<u>Tutorial Serie 1</u>

Objectives : to master the basic instructions (assignment, reading, writing)

Exercise 1

Let the following problems:

- 1. Calculation of the sum of two complex numbers.
- 2. Calculation of the product of two complex numbers.
- 3. Determination of the type of an angle θ expressed in degrees. Knowing that an angle can be :
 - Zero (or Null) ($\theta = 0^\circ$),
 - Acute ($0^{\circ} < \theta < 90^{\circ}$),
 - Right ($\theta = 90^\circ$),
 - Obtuse ($90^{\circ} < \theta < 180^{\circ}$),
 - Straight ($\theta = 180^\circ$),
 - Reflex $(180^{\circ} < \theta < 360^{\circ}),$
 - Complete (or Full) ($\theta = 360^{\circ}$).
- **4.** Deliberation of a group of 20 students by displaying for each student: his name, his first name, his identification number, his average and the decision of the jury of deliberation «Admitted» or «Postponed ». Knowing that:
 - All students in the group follow 4 modules (M1, M2 M3 and M4).
 - The respective coefficients of modules are: 2, 1, 3 and 2.
 - The student is declared «Admitted» if his average is greater than or equal to 10 otherwise is declared «Postponed».

Question:

Identify for each of the above issues:

- The input data,
- The output results
- The main stages (steps) of resolution.

Exercise 2

- **1.** Knowing that a = 4, b = 5, c = -1 and d = 0, evaluate the following logical expressions:
 - $a < b AND c \ge d$
 - **NOT** (a < b) **OR** $c \neq b$
 - **NOT** $(a \neq b^2)$ **AND** $a^*c < d$
- **2.** Knowing that: A= TRUE, B=FALSE, C= TRUE; evaluate the following logical expressions:
 - A OR B AND A OR C
 - NOT (A) AND B OR A AND NOT (B)
 - A AND B AND B AND C OR C AND A
 - A AND B OR B AND C ET C AND A
 - A OR A AND B AND A OR B AND C
- **3.** Knowing that A=3, B=4, X=3.0, Y= -1.0, C='K' and F=False. Indicate the evaluation order and the value of each of the following expressions:
 - -X*A+Y,
 - B-A/Y+2,
 - 4+A*4-B+A+2 4/Y-9+6*3,

- B-2/Y/3/2*5*X-4 2,
- F AND NOT (C<'A'),
- $X \leq Y$ **OR** A > B,

Exercise 3

These are the following algorithms:

Algorithm Algo_01;	Algorithm Algo_02;
Var A, B, C: integer ;	Var A, B, C: integer ;
D: Boolean;	D: Boolean;
Begin	Begin
A ← 5;	Read (A);
$B \leftarrow 6$;	Read (B);
$C \leftarrow A + B^*2 + 3;$	$C \leftarrow A + B^{*}2 + 3;$
$D \leftarrow (C \mod A) < (C \dim B);$	$D \leftarrow (C \mod A) < (C \dim B);$
Write (A,B,C,D);	Write (A,B,C,D);
End.	End.
End.	End.
End. Algorithm Algo_03;	End. Algorithm Algo_04;
End. Algorithm Algo_03; Var x, y: real;	End. Algorithm Algo_04; Var x, y: real;
End. Algorithm Algo_03; Var x, y: real; Begin	End. Algorithm Algo_04; Var x, y: real; Begin
End. Algorithm Algo_03; Var x, y: real; Begin $x \leftarrow 10;$	End. Algorithm Algo_04; Var x, y: real; Begin Read (s);
End. Algorithm Algo_03; Var x, y: real; Begin $x \leftarrow 10;$ $y \leftarrow x * 2;$	End.Algorithm Algo_04;Var x, y: real;BeginRead (s); $y \leftarrow x * 2;$
End. Algorithm Algo_03; Var x, y: real; Begin x ← 10; y ← x * 2; Write (x, " *2= ", y);	End. Algorithm Algo_04; Var x, y: real; Begin Read (s); y ← x * 2; Write (x, " *2= ", y);

Questions:

- 1. Perform the trace of the algorithms Algo_01 and Algo_02.
- 2. What results does the Algo_03 algorithm produce.
- **3.** What results does the Algo_04 algorithm produce.
- **4.** What is the relationship between the last two algorithms.

Exercise 4

These are the following expressions "Exp1, Exp2 and Exp3":

$$Exp1 = \frac{5(a - cd)^2 - 3bc}{2be + ac}$$

$$Exp2 = \frac{-a + 3 - 5 * \frac{b}{c}}{\frac{2c}{d} - \frac{2c - 3}{b}}$$

$$Exp3 = a + b - c - \frac{a + c * d - b + 5}{d + \frac{c}{2}}$$

Without mathematical simplifications, write instructions equivalent to the previous expressions.

Exercise 5

Write **an algorithm and its C program** that allows to calculate and display the square and the double of an integer introduced by the user.

Exercise 6

Writing **an algorithm** and its **C program** qui can read three (3) real numbers and calculate and display their sum, their product and their average.

Exercise 7 -optional-

Let the following algorithm :

Algorithm Algo_05 ;
Var A, B : entier ;
Begin
Read (A);
Read (B);
$A \leftarrow B;$
$B \leftarrow A;$
Write (A,B);
End.

Questions:

- **1.** Perform the trace of the Algo_05 algorithm by entering 5 and 10 as values of A and B.
- 2. Can the algorithm instructions exchange the two values of B and A?
- **3.** Reverse the order of the instructions (A \leftarrow B;) and (B \leftarrow A;) and perform the trace of the new algorithm.
- **4.** If the value exchange problem of A and B is not resolved, propose an algorithm to solve this problem.

Exercise 8 -optional-

Let A, B and C be three points in the plane defined by their coordinates $A(x_A, y_A)$, $B(x_B, y_B)$ and $C(x_C, y_C)$. Write an algorithm that determines and displays the nature of the ABC triangle.

(An ABC triangle is either isosceles, equilateral or any.)