most half the transmissions of DFS (the difference between GSS and DFS is almost 50%
in all the considered network sizes).

88 CHAPTER 5. GEOMETRIC SERIAL SEARCH

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 t

im
e

 (
s
e

c
o

n
d

s
)

Nodes

DFS
GBT
GSS

PA
SA

Figure 5.9: GSS versus serial approaches. Comparison in terms of information gathering
time.

Given its sequential nature, the more a serial aggregation approach requires transmis-
sions, the more time it will need to finish, and vice versa. Since GSS necessitates the
smallest number of packets, it outperforms the other serial techniques in terms of data
fusion rapidity (Fig. 5.9). In terms of energy, GSS also outperforms the other serial ap-
proaches (Fig. 5.10). As a matter of fact, in a WSN, energy is spent by the different
actions performed by nodes such as communication, sensing, and computation. In the
case where both computation and sensing are straightforward non-complicated tasks, the
main source of energy consumption will be transmissions/receptions [1]. In other words,
in such a scenario, the more a serial approach spends packets, the larger its energy con-
sumption will be. As GSS requires the lowest amount of packets among the other serial
techniques, it is superior from the energy efficiency standpoint.

5.4.3.2/ GSS VERSUS TREE-BASED INFORMATION GATHERING

In addition to DFS and OPT which have been pointed out to in the previous section,
Fig. 5.11 also shows the number of transmissions that have been issued by both GSS and
the considered tree-based approach; Tree-A [3]. The time and energy that GSS and Tree-
A have necessitated to harvest the required information and deliver the response to the
query-launcher are depicted respectively in Fig. 5.12 and Fig. 5.13. Note that with regard
to transmissions, the following three types of packets have been taken into consideration.
First, packets spent to traverse the network or respectively construct the tree. Second,
packets issued to query the whole wireless network. Finally, packets utilized to report the
gathered fused data to the query initiator.

We recall that in Tree-A or any other tree-based aggregation approach, structure estab-
lishment, query diffusion, and data fusion are three separate independent tasks. At first,

5.4. GSS PERFORMANCE ASSESSMENT 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 e

n
e

rg
y
 (

J
o

u
le

s
)

Nodes

DFS
GBT
GSS

PA
SA

Figure 5.10: GSS versus serial approaches. Comparison in terms of information gather-
ing energy.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 t

ra
n

s
m

is
s
io

n
s

Nodes

DFS
GSS
Opt.

Tree-A

Figure 5.11: GSS versus Tree-based aggregation. Comparison in terms of required com-
munications (sent packets).

the network must be thoroughly covered with a spanning tree5. After being built, the tree
can be interrogated by its root. At last, query response starts from leaves and gradually
goes up towards the root. In GSS, like in any other SSF approach, these three separate

5Query accuracy requires the covering of each and every node in the network.

90 CHAPTER 5. GEOMETRIC SERIAL SEARCH

 0

 2

 4

 6

 8

 10

 12

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 t

im
e

 (
s
e

c
o

n
d

s
)

Nodes

DFS
GSS

Tree-A

Figure 5.12: GSS versus Tree-based aggregation. Comparison in terms of information
gathering time.

operations have been all melted down into a single phase. Simultaneously, as the network
is being progressively browsed, nodes are interrogated and their data is collected. This
compactness feature of SSF approaches allows them to significantly reduce the required
transmissions, time, and energy.

The big difference between GSS and Tree-A in regards to energy dissipation can be ex-
plained as follows. Actually, in addition to the separate indispensable (1) building/fixing
of the spanning tree, (2) query dissemination, and (3) response delivery, given its con-
current collision-prone behavior, Tree-A also consumes a lot of energy to retransmit the
lost collided packets, especially in dense deployments. As regards information gathering
time, intuitively, even with a larger number of transmitted packets, Tree-A is supposed to
beat all serial approaches thanks to its parallel concurrent performance. In reality, how-
ever, this is not the case. Due to what has been already mentioned, GSS shows a better
response than Tree-A (Fig.5.12).

