PHYSICS 2 T 02

Electostatic Field and Potential

Continuous Distribution

Exercise $\mathbf{N}^{\circ} 1$

In the plan $x O y$, we consider a circular wire with center O, of radius R and axis Oz (Fig1). This wire is uniformly charged with a positive linear density λ.

1. Represent then express the elementary electric field $\boldsymbol{d} \overrightarrow{\boldsymbol{E}}_{\boldsymbol{M}}(\mathbf{z})$ created by an element of length $\overrightarrow{\boldsymbol{d} \boldsymbol{l}}$ of the wire at the point $\mathrm{M}(0,0, \mathrm{z})$.
2. Calculate the total field $\overrightarrow{\boldsymbol{E}}_{\boldsymbol{M}}(\mathbf{z})$ created by this distribution.
3. Trace $\boldsymbol{E}_{\boldsymbol{M}}(\mathbf{z})$, for $\mathrm{z} \geq 0$.

Exercise $\mathbf{N}^{\circ} 2$: A ring with center O and radius R carries a uniform linear density of positive charges $\boldsymbol{\lambda}$ except on an arc of angle $2 \boldsymbol{\alpha}$ (Figure 2).

- Determine the electrostatic field \vec{E} (O) at point O.

Exercise $\mathbf{N}^{\circ} \mathbf{3}$

figure 2

A circular disk of negligible thickness with center O, radius R, carries a uniform surface density of charge $\sigma>0.1$) Calculate the electric field E created by this charge distribution at a point M placed on the axis of revolution of the disk such that $\mathrm{OM}=\mathrm{Z}$. 2) Trace the curve $\mathrm{E}(\mathrm{Z})$, What becomes the expression of E when R increases indefinitely.

Exercise $\mathbf{N}^{\circ} 4$

A round metal of interior radius $\mathbf{R}_{\mathbf{1}}$ and exterior radius $\mathbf{R}_{\mathbf{2}}$ carries a surface charge of density $\boldsymbol{\sigma}$ distributed uniformly between R_{1} et R_{2} (figure 3).

1- Calculate the electrostatic field \vec{E} created by this charge distribution at point M located on the axis of revolution at a distance \mathbf{Y} from its center \mathbf{O} ($\mathrm{OM}=\mathrm{Y}$).
2- What becomes the expression of the field \vec{E} :

- When $R_{1}=0$. Trace its curve
- When $R_{1} \rightarrow 0$ and $R_{2} \rightarrow \infty$. Trace its curve.
(Figure 3)

