Chapter 3 : Conditional Instructions

Chapter 3 : Conditional Instructions

1. Introduction

The instructions of the algorithms seen previously are executed sequentially; they are executed in
the same order of their appearance, 1st, 2nd, 3rd, ... etc.

Often the problems being addressed require the study of several situations or cases that cannot be
represented by the same sequences (groups) of instructions. These are the conditional instructions that
differentiate between these situations based on what is called a condition.

Conditional instructions are classified into three types: simple, alternative, and multiple-choice.

Simple Conditional Structure
General Syntax :

if (Condition) then
G ;
Endif ;

In C language, the simple conditional instruction is written as :

if (Condition) {
IG;

}

Operation of simple conditional instruction :

After the evaluation of the condition (a logical expression with a true or false value), if the condition
is verified, the instruction group "IG” will be executed, and if the condition is not verified, execution
continues with the instruction following "EndIf" without executing the instruction group "IG”.

Note:
The Instruction Group "IG” can contain one or more instructions.

Example:
Let be the problem of determining the absolute value of an integer (or real) number.

Solution:

Analysis of the problem :
e Data : an integer X.
e Results : absolute value of X
e Steps of resolution:

- Reading of the value of the integer X

- Determination of the absolute value of X : we distinguish two cases

1 case : if the integer X is positive, its absolute value is the number itself (X).

Page | 1

https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/in
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/c
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/the
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/simple
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/conditional
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/statement
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/is
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/written
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/as
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/let
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/be
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/the
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/problem
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/of
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/the
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/absolute
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/value
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/of
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/or
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/real
https://dictionary.cambridge.org/fr/dictionnaire/anglais-francais/number

Chapter 3 : Conditional Instructions

2 case : if the integer X is strictly negative, its absolute value is its opposite (-X).

The translation of the resolution steps produces the following algorithm:

Algorithm absolute value integer ;
Var X, abs val X : integer ;

if (X=20) Then
abs val X « X ;
Endif ;
if (X<0) Then
abs val X « -X ;
Endif ;
write ("|",X, "[=",abs val X) ;
End.

Begin
Write ("Give a value of integer X : ") ;
Read (X) ;

The previous algorithm is translated into C language as follows:

include <stdio.h>

main ()

{
int X, abs val X ;
printf ("Give a value of integer X
scanf ("%d", &X) ;

if (x>=0) {
abs val X = X ;
}
if (X<0){
abs val X = -X ;
}
printf ("| %d [= %d\n",X,abs val X) ;

") ;

Remarks :

e If the block contains more than one instruction, then both braces { and } are required to delimit the

sequence of instructions. Braces are optional if there is only one instruction.

e If you place a semicolon just after the condition, the compiler considers the "if" block to be composed of

a single instruction (nothing...).

2.Alternative conditional Instructions :

Genaral syntax :

If (condition) Then
IG 1 ;

else
IG 2 ;

Endif ;

Page | 2

Chapter 3 : Conditional Instructions

In C language, alternative conditional instruction is written in the form :

if (condition) {
IG 1 ;

}

else(
IG 2 ;

Operation of the alternative conditional instruction :

Like the simple conditional statement, we start by evaluating the condition. If this condition is
satisfied (true), the only instruction group that will be executed is 1G_1, and if the condition is not
satisfied (false), only instruction group 1G_2 will be executed.

By using the alternative conditional instruction, the algorithm for absolute value can be written
as follows :

Algorithm absolute value integer ;
Var X, abs val X : integer ;

Begin
Write("Give a wvalue for integer X : ");
Read (X) ;

If (X20) Then
abs val X « X ;
else
abs val X « -X ;
Endif ;
write ("|",X, "[=",abs val X) ;
End.