In a generic tree-based aggregation technique, the number of packets required to accom-
plish data fusion can be calculated as follows. Actually, without considering the retrans-
missions of collided packets and without considering tree construction or any probable
maintenance operation of this structure, 2 ∗ n packets need to be sent to fulfill data gath-
ering from a network of n wireless nodes. More specifically, in query diffusion phase,
n packets will be broadcast because all nodes are involved in this stage. During data
fusion and query processing phase, n other packets will be issued because each node
must forward a packet to the upper level except the root. As previously mentioned in Sec-
tion 2.2, constructing or even maintaining a distributed logical structure over a wireless
error/interference-prone environment is a complicated task that requires a considerable
time and energy. On the other hand, in addition to the fact that SSF approaches are
maintenance-free, do not generate any collisions, and do not require any initial separate

5.5. CONCLUSION 91

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

100 150 200 250 300 350 400 450 500

R
e

q
u

ir
e

d
 e

n
e

rg
y
 (

J
o

u
le

s
)

Nodes

DFS
GSS

Tree-A

Figure 5.13: GSS versus Tree-based aggregation. Comparison in terms of information
gathering energy.

structure building phase, the existence of an optimal itinerary (that crosses each node
once) means that only n − 1 packets are needed to accomplish the desired information
collection.

Apart from their balance and robustness issues, the main drain in tree-based approaches
stems from collisions and retransmissions. Actually, packet collisions considerably affect
these approaches in terms of time and energy, especially in dense large-scale wireless
networks (Fig.5.12 and 5.13). Besides the fact that retransmissions significantly waste
time and energy, they are themselves subject to error and collisions, which deeply affect
these approaches. The problem of unbalanced energy consumption is also considered
as one of the main issues in tree-based aggregation approaches [12]. This phenomenon
occurs primarily because wireless nodes located nearby the root are heavily solicited
to forward the upward traffic. The unbalanced energy consumption issue can also take
place when the initially created tree is not balanced. Finally, in tree-based approaches,
structure-maintenance is indispensable because a spanning tree is nothing but a bunch
of pre-set paths that are very fragile to failures and topology changes. The maintenance
solution can handle those problems at the expense of being very costly in terms of time
and energy, particularly in very large deployments.

5.5/ CONCLUSION

Serial structure-free (SSF) approaches have proven their efficiency in several aspects but
have also shown their deficiency in front of path construction complexity. This chapter has
thoroughly addressed this issue by presenting Geometric Serial Search (GSS); a novel
scalable SSF approach specifically fashioned to effectively gather information from large

92 CHAPTER 5. GEOMETRIC SERIAL SEARCH

and medium-scale WSNs. The main contribution of this approach is its reliance on a new
efficient localized path construction algorithm that requires fewer communications to de-
rive short near-optimal visiting itineraries. Actually, the only input of this algorithm is the
neighbors’ table of each traversed node, and the only tool used to traverse networks is a
packet which has figuratively the shape of a rolling ball. To ensure a full network search,
this packet, which can be issued by any node, sees wireless networks as a set of bound-
aries (layers). While progressively finding its non-predefined track across boundaries, the
rolling ball simultaneously queries and collects the encountered nodes answers. In addi-
tion to its inherent collision-free nature, high scalability, robustness, and energy/time effi-
ciency, the extensive conducted OMNeT++ tests have confirmed that GSS constantly ap-
proaches the optimal targeted number of transmissions. The performed OMNeT++ simu-
lations have also confirmed that GSS avoids indefinite looping and ensures the traversal
of all nodes regardless of the network topology.

As future directions, we are interested in exploiting GSS in other areas of WSNs such
processing topological and spatial window queries. We also plan to address some other
issues such as the effect of imprecise nodes’ locations on GSS and to what extent is this
approach robust in face of failures in links/nodes and other topological changes.

6
GENERAL CONCLUSION AND FUTURE

WORKS

The issue of querying large wireless sensor networks through data aggregation is cru-
cial because of both the limited energy supply of nodes and the query time latency.

Strictly speaking, in WSNs, tasks such as data processing and query result delivery to the
sink can be performed in two different ways: concurrently or sequentially. Likewise, and
accordingly, the numerous research works proposed in the literature as solutions for the
querying problem can be categorized into four classes [3,10,20,24,25,46,47]: (1) paral-
lel structure-based approaches with a pre-constructed logical infrastructure (a spanning
tree for instance), (2) parallel structure-free or iterative approaches in which the query re-
sult is iteratively carried out through one-hop communications, (3) serial structure-based
approaches in which the query answer is sequentially obtained via a pre-constructed
itinerary that passes through every node in the network, and (4) serial structure-free ap-
proaches which gradually build paths, and at the same time, interrogate nodes and gather
their answers (i.e., each time a new query is launched, a new path is drawn for it).

