TD $\mathrm{N}^{\circ} 2$

Exercise 1 :

1) Calculate the complexity of the following unary addition algorithm:

We define two basic operations: ++ and --. If a is a string of ones, then a++ is formed from a by appending a ' 1 ' to a , while $\mathrm{a}-$ - is formed from a by deleting a ' 1 ' from the end of a.

```
Algorithm Unary integer addition.
Input: integers }a\geqb\geq0\mathrm{ encoded in unary.
Output:}a+b\mathrm{ in unary.
Algorithm:
while }b\not=
    a\leftarrowa++
    b\leftarrowb--
end-while
output a
```

2) Calculate the complexity of the following binary addition algorithm:
sum : $\{0,1\} \times\{0,1\} \times\{0,1\} \rightarrow\{0,1,2,3\}, \quad \operatorname{sum}(a, b, c)=a+b+c$.
```
Algorithm 2.3 Binary integer addition.
Input: integers \(a \geq b \geq 0\) encoded in binary as \(a_{n} \cdots a_{1}\) and \(b_{n} \cdots b_{1}\).
Output: \(a+b\) in binary.
Algorithm:
\(c \leftarrow 0\)
for \(i=1\) to \(n\)
    if sum \(\left(a_{i}, b_{i}, c\right)\) equals 1 or 3
        then \(d_{i} \leftarrow 1\)
        else \(d_{i} \leftarrow 0\)
    if \(\operatorname{sum}\left(a_{i}, b_{i}, c\right) \geq 2\)
        then \(c \leftarrow 1\)
        else \(c \leftarrow 0\)
next \(i\)
if \(c=1\)
    then output \(1 d_{n} d_{n-1} \cdots d_{1}\)
    else output \(d_{n} d_{n-1} \cdots d_{1}\).
```

3) Is the binary addition algorithm more efficient than the unary one?

Exercise 2:

Consider the following primality test algorithm:

```
Algorithm Naive Primality Testing.
Input: an integer \(N \geq 2\).
Output: true if \(N\) is prime and false otherwise.
Algorithm:
\(D \leftarrow 2\)
\(P \leftarrow\) true
while \(P\) is true and \(D \leq \sqrt{N}\)
    if \(D\) divides \(N\) exactly
        then \(P \leftarrow\) false
        else \(D \leftarrow D+1\)
end-while
output \(P\)
```

1) Calculate this complexity.
2) Is it effective? justify by giving an example.

Exercise 3:

1) Give the DTM machine of the "unary addition" algorithm
2) Test for $5+2$ in binary
3) Calculate the time (number of steps) of DTM
4) Give the DTM machine of the "binary addition" algorithm
5) Test for $5+2$ in binary
6) Calculate the time (number of steps) of DTM
7) What is the most efficient machine?

Exercise 4:

Let the graph CLIQUE be a decision problem.

CLIQUE

Input: a graph G of order n and an integer $2 \leq \mathrm{k} \leq \mathrm{n}$.
Question: Does G contain a clique of order k ?

1) Does CLIQUE $\in P$?

Exercise 5:

1) Prove that 2 -SAT $\in P$?

Exercise 6:

1) Consider the multiplication function multi $: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$where multi $(a, b)=a b$ Show that multi \in FP?
2) Consider the divisor function $\operatorname{div}: \mathbb{Z}^{+} \times \rightarrow \mathbb{Z}^{+}$where $\operatorname{div}(a, b)=\lfloor a / b\rfloor$ Show that div \in FP?
3) Consider the exponentiation function $\exp (a, b, c): \mathbb{Z}^{+} \times \mathbb{Z}^{+} \times \mathbb{Z}^{+} \rightarrow \mathbb{Z}_{c}$ where $\exp (a, b, c)=a^{b} \bmod c$
Show that $\exp \in \mathrm{FP}$?
4) 4) Let the function be the greatest common divisor $p g d c: \quad N \times N \rightarrow N$ where $\operatorname{pgcd}(a, b)=\max \{\mathrm{d} \geq 1 \mid \mathrm{d}$ divise a et d divise b$\}$
Show that $p g c d \in \mathrm{FP}$?

Exercise 7:

Prove that $\mathrm{P} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}$?

