Chapter 1

Notions of logic

1.1 Logic

1.1.1 Assertion

Definition 1.1. An assertion or proposition is a sentence that is either true or false, not both at the same time. We generally designate an assertion with a capital letter P, Q, R, ...

If an assertion P is true or false, we write

$$\left\{ \begin{array}{l} T(\ or \ 1) \ if \ it \ is \ True \\ F(\ or \ 0) \ if \ it \ is \ false \end{array} \right.$$

The truth table summarizes the two possibility of ${\cal P}$:

P	
Т	
F	

Example 1.1. 1)- 1 + 2 = 3.

- 2)- 3 is negative.
- 3)- What time is it ?

4)- x + y = z.

1) Is a true assertion and 2) is false assertion, 3) and 4) Are not assertions.

1.1.2 The logical connectors

From assertions P, Q, R, \ldots , we can form assertions using the following logical connectors : **negation (no), conjunction(and), disjunction(or), implication, equivalence**. These connectors are defined by their truth table.

(1)- Negation $\ll no \gg$

The negation of an assertion P is an assertion denoted no(P) or \overline{P} , which is true if P is false, and false if P is true.

Example 1.2. 1. We have P: 1+2=3 is true, then $\overline{P}: 1+2\neq 3$ is false.

2. P: f is positive function, then $\overline{P}: f$ is not positive function.

(2)- The logical connector \ll and \gg (conjunction)

Let (P) and (Q) be two assertions.

The **Conjunction** of this two assertions is an assertion denoted by $(P \land Q)$ and reads (P and Q), which is true when the assertions P and Q are both true, and false otherwise.

We summarize this, in a truth table :

P	Q	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

Example 1.3. The assertion $[(1+2=3) \land (3 \text{ is negative })]$ is false.

(3)- The logical connector $\ll or \gg$ (disjunction)

Let (P) and (Q) be two assertions.

The **disjunction** of this two assertions is an assertion denoted by $(P \lor Q)$ and reads (P or Q), which is true when at least one of the two assertions P or Q are true, and false otherwise. We summarize this, in a truth table :

Р	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Example 1.4. The assertion $[(1 + 2 = 3) \lor (3 \text{ is negative})]$ is true.

(4)- The implication $\ll \Rightarrow \gg$

Let (P) and (Q) be two assertions.

The **implication** from P to Q is an assertion denoted $(P \Longrightarrow Q)$ reads (P implique Q) or (ifPthenQ). It is false when (P) is true and (Q) is false, and true otherwise. The mathematical definition of implication is $(\overline{P} \lor Q)$. Its truth table is therefore as follows :

Р	Q	\overline{P}	$\overline{P} \lor Q(P \Longrightarrow Q)$
Т	Т	F	Т
Т	F	F	F
F	Т	Т	Т
F	F	Т	Т

Example 1.5. 1. $0 \le x \le 9 \Longrightarrow \sqrt{x} \le 3$. is true (take the square root).

- 2. $\sin(\theta) = 0 \Longrightarrow \theta = 0$ is false (for $\theta = 2\pi$ for example).
- **Remark 1.1.** 1. In the implication $(P \Longrightarrow Q)$: P is called sufficient condition and Q said necessary condition of implication.
 - 2. In practice, if P, Q and R are three assertions, then :

$$(P \Longrightarrow Q)$$
 and $(Q \Longrightarrow R)$ is written $(P \Longrightarrow Q \Longrightarrow R)$.

(5)- Equivalence $\ll \Rightarrow \gg$

Equivalence is defined by :

 $(P \iff Q)$ is the assertion $[(P \implies Q) \text{ and } (Q \implies P)]$.

We will say (P equivalent to Q) or (P if and only if Q). This assertion is true when P and Q are true or when P and Q are false. The truth table is :

Р	Q	\overline{P}	\overline{Q}	$P \Longrightarrow Q(\overline{P} \lor Q)$	$Q \Longrightarrow P(\overline{Q} \lor P)$	$(P \Longrightarrow Q) \land (Q \Longrightarrow P)(P \Longleftrightarrow Q)$
Т	Т	F	F	Т	Т	Т
Т	F	F	Т	\mathbf{F}	Т	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т

Example 1.6. 1. $x + 2 = 0 \iff x = -2$. is true.

2. For $x, x' \in \mathbb{R}$, $x \cdot x' = 0 \iff (x = 0 \text{ or } x' = 0)$ is true.

Remark 1.2.

