PHYSICS 2 T 02

Electostatic Field and Potential

Continuous Distribution

Exercise N°1

In the plan xOy, we consider a circular wire with center O, of radius R and axis Oz (Fig1). This wire is uniformly charged with a positive linear density λ .

- **1.** Represent then express the elementary electric field $d\vec{E}_M(z)$ created by an element of length \vec{dl} of the wire at the point M(0,0,z).
- **2.** Calculate the total field $\vec{E}_M(z)$ created by this distribution.
- **3.** Trace $E_M(z)$, for $z \ge 0$.

Exercise N°2: A ring with center O and radius R carries a uniform linear density of positive charges λ except on an arc of angle 2α

(Figure 2).

- Determine the electrostatic field \vec{E} (O) at point O.

Exercise N°3

Exercise N°4

A round metal of interior radius R_1 and exterior radius R_2 carries a surface charge of density σ distributed uniformly between R_1 et R_2 (figure 3).

(σ الخارجي \mathbf{R}_2 و الخارجي \mathbf{R}_2 ذات كثافة (σ عدنية شحنة موزعة بانتظام سطحيا بين القطرين الداخلي \mathbf{R}_1 و الخارجي \mathbf{R}_2 : 1- Calculate the electrostatic field \vec{E} created by this charge distribution at point M located on the axis of revolution at a distance Y from its center O (OM=Y).

2- What becomes the expression of the field \vec{E} :

- When $R_1 = 0$. Trace its curve
- When $R_1 \rightarrow 0$ and $R_2 \rightarrow \infty$. Trace its curve.

 R_1