The previous algorithm is translated into C language as follows :

include <stdio.h>
main ()
{
int X, abs val X ;
printf ("Give a value for integer X :");
scanf ("%d", &X) ;
if (X>=0) {
abs val X

1
>

}

else{
abs val X

-X ;
}
printf ("| %d |= %d\n",X,abs val X) ;

Page | 3

Chapter 3 : Conditional Instructions

3. Multiple Choice Conditional Instruction

The multiple-choice conditional Instruction allows to compare an object (expression) to a serie of
its possible values, and to execute only one instruction group among several, depending on the effective
value of the object. A default instruction group (IG_n+1) can be executed in case the object is different
from all possible values.

Each instruction group is labeled with a corresponding value. Each group will be executed if its
value is equivalent to the value of the expression. The multiple choice conditional instruction is :

According to (expression) do

case vall : IG 1 ;
case val2 : IG 2 ;
case valn : IG n ;

Otherwise : IG n+l ;
EndAccording ;

Operation of the multiple-choice conditional instruction :

After the evaluation of the expression (integer, character or boolean) and according to its value :
if it equals vall (case 1) only the IG_1 instruction group will be executed,

if it equals val2 (case 2) only the IG_2 instruction group will be executed,

if it equals valn (case n) only the IG_n instruction group will be executed,
if it is different to all possible values (vall, val2, ..., valn) only the instruction group of
"otherwise" 1G_n_1 will be executed

Example: Consider a problem of implementing a basic calculator that allows performing the four basic
arithmetic operations (addition, subtraction, multiplication, and division).

Problem Analysis :

e Data:
- Two real numbers, X and Y
- An arithmetic operator.

e Results:
- The value of the arithmetic operation on the two real numbers X and Y.

e Resolution Steps :

- Read the values of X and Y.

- Read the arithmetic operator.

- Apply the operator to the two numbers (X and Y). we distinguish 4 cases:
o If the operator is '+' the result is the sum of the two numbers X and Y (X+Y).
o If the operator is '-' the result is the difference between these two numbers X and Y (X-Y).
o If the operator is "*' the result is the product of the two numbers X and Y (X*Y).
o If the operator is '/* and the number Y is non-zero, the result is the quotient of the division of

X by Y (X/Y).

The translation of the resolution steps produces the following algorithm:

Page | 4

Chapter 3 : Conditional Instructions

")

Operator ")

Algorithm basic calculator ;
Var X,Y,S real ;
Operator char ;
Begin
Write ("Give a two real numbers X and Y: ") ;
Read (X,Y) ;
Write ("Give an arithmetic operator : ") ;
Read (Operator) ;
According to (Operator) do
case '+’ S « X+Y ;
Write (X,"+",Y,"=",S) ;
case '’ S « X-Y ;
Write (X,"-",Y,"=",S) ;
case ' */ S « X*Y ;
Write (X,"*",Y,"=",S) ;
case '/’ If (Y=0) Then
Write ("Error division by zero
Else
S« X/Y ;
Write (X,"/",Y,"=",S3) ;
EndIf ;
Otherwise
Write ("Error ",Operator, "it’s not an arithmetic
EndAccording ;
End.

The previous algorithm is translated to C language as follows :

include <stdio.h>
main ()
{
float X,Y,S ;
char Operator ;

printf ("Give a two real numbers X and Y: ") ;

scanf ("%f£%f", &X,&Y) ;

printf ("Give an arithmetic operator : ") ;

scanf (" %c", &Operator) ;

switch (Operator) {
case '+’ S= X+Y ; printf ("$f+$f=%f\n",X,Y,S);
case -’ : S= X-Y ; printf ("%f-%f=%f\n",X,Y,S);
case ' *’ S= X*Y ; printf ("S$£*$f=%f\n",X,Y,S);
case '/’ if (Y==0) {

printf ("Error

}

else/{

division by zero ");

break;
break;
break;

break;

Page | 5

Chapter 3 : Conditional Instructions

S= X/Y; printf ("$f/%$f=%f\n",X,Y,S); break;

Default
print£ ("Error : %c it’s not an arithmetic operator ", Operator) ;

Notes :
¢ In C language, the expression and values to be chosen must be of type int or char.

e The break instruction ends the execution of the switch instruction (statement) in which
it appears. In case of missed break, the instructions of the following cases will also be

executed.

Page | 6