Targeting large-scale or even medium network deployments, recent research has shown
that compared with the other three approaches cited above, serial structure-free aggre-
gation is scalable and very efficient in terms of collisions avoidance, communication re-
duction, energy conservation, and, more importantly, in terms of responsiveness. For
instance, parallel structure-based approaches operate in three separate phases: (i) struc-
ture construction (e.g., trees, clusters, ...), (ii) query dissemination, and (iii) data aggre-
gation. First, a spanning tree is created over the network. Once the whole network is
covered, a query can then be diffused throughout the tree to all nodes in the network.
Finally, data aggregation starts from leaf nodes and goes up towards the root/sink. Per-
forming these three phases separately increases energy consumption and delays the
response time, particularly in very large-scale networks. Conversely, serial structure-free
approaches save energy and time because they combine the three previous phases into
one phase. While the path is gradually constructed at each hop with the help of local in-
formation (i.e., a localized nature), the query is being disseminated and data aggregation
is taking place at the same time. Furthermore, in opposition to parallel or serial structure-

93

94 CHAPTER 6. GENERAL CONCLUSION AND FUTURE WORKS

based approaches in which only the sink/root is able to request information from sensor
nodes, in serial structure-free approaches, queries can be launched from any node in the
network. This is, in fact, a fundamental need for emergent multi-owner-multi-user WSNs
where several nodes can be responsible for updating configuration parameters and/or
distributing management commands [50]. In addition to all this, as serial approaches
involve only one communication at each moment in time, they can therefore avoid colli-
sions, improving hence their performance in terms of energy conservation and delay time
reduction. This is not the case for parallel approaches; they generate a lot of collisions
during structure construction, query diffusion, and data aggregation, particularly in dense
networks [25], even when sophisticated MAC protocols are used [49].

As confirmed by the evaluation studies we have conducted, despite their interesting fea-
tures/advantages and outperformance in comparison with other approaches, state-of-the-
art serial structure-free processing techniques still suffer from several deficiencies among
which we mainly cite path construction. More exactly, recent serial approaches require
an additional cost to construct their non-optimal and relatively long traversal paths. In
fact, the major challenges encountered when designing an efficient serial aggregation
approach are (1) ensuring the exploration of all nodes in the network whatever the con-
sidered topology, and (2) reducing the needed time and energy. To achieve the latter
objective, two points must be taken into consideration. First, finding the shortest possible
visiting path (a short path enhances the overall performance and vice versa), and second,
avoiding extra communications by counting only on the local knowledge of each traversed
node to explore the network.

In this work, in order to respond to these interesting and challenging questions, and
in order to provide an efficient information gathering mechanism for wireless resource-
constrained networks, our primary objective was developing scalable serial algorithms
that shorten the traversal path and reduce communications to the maximum extent possi-
ble. The objective was attaining the optimal number of hops, i.e., n− 1 packets to traverse
a network of n nodes; no extra overhead or control packets must be required. In addition
to that primary goal, our second aim was the algorithms ability to explore any connected
network and to visit all of its nodes regardless of the topology in hand (regular/irregular,
large/sparse, with/without holes, etc.). Concretely speaking, in this manuscript, we pro-
posed three novel serial processing approaches, called Peeling Algorithm (PA), Spread-
ing Aggregation (SA), and Geometric Serial Search (GSS), which have been specifically
designed to be scalable and support very large numbers of nodes. The obtained simula-
tion results confirm that the proposed algorithms outperform state-of-the-art approaches
in terms of deriving shorter visiting paths, and in terms of time and energy consumption
reduction. The simulation results we obtained also confirm the very good scalability of our
three proposals. In addition to these interesting experimental results, we provided in this
manuscript formal proofs that demonstrate the correctness of the proposed approaches;
i.e., they terminate and are able of visiting all connected nodes without falling into looping.

First, Peeling Algorithm (PA) [18], which as its name hints, peels the network layer-by-
layer starting from the external boundary. In other words, the exploration of nodes starts
by progressively removing (marking as visited) the external boundary (layer) of the net-
work and hence disclosing a new internal unexplored layer which will be removed (peeled)
in its turn, and so forth. Initially, in order to find the peeling starting point (i.e., any node
located on the network external boundary), the query launcher (which can also be any
node in the network) collaborates with other nodes. Once the network external boundary
has been determined and the starting point has been found, the network peeling can start

95

from this node using the graph-free boundary traversal algorithm called curved-stick [38].
Being costly in terms of energy and time, if executed with each new query, the process
of network external boundary determination can considerably harm the overall peeling
performance. However, this is not the case, this process is executed only once during
network setup (unless, of course, we have unstable topologies with continuous changes).

