

Solid Converter PDF

To remove this message, purchase the PDF product at www.SolidDocuments.com

Solid Converter PDF

To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTE

SOLID CONVERTER PD

par la méthode des volumes finis

EQUATIONS DU MOUVEMENT

Composante suivant l'axe x : ($\phi=u$)

Représentation du volume de contrôle -U_e-.

$$\rho u. \frac{\partial u}{\partial x} - \mu. \frac{\partial^2 u}{\partial x^2} + \rho v. \frac{\partial u}{\partial y} - \mu. \frac{\partial^2 u}{\partial y^2} = -\frac{\partial p}{\partial x}$$
$$\frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y} = -\frac{\partial p}{\partial x}$$
$$\begin{cases} J_x = \rho u.u - \mu. \frac{\partial u}{\partial x} \\ J_y = \rho v.u - \mu. \frac{\partial u}{\partial y} \end{cases}$$

Intégration autour de u_e :

 $(\delta x_e.\Delta y)$

$$\implies (J_{Ex} - J_{Px}) \Delta y + (J_{ny} - J_{sy}) \delta x_e = (p_P - p_E) \Delta y$$

$$\begin{cases} J_{Ex} = (\rho u)_E . u_E - \left(\mu . \frac{\partial u}{\partial x}\right)_E \\ J_{Px} = (\rho u)_P . u_P - \left(\mu . \frac{\partial u}{\partial x}\right)_P \\ J_{ny} = (\rho v)_n . u_n - \left(\mu . \frac{\partial u}{\partial y}\right)_n \\ J_{sy} = (\rho v)_s . u_s - \left(\mu . \frac{\partial u}{\partial y}\right)_s \end{cases}$$

This document was created using

SOLID CONVERTER PDF

T

• 0 0

D CONVERTER PDF

B

To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTER

To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTER

S

To remove this message, purchase the PDF > product at www.SolidDocuments.com

SOLID CONVERTER PDF

SOLID CONVERTER

PDF To remove this message, purchase the product at www.SolidDocuments.com

$$\begin{cases} a_E = \rho_e \cdot d_e \cdot \Delta y \\ a_N = \rho_n \cdot d_n \cdot \Delta x \\ a_W = \rho_W \cdot d_W \cdot \Delta y \\ a_S = \rho_s \cdot d_s \cdot \Delta x \\ a_P = a_E + a_W + a_N + a_S \\ b = \left\{ \left(\hat{\rho u} \right)_W - \left(\hat{\rho u} \right)_e \right\} \Delta y + \left\{ \left(\hat{\rho v} \right)_s - \left(\hat{\rho v} \right)_n \right\} \Delta x \end{cases}$$

EQUATION DE LA FONCTION DE COURANT

$$\begin{cases} \frac{\partial \psi}{\partial x} = -\rho.B.v & \to (1) \\ \frac{\partial \psi}{\partial y} = \rho.B.u & \to (2) \end{cases}$$

 $\frac{\text{densité et viscosité dynamique aux interfaces}}{\left\{ \begin{aligned} \mu_e &= f_e.\mu_E + (1 - f_e).\mu_P \\ \rho_e &= f_e.\rho_E + (1 - f_e).\rho_P \end{aligned} \right.} \\ f_e &= \frac{\Delta x}{2.(\delta x_e)} \end{aligned}$

SOLID CONVERTER

To remove this message, purchase the product at www.SolidDocuments.com

*T*₁₅

0

Solid Converter P

SOLID CONVERTE

PDF

OLID CONVERTER

product at www.SolidDocuments.com

SOLID CONVERTER

PDF

Λ	Iodélisation de l'	écoulement au par la mé	ube à aube c éthode des ve	lans un rotor olumes finis	de pompe d	axiale	
	CARACTEI	RISTIQUES	S DE LA P	OMPE DE	RÉFÉRE	ENCE	0
Q=0.5160 m ³ /s. U=8.548 m/s. N=1450 tr/mn. N						r=4. Ns=5	. 。
	CAF	RACTÉRIS	FIQUES C	ÉOMÉTR	IQUES		
		Rotor		Stator			
Rayon (m)	Corde(m)	γ (°)	δ	Corde(n	<i>i</i>) y	′ (°)	δ
R _i =0.0727	0.1569	24.61	1.39	0.1360	20	0.68	1.50
R _m =0.1110	0.1547	52.67	0.89	0.1353	1	6.23	0.97
R _s =0.1517	0.1641	63.33	0.69	0.1564	12	2.57	0.83
Vues 3D d'une aube de rotor calculée avec « POMPAX »							
	Vues 3D d Vues tri	d'une aube de idimension1	stator calcunation	llée avec « Pe aubes de la	OMPAX » pompe.		
	u _e =4.274 m/s			u _{e=} 17.097 m			
Rayon (m) Pas (m)) R _e	q (m^2/s)	R _e	q (m ²	² /s)
R _i =0.0727	7 0.1129	5421	7 0.4	4825	216869	1.93	01
R _m =0.111	0 0.1738	8346	3 0.4	4728	333852	2.97	12
R _s =0.1517	7 0.2378	11419	97 1.0	0164	456790	4.06	54
L	q	: est le débi	t par unité	de profonc	leur.	<u> </u>	

SOLID CONVERTER PDF To remove this message, purchase the product at www.SolidDocuments.com

SOLID CONVERTER PDF

SOLID CONVERTER PDF

R

To remove this message, purchase the PDF product at www.SolidDocuments.com

PDF product at www.SolidDocuments.com

e

B

To remove this message, purchase the product at www.SolidDocuments.com

PDF product at www.SolidDocuments.com

Ē

PDF CONVER

product at www.SolidDocuments.com

Evolution de l'erreur dans la pompe.

Evolution de l'erreur dans le rotor, (γ =52.67 •).

PDF

To remove this message, purchase the

product at www.SolidDocuments.com

 $R=0.1110 m, \mu=0.0089 Kg/m.s, u_e=8.548 m/s.$

SOLID CONVERT

Erreur =
$$\sum_{(i,j)=(1,1)}^{(L1,M1)} (u^k(i,j) - u^{k+1}(i,j))$$

k : représente l'ordre d'une itération.

k+1 : représente l'ordre d'une itération suivante.

e

To remove this message, purchase the product at www.SolidDocuments.com

Solid Converter PDF

To remove this message, purchase the product at www.SolidDocuments.com