In practice, if P, Q and R are three assertions, then :

 $(P \iff Q)$ and $(Q \iff R)$ is noted $(P \iff Q \iff R)$.

Proposition 1.1. Let P, Q and R three assertions.

We have the following equivalences:

- 1. $(P \land Q) \iff (Q \land P)$ (commutativity of and).
- 2. $(P \lor Q) \iff (Q \lor P)$ (commutativity of or).
- 3. $(\overline{P \land Q}) \iff (\overline{P} \lor \overline{Q}) (\text{ morgan's laws }).$
- 4. $\overline{(P \lor Q)} \iff (\overline{P} \land \overline{Q}) \text{ (morgan's laws).}$
- 5. $\overline{\overline{P}} \iff P$.
- $6. \ (P \land P) \Longleftrightarrow P.$
- $7. \ (P \lor P) \Longleftrightarrow P.$
- 8. $[(P \land Q) \land R] \iff [P \land (Q \land R)]$ (associativity of and).
- 9. $[(P \lor Q) \lor R] \iff [P \lor (Q \lor R)]$ (associativity of or).

10. $[(P \land Q) \lor R] \iff [(P \lor R) \land (Q \lor R)]$ (distributiveness of and with respect to or).

- 11. $[(P \lor Q) \land R] \iff [(P \land R) \lor (Q \land R)]$ distributiveness of or with respect to and).
- 12. $\overline{(P \Longrightarrow Q)} \iff (P \land \overline{Q}).$
- 13. $(P \Longrightarrow Q) \iff (\overline{Q} \Longrightarrow \overline{P})$ (principe of contraposition).
- 14. $(P \iff Q) \iff (P \implies Q \land Q \implies P).$

preuve 1.1. We prove proposition (12).

P	Q	\overline{Q}	$P \Longrightarrow Q$	$\overline{P \Longrightarrow Q}$	$P\wedge \overline{Q}$	$\overline{(P \Longrightarrow Q)} \Longleftrightarrow (P \land \overline{Q})$
T	Т	F	T	F	F	Т
T	F	Т	F	Т	T	Т
F	Т	F	Т	F	F	Т
F	F	Т	Т	F	F	Т

1.1.3 Quantifiers

In mathematic, we often use expressions of the form : " for everything,...", whatever...", "there exists at least...", " there exist only one...".

This expressions specify how the elements of a set can satisfy a certain property. These expressions are called **quantifiers**.

There are two types of quantifiers :

(1)- The universal quantifier $\ll \forall \gg$

The expression " for all x of E such that P(x) is written mathematically "

 $\forall x \in E, P(x)$

To express that the assertion P(x) is true for all elements x of E.

Example 1.7. P(x): The function f is zero for all $x \in \mathbb{R}$ becomes :

$$P(x): \forall x \in \mathbb{R}, \ f(x) = 0.$$

(2)-The existential quantifier $\ll \exists \gg$

The expression "There existe x of E such that P(x) " is written mathematically " $\exists x \in E$, P(x)" to express that the assertion P(x) is true for at least one x of E. Example 1.8. P(x): The function f vanishes at x_0 becomes :

$$P(x): \exists x_0 \in \mathbb{R}, \ f(x_0) = 0.$$

Remark 1.3. The expression "There exists a unique x of E such that P(x) "i.e a unique x, written mathematically " $\exists ! x \in E, P(x)$ " to express that the assertion P(x) is true for a unique value x of E.

Remark 1.4. We can construct assertions with several quantifiers. In this cas, we will take care of the order of these quantifiers, for example the two logical sentences

 $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y > 0 \text{ and } \exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y > 0$

are different. The first is true because y can depend on x(y = 1 - x). On the other hand the second is false (x = -y).

- The negation of quantifiers

Let P(x) be a proposition,

- 1. The negation of $\forall x \in E, P(x)$ is: $\exists x \in E, \overline{P(x)}$.
- 2. The negation of $\exists x \in E, P(x)$ is: $\forall x \in E, \overline{P(x)}$.

Example 1.9. 1. The negation of $(\forall x \in [1, +\infty[, x^2 \ge 1) \text{ is: } (\exists x \in [1, +\infty[, x^2 < 1).$

2. The negation of $(\forall x \in \mathbb{R}, \exists y > 0: x + y > 0)$ is: $(\exists x \in \mathbb{R}, \forall y > 0: x + y \le 0)$.