Our second approach; Spreading Aggregation (SA) [39, 40] starts information gathering
by simply placing a rolling ball [41] (launching a single packet) and letting it sequentially
hop over nodes and aggregate their data. The next hop of the querying/aggregation
packet is determined locally by each traversed node using only its one-hop neighborhood
information. No network topology information needs to be known by nodes nor colli-
sions are generated as only one node is communicating at any given time. In addition to
this, unlike the peeling technique [18], in SA, there is no necessity for network external
boundary determination. As a matter of fact, in SA, non-boundary nodes can be query
launchers by simply utilizing a shrunken rolling-ball. The latter visits nodes and gets pro-
gressively enlarged if possible at each hop until eventually it gains its optimal shape and
continues the ordinary traversal process. As confirmed by the numerous OMNeT++ sim-
ulation results we obtained, Spreading Aggregation is highly scalable and very effective in
terms of communication, energy, and time consumption reduction. The obtained results
also confirm the superiority of SA over state-of-the-art serial and parallel approaches,
particularly in very large-scale network deployments.

Finally, in spite of the fact that PA and SA excel in large and medium-scale networks,
their path-construction mechanisms are not optimal and can be improved by reducing
the involved communications and further shortening the visiting path. Geometric Serial
Search (GSS) [42, 43]; our third approach, came to respond to this need by totally ex-
cluding control packets and relying only on one packet that jumps from node to node
and explores the entire network. In fact, while progressively traversing the network, this
packet simultaneously interrogates nodes and harvests their query responses. Paths
created by GSS are not constructed in advance, can commence from any node in the
network, and necessitates only the one-hop neighbors’ table of each explored node to be
traced. As a matter of fact, in addition to its completeness1, collision-freeness, scalability,
energy/time efficiency, and robustness2, GSS considerably reduces communications and
lays out very short traversal paths by always approaching the optimal number of hops
(i.e., n − 1 packets to explore n nodes). The obtained OMNeT++ simulation results pre-
sented in this manuscript demonstrated the efficiency of GSS as an information gathering
technique for large wireless resource-constrained networks and confirmed all the points
cited above.

To summarize, serial localized processing algorithms explore nodes one-by-one and are
able of performing a multitude of tasks including scheduling nodes, querying or gather-
ing data from nodes, supplying nodes with data, etc. As future research directions, we
are interested in exploiting localized serial processing in other areas of WSNs such as
topological aggregation and spatial window querying. In the latter example, instead of
addressing queries to the entire network, the end-user indicates the region to be inter-
rogated by specifying a rectangular shape (or any other geometric form) called Window
Query Region (WQR). For instance, through the below query, the end-user will obtain the
average temperature, maximum humidity, minimum light, and finally the number of sensor
nodes in the region bounded by a rectangle defined by two points.

1Ability to explore all nodes is a fundamental requirement in many sensitive practical applications.
2Resilience to topology changes (failures in links/nodes, ...).

96 CHAPTER 6. GENERAL CONCLUSION AND FUTURE WORKS

SELECT AVG(temperature), MAX(humidity), MIN(light), COUNT()

FROM sensors as s

WHERE s.location WITHIN [(75, 75), (320, 630)]

The idea behind serial window querying is to reach the WQR by means of any efficient
geographic routing protocol. Once the desired WQR has been reached, the querying
process starts by sequentially collecting the answers of all nodes located inside that re-
gion. Finally, the obtained query result has to be sent to the sink/query launcher using the
same geographic routing protocol that has been utilized in the beginning. Even though
this technique seems to be simple, it is in reality hard to design because it must be able
to handle any network deployment, especially those with communication holes. In other
terms, the proposed approach has to be able to deal with the so-called void problem
and guarantee query accuracy by visiting all nodes located inside the WQR in question.
In fact, we have started a research work on this matter and the preliminary results are
encouraging and very promising.

As other perspectives, some other issues of localized serial processing algorithms can be
also addressed such as (1) the effect of imprecise nodes’ locations on serial aggregation
in general and on our proposed approaches in particular. (2) To what extent are serial
structure-free approaches robust in face of failures in links/nodes and other topological
changes.

BIBLIOGRAPHY

[1] Azzedine Boukerche. Algorithms and protocols for wireless sensor networks, vol-
ume 62. John Wiley & Sons, 2008.

[2] Ian F. Akyildiz and Mehmet Can Vuran. Wireless sensor networks, volume 4. John
Wiley & Sons, 2010.

[3] Ramesh Rajagopalan and Pramod K. Varshney. Data-aggregation techniques in
sensor networks: A survey. IEEE Communications Surveys and Tutorials, 8(1-4):48–
63, 2006.

