
Introduction
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1.1 Complexity

• Definition of an algorithm: is a sequence of computational steps that 
transforms input into output."

• Definition of the complexity of an algorithm: is the number of 
elementary operations it must perform to complete a calculation based on 
the size of the input data.

• Definition of Algorithm Efficiency: The efficiency of an algorithm is 
measured by the increase in computation time as a function of data size.
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Data size

• The size of the data (or of the inputs) will depend on the coding of these inputs.

• For example, depending on the problem, the inputs and their sizes can be:

• Elements: number of elements

• Numbers: number of bits necessary for the representation of these;

• Polynomials: the degree, the number of nonzero coefficients;

• Matrices: max(m , n), m . n, m + n;

• Graphs: number of vertices, number of arcs, product of the two;

• Lists, tables, files: number of boxes, elements;

• Words: their length.
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Calculation time

The calculation time of a program depends on several elements:

• The amount of data.

• Their encoding;

• The quality of the code generated by the compiler;

• The nature and speed of language instructions;

• The quality of programming;

• The efficiency of the algorithm.
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• The complexity of the algorithms studied will depend neither on the 
computer, nor on the language used, nor on the programmer, nor on the 
implementation quite simply, it depends on a number of fundamental 
operations.

• The fundamental operations depend on the problem to be solved.

Table 1: fundamental operations according to the problems
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Problem Fundamental operation

Searching for an item in a list Comparison

Sorting a list, a file, ... Comparisons, displacements 

Multiplication of real matrices Multiplications and additions 

Addition of binary integers Binary operation



1.2 Cost of operations

For the time complexity, there are several possibilities:

• First possibility: calculate (as a function of n) the number of 
elementary operations (addition, comparison, assignment, etc.) 
required by the execution then multiply it by the average time for each 
of them;

• For an algorithm with essentially numerical calculations, count the 
costly operations (multiplications, root, exponential, etc.).

• Otherwise count the number of calls to the most frequent operation.

6



1.2.1 Sequential cost
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• Sequence :
• Alternative:  if C then J else K : 
• Bounded iteration: for i from j to k do B  :                                                                  

where the header is put the index assignment and the continuation test 
• Unbounded iteration: while C do B :                                                       with                 

the number of loops which is evaluated by inductive method
• Repeat B until C : 

( ) ( )sequence elements of sequenceT n T n= : :

( ) ( ) max( ( ), ( ))C J KT n T n T n T n= +

( ) ( 1)( ( ) ( )) ( )header B headerT n k j T n T n T n= − + + +

( ) .( ( ) ( )) ( )loops B C CT n NB T n T n T n= + + 𝑁𝐵𝑙𝑜𝑜𝑝𝑠

( ) .( ( ) ( ))loops B CT n NB T n T n= +



1.2.2 Recursive cost

The recursive method uses three steps at each level of the recursion:

• Divide the problem into a number of sub-problems;

• Rule over sub-problems by solving them recursively. If the size of the 
subproblem is small enough, it is solved immediately;

• Combine the solutions of the sub-problems to produce the solution 
of the original problem.
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1.3 The different measures of complexity

• Let A be an algorithm, n an integer, Dn the set of inputs of size n , an input d
∈ Dn and costA(d ) the number of fundamental operations performed by A
with input d .

• Best case Complexity : 

• Worst case complexity:

• The average case complexity : 

Where p(d) is probabilistic distribution law of inputs.

for example: for uniform distribution law: 
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 min cos ( ) /A A nMin t d d D= 

 max cos ( ) /A A nMax t d d D= 

( ) ( ).cos ( )
n

A proba dist law A
d D

Avg n p d t d


=  : :

1
( ) cos ( )

( ) n

A A
d Dn

Avg n t d
card D 

= 



1.4 Comparison between algorithms

• to compare two algorithms, we will compare their growth rate or 
order of magnitude i.e. the execution time of the algorithm for a large 
number of data (inputs).

• An algorithm is more efficient than another if its worst-case running 
time has a lower order of magnitude.

• For the measurement of the complexity the notation O (Notation of 
Landau or big O) is often used.
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1.4.1 Properties of big O

• If f(n) ∈ O(g(n)), then k.f(n) ∈ O(g(n)) 

• In particular, if a.b∈O(1) then an+b∈O(an)

• If e(n) ∈ O(g(n)) and f(n) ∈ O(h(n)) and if g(n) ∈ O(h(n)) then e(n)+ f(n) ∈ O(h(n))

• Particularly, 

• If e(n) ∈ O(g(n)) and f(n) ∈ O(h(n)), then e(n)f(n) ∈ O(g(n)h(n))

• Lower bound (big Omega Ω): f(n) ∈ Ω(g(n)) if g(n) ∈ O(f(n))

• Upper and lower bound (theta Θ): f(n) ∈ Θ(g(n)) if f(n)∈ O(g(n))∩Ω(g(n))
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Illustration : Graphical definition of the different notations used in the calculation of complexity
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1.5 Classification of algorithms
Complexity Description

O(1) Complexity
Constant time complexity

Execution does not depend on the number of input elements but always takes 
place in a constant number of operations

O(log(n)) Complexity
Logarithmic complexity

The execution time increases slightly with n . This scenario occurs when the size of 
the problem is divided by a constant entity at each iteration.

O(n) Complexity
Linear complexity

This is typically the case of a program with a loop from 1 to n and the body of the 
loop performs work of constant duration and independent of n .

O(n log(n)) Complexity
n-logarithmic complexity

Occurs in algorithms where at each iteration the size of the problem is divided by a 
constant with each time a linear path of the data (ex: the "quick sort" sorting 
algorithm)

O(n2) Complexity
Quadratic complexity

Typically this is the case of algorithms with two nested loops each ranging from 1 
to n and with the body of the internal loop which is constant.

O(n3) Complexity
Cubic complexity

A three nested loops algorithm.

O(np) Complexity
Polynomial complexity

All the previous complexities are included in this one. An algorithm is said to be 
practicable, efficient if it is polynomial.

O(2n) Complexity
Exponential complexity

Algorithms of this kind are called "naive" because they are inefficient and 
unusable as soon as n exceeds 50. 13



1.5.1 Complexity of a problem

• The complexity of a problem A is the complexity of the best algorithm 
that solves A.
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Problem Algorithm name Complexity

Array element access Element access in integer array 0(1) 

Search in sorted array Binary search 0(log(n))

Search in unsorted array Unsorted search 0(n)

Sorting array
Quick sort 0(n log(n))

Bubble sort 0(n2) 

Multiplication of matrices Square matrix multiplication 0(n3 ) 

Traveling salesman Exhaustive search 0(2n) 
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