Tutorial Serie 1

Objectives : to master the basic instructions (assignment, reading, writing)

Exercise 1

Let the following problems:

1. Calculation of the sum of two complex numbers.
2. Calculation of the product of two complex numbers.
3. Determination of the type of an angle θ expressed in degrees. Knowing that an angle can be :

- Zero (or Null) $\left(\theta=0^{\circ}\right)$,
- Acute ($0^{\circ}<\theta<90^{\circ}$),
- Right ($\theta=90^{\circ}$),
- Obtuse $\left(90^{\circ}<\theta<180^{\circ}\right)$,
- Straight $\left(\theta=180^{\circ}\right)$,
- Reflex $\left(180^{\circ}<\theta<360^{\circ}\right)$,
- Complete (or Full) $\left(\theta=360^{\circ}\right)$.

4. Deliberation of a group of 20 students by displaying for each student: his name, his first name, his identification number, his average and the decision of the jury of deliberation «Admitted» or «Postponed». Knowing that:

- All students in the group follow 4 modules (M1, M2 M3 and M4).
- The respective coefficients of modules are: 2,1,3 and 2 .
- The student is declared «Admitted» if his average is greater than or equal to 10 otherwise is declared «Postponed».

Question:

Identify for each of the above issues:

- The input data,
- The output results
- The main stages (steps) of resolution.

Exercise 2

1. Knowing that $\mathrm{a}=4, \mathrm{~b}=5, \mathrm{c}=-1$ and $\mathrm{d}=0$, evaluate the following logical expressions:

- $a<b$ AND $c \geq d$
- NOT $(a<b)$ OR $c \neq b$
- NOT $\left(a \neq b^{\wedge} 2\right)$ AND $a^{*} c<d$

2. Knowing that: $\mathrm{A}=\mathrm{TRUE}, \mathrm{B}=\mathrm{FALSE}, \mathrm{C}=\mathrm{TRUE}$; evaluate the following logical expressions:

- A OR B AND A OR C
- NOT (A) AND B OR A AND NOT (B)
- A AND B AND B AND C OR C AND A
- A AND B OR B AND C ET C AND A
- A OR A AND B AND A OR B AND C

3. Knowing that $\mathrm{A}=3, \mathrm{~B}=4, \mathrm{X}=3.0, \mathrm{Y}=-1.0, \mathrm{C}={ }^{\prime} \mathrm{K}$ ' and $\mathrm{F}=\mathrm{False}$.

Indicate the evaluation order and the value of each of the following expressions:

- $-\mathrm{X} * \mathrm{~A}+\mathrm{Y}$,
- $\mathrm{B}-\mathrm{A} / \mathrm{Y}+2$,
- $4+\mathrm{A} * 4-\mathrm{B}+\mathrm{A}+24 / \mathrm{Y}-9+6 * 3$,
- $\mathrm{B}-2 / \mathrm{Y} / 3 / 2 * 5 * \mathrm{X}-42$,
- F AND NOT (C<'A'),
- $\mathrm{X} \leq \mathrm{Y}$ OR $\mathrm{A}>\mathrm{B}$,

Exercise 3

These are the following algorithms:

```
Algorithm Algo_01;
Var A, B, C: integer ;
    D: Boolean;
Begin
    \(\mathrm{A} \leftarrow 5\);
    \(\mathrm{B} \leftarrow 6\);
    \(\mathrm{C} \leftarrow \mathrm{A}+\mathrm{B} * 2+3\);
    \(\mathrm{D} \leftarrow(\mathrm{C} \boldsymbol{\operatorname { m o d }} \mathrm{A})<(\mathrm{C} \operatorname{div} \mathrm{B}) ;\)
    Write (A,B,C,D);
End.
```

```
Algorithm Algo_02;
Var A, B, C: integer ;
    D: Boolean;
Begin
    Read (A);
    Read (B);
    \(\mathrm{C} \leftarrow \mathrm{A}+\mathrm{B} * 2+3\);
    \(D \leftarrow(C \bmod A)<(C \operatorname{div} B) ;\)
    Write (A,B,C,D);
End.
```

```
Algorithm Algo_03;
Var x, y: real;
Begin
    \(\mathrm{x} \leftarrow 10\);
    \(\mathrm{y} \leftarrow \mathrm{x} * 2\);
    Write (x, " *2= ", y);
End.
```

```
Algorithm Algo_04;
Var x, y: real;
Begin
    Read (s);
    \(\mathrm{y} \leftarrow \mathrm{x} * 2\);
    Write (x, " *2= ", y);
End.
```


Questions:

1. Perform the trace of the algorithms Algo_01 and Algo_02.
2. What results does the Algo_03 algorithm produce.
3. What results does the Algo_04 algorithm produce.
4. What is the relationship between the last two algorithms.

Exercise 4

These are the following expressions ' $\operatorname{Exp} 1, \operatorname{Exp} 2$ and $\operatorname{Exp} 3 ":$

$$
\begin{aligned}
& \operatorname{Exp} 1=\frac{5(a-c d)^{2}-3 b c}{2 b e+a c} \\
& \boldsymbol{E x p} 2=\frac{-a+3-5 * \frac{b}{c}}{\frac{2 c}{d}-\frac{2 c-3}{b}} \\
& \boldsymbol{E x p} 3=a+b-c-\frac{a+c * d-b+5}{d+\frac{c}{2}}
\end{aligned}
$$

Without mathematical simplifications, write instructions equivalent to the previous expressions.

Exercise 5

Write an algorithm and its C program that allows to calculate and display the square and the double of an integer introduced by the user.

Writing an algorithm and its C program qui can read three (3) real numbers and calculate and display their sum, their product and their average.

Exercise 7 -optional-

Let the following algorithm :

```
Algorithm Algo_05;
Var A,B : entier ;
Begin
    Read (A);
    Read (B);
    A}\leftarrow\textrm{B}
    B}\leftarrow\textrm{A}
    Write (A,B);
End.
```


Questions:

1. Perform the trace of the Algo_05 algorithm by entering 5 and 10 as values of A and B.
2. Can the algorithm instructions exchange the two values of B and A ?
3. Reverse the order of the instructions $(A \leftarrow B ;$) and ($B \leftarrow A$;) and perform the trace of the new algorithm.
4. If the value exchange problem of A and B is not resolved, propose an algorithm to solve this problem.

Exercise 8 -optional-

Let A, B and C be three points in the plane defined by their coordinates $\mathrm{A}\left(\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}\right), \mathrm{B}\left(\mathrm{x}_{\mathrm{B}}, \mathrm{y}_{\mathrm{B}}\right)$ and $\mathrm{C}\left(\mathrm{x}_{\mathrm{C}}, \mathrm{y}_{C}\right)$.
Write an algorithm that determines and displays the nature of the ABC triangle.
(An ABC triangle is either isosceles, equilateral or any.)