[4] Soummya Kar, José M. F. Moura, and Kavita Ramanan. Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect communi-
cation. IEEE Trans. Information Theory, 58(6):3575–3605, 2012.

[5] Angelia Nedic, Alexander Olshevsky, Asuman E. Ozdaglar, and John N. Tsitsiklis.
On distributed averaging algorithms and quantization effects. IEEE Trans. Automat.
Contr., 54(11):2506–2517, 2009.

[6] Amir Beck, Petre Stoica, and Jian Li. Exact and approximate solutions of source
localization problems. IEEE Trans. Signal Processing, 56(5):1770–1778, 2008.

[7] Jianyong Lin, Wendong Xiao, Frank L. Lewis, and Lihua Xie. Energy-efficient dis-
tributed adaptive multisensor scheduling for target tracking in wireless sensor net-
works. IEEE Trans. Instrumentation and Measurement, 58(6):1886–1896, 2009.

[8] Engin Masazade, Ruixin Niu, Pramod K. Varshney, and Mehmet Keskinoz. Energy-
aware iterative source localization for wireless sensor networks. IEEE Trans. Signal
Processing, 58(9):4824–4835, 2010.

[9] Bahador Khaleghi, Alaa M. Khamis, Fakhreddine Karray, and Saiedeh N. Razavi.
Multisensor data fusion: A review of the state-of-the-art. Information Fusion,
14(1):28–44, 2013.

[10] Xiang-Yang Li, Yajun Wang, and Yu Wang. Complexity of data collection, aggrega-
tion, and selection for wireless sensor networks. IEEE Trans. Computers, 60(3):386–
399, 2011.

[11] Xiaobing Wu, Guihai Chen, and Sajal K. Das. Avoiding energy holes in wireless sen-
sor networks with nonuniform node distribution. IEEE Trans. Parallel Distrib. Syst.,
19(5):710–720, 2008.

[12] Anfeng Liu, Peng-Hui Zhang, and Zhi-Gang Chen. Theoretical analysis of the life-
time and energy hole in cluster-based wireless sensor networks. J. Parallel Distrib.
Comput., 71(10):1327–1355, 2011.

97

98 BIBLIOGRAPHY

[13] Soummya Kar and José M. F. Moura. Distributed consensus algorithms in sen-
sor networks with imperfect communication: Link failures and channel noise. IEEE
Trans. Signal Processing, 57(1):355–369, 2009.

[14] Boris N. Oreshkin, Mark Coates, and Michael G. Rabbat. Optimization and analysis
of distributed averaging with short node memory. IEEE Trans. Signal Processing,
58(5):2850–2865, 2010.

[15] Stacy Patterson, Bassam Bamieh, and Amr El Abbadi. Convergence rates of dis-
tributed average consensus with stochastic link failures. IEEE Trans. Automat. Contr.,
55(4):880–892, 2010.

[16] Lin Xiao, Stephen P. Boyd, and Seung-Jean Kim. Distributed average consensus
with least-mean-square deviation. J. Parallel Distrib. Comput., 67(1):33–46, 2007.

[17] Satish M. Srinivasan and Azad H. Azadmanesh. Survivable data aggregation in mul-
tiagent network systems with hybrid faults. IEEE Trans. Computers, 62(10):2054–
2068, 2013.

[18] Ahmed Mostefaoui, Azzedine Boukerche, Mohammed Amine Merzoug, and Mah-
moud Melkemi. A scalable approach for serial data fusion in wireless sensor net-
works. Computer Networks, 79:103–119, 2015.

[19] Robert D. Nowak. Distributed EM algorithms for density estimation and clustering in
sensor networks. IEEE Trans. Signal Processing, 51(8):2245–2253, 2003.

[20] Michael Rabbat and Robert D. Nowak. Quantized incremental algorithms for
distributed optimization. IEEE Journal on Selected Areas in Communications,
23(4):798–808, 2005.

[21] Angelia Nedic and Dimitri P. Bertsekas. Incremental subgradient methods for non-
differentiable optimization. SIAM Journal on Optimization, 12(1):109–138, 2001.

[22] Stephanie Lindsey, Cauligi S. Raghavendra, and Krishna M. Sivalingam. Data gath-
ering algorithms in sensor networks using energy metrics. IEEE Trans. Parallel Dis-
trib. Syst., 13(9):924–935, 2002.

[23] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman, 1979.

[24] Swapnil Patil, Samir R. Das, and Asis Nasipuri. Serial data fusion using space-
filling curves in wireless sensor networks. In Proceedings of the 1st Annual IEEE
Communications Society Conference on Sensor and Ad Hoc Communications and
Networks, SECON’04, Santa Clara, CA, USA, October 4-7, 2004, pages 182–190.

[25] Azzedine Boukerche, Ahmed Mostefaoui, and Mahmoud Melkemi. Efficient and ro-
bust serial query processing approach for large-scale wireless sensor networks. Ad
Hoc Networks, 47:82–98, 2016.

[26] Shimon Even and Guy Even. Graph Algorithms, Second Edition. Cambridge Uni-
versity Press, 2012.

[27] Azzedine Boukerche and Xin Fei. A coverage-preserving scheme for wireless sensor
network with irregular sensing range. Ad Hoc Networks, 5(8):1303–1316, 2007.

BIBLIOGRAPHY 99

[28] Azzedine Boukerche, Xin Fei, and Regina Borges de Araujo. An optimal coverage-
preserving scheme for wireless sensor networks based on local information ex-
change. Computer Communications, 30(14-15):2708–2720, 2007.

[29] Azzedine Boukerche, Horacio A. B. F. Oliveira, Eduardo F. Nakamura, and Antonio
A. F. Loureiro. Localization systems for wireless sensor networks. IEEE Wireless
Commun., 14(6):6–12, 2007.

[30] Horacio A. B. F. Oliveira, Azzedine Boukerche, Eduardo F. Nakamura, and Antonio
A. F. Loureiro. An efficient directed localization recursion protocol for wireless sensor
networks. IEEE Trans. Computers, 58(5):677–691, 2009.

[31] Jing Wang, Ratan K. Ghosh, and Sajal K. Das. A survey on sensor localization.
Journal of Control Theory and Applications, 8(1):2–11, 2010.

[32] Guang Tan, Hongbo Jiang, Shengkai Zhang, Zhimeng Yin, and Anne-Marie Ker-
marrec. Connectivity-based and anchor-free localization in large-scale 2d/3d sensor
networks. TOSN, 10(1):6:1–6:21, 2013.

[33] Mort Naraghi-Pour and Gustavo Chacon Rojas. A novel algorithm for distributed
localization in wireless sensor networks. TOSN, 11(1):1:1–1:25, 2014.

[34] Fu Xiao, Wei Liu, Zhetao Li, Lei Chen, and Ruchuan Wang. Noise-tolerant wireless
sensor networks localization via multinorms regularized matrix completion. IEEE
Trans. Vehicular Technology, 67(3):2409–2419, 2018.

[35] Jukka Suomela. Survey of local algorithms. ACM Comput. Surv., 45(2):24:1–24:40,
2013.

[36] Eduardo F. Nakamura, Antonio A. F. Loureiro, Azzedine Boukerche, and Albert Y.
Zomaya. Localized algorithms for information fusion in resource-constrained net-
works. Information Fusion, 15:2–4, 2014.

[37] Ahmed Mostefaoui, Mahmoud Melkemi, and Azzedine Boukerche. Routing through
holes in wireless sensor networks. In 15th ACM International Conference on Model-
ing, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’12, Paphos,
Cyprus, October 21-25, 2012, pages 395–402.

[38] Ahmed Mostefaoui, Mahmoud Melkemi, and Azzedine Boukerche. Localized routing
approach to bypass holes in wireless sensor networks. IEEE Trans. Computers,
63(12):3053–3065, 2014.

[39] Mohammed Amine Merzoug, Azzedine Boukerche, Ahmed Mostefaoui, and Samir
Chouali. Spreading aggregation: A distributed collision-free approach for data aggre-
gation in large-scale wireless sensor networks. J. Parallel Distrib. Comput., 125:121–
134, 2019.

[40] Mohammed Amine Merzoug, Ahmed Mostefaoui, and Samir Chouali. Distributed
collision-free data aggregation approach for wireless sensor networks. In 13th IEEE
International Conference on Distributed Computing in Sensor Systems, DCOSS’17,
Ottawa, ON, Canada, June 5-7, 2017, pages 175–182.

[41] Wen-Jiunn Liu and Kai-Ten Feng. Greedy routing with anti-void traversal for wireless
sensor networks. IEEE Trans. Mob. Comput., 8(7):910–922, 2009.

100 BIBLIOGRAPHY

[42] Mohammed Amine Merzoug, Azzedine Boukerche, and Ahmed Mostefaoui. Efficient
information gathering from large wireless sensor networks. Computer Communica-
tions, 132:84–95, 2018.

[43] Mohammed Amine Merzoug, Azzedine Boukerche, and Ahmed Mostefaoui. Serial
in-network processing for large stationary wireless sensor networks. In Proceedings
of the 20th ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems, MSWiM’17, Miami, FL, USA, November 21-25, 2017,
pages 153–160.

[44] Ian F. Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci. Wire-
less sensor networks: a survey. Computer Networks, 38(4):393–422, 2002.

[45] Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. In-network aggrega-
tion techniques for wireless sensor networks: a survey. IEEE Wireless Commun.,
14(2):70–87, 2007.

[46] Hongyu Gong, Luoyi Fu, Xinzhe Fu, Lutian Zhao, Kainan Wang, and Xinbing Wang.
Distributed multicast tree construction in wireless sensor networks. IEEE Trans. In-
formation Theory, 63(1):280–296, 2017.

[47] Long Cheng, Jianwei Niu, Chengwen Luo, Lei Shu, Linghe Kong, Zhiwei Zhao, and
Yu Gu. Towards minimum-delay and energy-efficient flooding in low-duty-cycle wire-
less sensor networks. Computer Networks, 134:66–77, 2018.

[48] Panayiotis Andreou, Andreas Pamboris, Demetrios Zeinalipour-Yazti, Panos K.
Chrysanthis, and George Samaras. ETC: energy-driven tree construction in wire-
less sensor networks. In 10th International Conference on Mobile Data Manage-
ment, MDM’09, Taipei, Taiwan, May 18-20, 2009, pages 513–518.

[49] Qiang Ma, Kebin Liu, Zhichao Cao, Tong Zhu, Xin Miao, and Yunhao Liu. Oppor-
tunistic concurrency: A MAC protocol for wireless sensor networks. IEEE Trans.
Parallel Distrib. Syst., 26(7):1999–2008, 2015.

[50] Daojing He, Sammy Chan, Mohsen Guizani, Haomiao Yang, and Boyang Zhou. Se-
cure and distributed data discovery and dissemination in wireless sensor networks.
IEEE Trans. Parallel Distrib. Syst., 26(4):1129–1139, 2015.

[51] Brad Karp and Hsiang-Tsung Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In Proceedings of the 6th Annual International Conference on
Mobile Computing and Networking, MOBICOM’00, Boston, MA, USA, August 6-11,
2000, pages 243–254.

[52] Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Worst-case optimal and
average-case efficient geometric ad-hoc routing. In Proceedings of the 4th ACM In-
ternational Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc’03,
Annapolis, MD, USA, June 1-3, 2003, pages 267–278.

[53] OMNeT++: Simulation Environment. https://www.omnetpp.org, October 2018.

[54] Castalia: Wireless Sensor Network Simulator. https://github.com/boulis/Castalia,
October 2018.

https://www.omnetpp.org
https://github.com/boulis/Castalia

BIBLIOGRAPHY 101

[55] Wendi B. Heinzelman, Anantha P. Chandrakasan, and Hari Balakrishnan. An
application-specific protocol architecture for wireless microsensor networks. IEEE
Trans. Wireless Communications, 1(4):660–670, 2002.

[56] Joseph Polastre, Jason L. Hill, and David E. Culler. Versatile low power media access
for wireless sensor networks. In Proceedings of the 2nd International Conference on
Embedded Networked Sensor Systems, SenSys’04, Baltimore, MD, USA, November
3-5, 2004, pages 95–107.

[57] Wei Ye, John S. Heidemann, and Deborah Estrin. Medium access control with co-
ordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. Netw.,
12(3):493–506, 2004.

Mohammed A. Merzoug — University of Bejaia 2019.
Contact: amine.merzoug@univ-batna2.dz

Document generated with LATEX and:
1. The LATEX style for Ph.D. Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle
2. The tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

Localized adaptive routing in wireless sensor networks

Abstract a wireless sensor network is made up of a set of small units, called sensor nodes, which can

communicate with one another via direct radio communications or by relays. Sensor nodes are deployed in

order to monitor a particular area of interest by sampling and collecting data (e.g., temperature, humidity,

pressure, etc.). The collected information is subsequently sent to a fusion station for analysis purposes. The

application areas of these networks are numerous in different domains such as military applications, domotics,

health, etc. In reality, the specificities of wireless sensor networks bring many new possibilities but also pose

many challenges in terms of deployment (limited energy resources, self-organization, etc.), coverage

(monitored space), communication (total absence of any network infrastructure), and finally data collection and

processing. In the context of this thesis, we are particularly interested in the general problem of data routing

and fusion in this kind of networks. In fact, due to the inherent constraints of wireless sensor networks (primarily

the very limited energy resources), this task remains particularly arduous despite the numerous works in the

literature.

Keywords wireless sensor networks; distributed algorithms; localized routing; data fusion; query processing.

 كيةــشعار اللاسلــكات الاستــي شبــلي فــمحيفي ـــيه تكــتوج

ى ـادرة علـشعار، القـد الإستـماة عُقـيرة، المسـدات الصغـن الوحـموعة مـن مجـكية مـكة الاستــشعار اللاسلـكون شبـتت ملــخص

راقبة ـشعار لمـد الاستـعقشر ـتن. رةـير المباشـرة أو غـكية المباشـالات اللاسلـالاتص بواسطةض ـضها البعـع بعـواصل مـالت

ال ـإرسبعـد ذلك م ـيت (.الخط، ــوبة، الضغـرارة، الرطـة الحـدرج)ع البيانات ـوجم ناتـذ العيـريق أخـن طـينة عـطقة معـمن

 يـديدة فـكات عـذه الشبـبيق لهــالات التطـمج .ليلــراض التحـلأغ اجـوالإدمميع ــطة التجــى محـمعة إلــلومات المجـالمع

شعار ــكات الاستـيات شبـوصـخص ،الواقعي ـف .الخ، حةـزلية، الصــنيات المنــالتق كرية،ـبيقات العسـثل التطـتلفة مــالات مخـمج

علق ـما يتـة فيـديات خاصـن التحـديد مــالع تطــرح تــوقـس الــي نفـنها فــديدة، ولكــكانات الجـن الامـديد مـلب العـكية تجــاللاسل

ية ـياب التام لأي بنـالغ)الات ـالاتص ،(راقبةـاحة المـالمس)طية ــالتغ ،(ذاتي ، الخـظيم الــدودة، التنـة المحـوارد الطاقـم)ر ــبالنش

امة ــكلة العـاص بالمشـكل خـتمون بشـحن مهـ، نفي سياق هذه الأطروحة .تهاـع البيانات ومعالجـيراً جمـوأخ ،(كةـتية للشبـتح

كات ـي شبـتأصلة فـروضة والمــيود المفـبب القـ، بسالحقيقة يـف .كاتـن الشبـنوع مـذا الـي هـالبيانات ف جـيه ودمــلتوج

رغم ـلى الـغاية عـلل بةـصعلية ـذه العمـقى هــتب ،(ايةـدودة للغـاقة المحـوارد الطـ، مقام الأولـي المـف)كية ــشعار اللاسلـالاست

 .جزةــثية المنــمال البحــن الأعـديد مــن العـم

 .علاماتــالجة الاستــمع ؛ج البياناتــدم؛ ليــيه محـوجـت ؛وزعةـيات مـوارزمـخ ؛كيةـشعار اللاسلـكات الاستـشب دالةـمات الـالكل

Routage localisé et adaptatif dans les réseaux de capteurs sans fil

Résumé un réseau de capteurs sans fil est constitué d’un ensemble de petites unités, appelées nœuds capteurs,

pouvant communiquer les unes avec les autres via des communications radio directes ou par relais. Les nœuds

capteurs sont déployés afin de surveiller une zone d’intérêt particulière par le prélèvement et la collecte de

données (e.g., température, humidité, pression, etc.). Les informations ainsi collectées sont envoyées par la suite

à une station de fusion à des fins d’analyse. Les domaines applicatifs de ces réseaux sont nombreux dans

différents domaines tels que les applications militaires, la domotique, la santé, etc. En réalité, les spécificités des

réseaux de capteurs sans fil amènent de nombreuses possibilités nouvelles mais posent également de

nombreux défis en termes de déploiement (ressources énergétiques limitées, auto-organisation, etc.), de

couverture (espace surveillé), de communication (absence totale de toute infrastructure réseau), et enfin de

collecte et d’exploitation de données. Dans le cadre de cette thèse, nous nous intéressons plus particulièrement

à la problématique générale de routage et de fusion de données dans ce genre de réseaux. En effet, en raison

des contraintes inhérentes aux réseaux de capteurs sans fil (principalement les provisions énergétiques très

limitées), cette tâche demeure particulièrement ardue malgré les nombreux travaux dans la littérature.

Mots-clés réseaux de capteurs sans fil; algorithmes distribués; routage localisé; fusion de données; traitement

de requêtes.