1.2 Reasoning methods

To show that $(P \Longrightarrow Q)$ is true, we can use the following classical reasoning methods:

1.2.1 Direct Reasoning

We assume that P is true and we prove that Q is also true.

Example 1.10. Let us show that for $n \in \mathbb{N}$ if n is even $\implies n^2$ is even. We assume that n is even, *i.e.*, $\exists k \in \mathbb{N}$, n = 2k then

$$n.n = 2(2k^2) \Longrightarrow n^2 = 2k',$$

We pose $k' = 2k^2 \in \mathbb{N}$ thus $\exists k' \in \mathbb{N}$, $n^2 = 2k'$, n^2 is even, hence the result.

1.2.2 Case by case reasoning

If you want to check $\forall x \in E : P(x)$. We show $\forall x \in A : P(x)$ and $\forall x \in \overline{A} : P(x)$ where A part of E.

Example 1.11. Demonstrate that $\forall n \in \mathbb{N} \Longrightarrow \frac{n(n+1)}{2} \in \mathbb{N}$.

 $\begin{array}{l} \cos 1: n \text{ is even, } \exists k \in \mathbb{N} \text{ such that } n = 2k \Longrightarrow \frac{2k(2k+1)}{2} = k(2k+1) \in \mathbb{N}.\\ \cos 2: n \text{ is odd, } \exists k \in \mathbb{N} \text{ such that } n = 2k+1 \Longrightarrow \frac{(2k+1)(2k+1)+1}{2} = \frac{(2k+1)(2k+2)}{2} = (2k+1)(2k+1) \in \mathbb{N}. \end{array}$

Conclusion in any case $\forall n \in \mathbb{N} \Longrightarrow \frac{n(n+1)}{2} \in \mathbb{N}$.

1.2.3 Reasoning by the contrapositive

Knowing that $(P \Longrightarrow Q) \iff (\overline{Q} \Longrightarrow \overline{P})$, to show that $(P \Longrightarrow Q)$ we use the contrapositive, that's to say it is enough to show that $\overline{Q} \Longrightarrow \overline{P}$ directly, we assume that \overline{Q} is true and we show that \overline{P} is true.

Example 1.12. Let $n \in \mathbb{N}$. Show that n^2 is even $\implies n$ is even.

We assume that n is not even. We want to show that n^2 is not even. n is not even, it is odd then $\exists k \in \mathbb{N}: n = 2k + 1 \implies n^2 = 2l + 1$ et $l = 2k^2 + 2k \in \mathbb{N}$. and then n^2 is not even. By contrapositive this is equivalent to if n^2 is even $\implies n$ is even.

1.2.4 Reasoning by the absurd

To show that an assertion R is true by the absurd, we assume that \overline{R} is true and we show that we then obtain a contradiction. Thus, to show by the absurd, the implication $P \Longrightarrow Q$, we assume both P is true and that Q is false (i.e., $P \Longrightarrow Q$ is false) and we look for a contradiction. **Example 1.13.** Let n be a natural number. Let show by the absurd that if 3n + 2 is odd \Longrightarrow n is odd.

Suppose that 3n + 2 is odd and n is even.

n is even then $\exists k \in \mathbb{N}$: $n = 2k \implies 3n + 2$ is even, we thus obtain that 3n + 2 is even and 3n + 2 is odd, contradiction.

1.2.5 Counter example

To show that a proposition is false, it is enough to give what is called a counter example, that is to say a particular case for which the proposition is false.

Example 1.14. The proposition (n is an even number) \implies (n²+1 is even), false because for n = 2, 4 + 1 = 5 is not even, it is a counter-example.

1.2.6 Reasoning by recurrence

To show that $\forall n \in \mathbb{N}, n \ge n_0, P(n)$ is true, we follow three steps:

- 1. Initialization: We show that $P(n_0)$ is true.
- 2. Heredity: We assume that P(n) is true for $n \ge n_0$ and demonstrate that P(n+1) is true.
- 3. Conclusion: By the principe of recurrence $\forall n \in \mathbb{N}, P(n)$ is true.

Example 1.15. Show that $\forall n \in \mathbb{N} : 2^n \ge n$.

Let us denote by P(n) the following assertion $\forall n \in \mathbb{N} : 2^n \ge n$. We will prove by recurrence that P(n) is true.

- 1. Initialization: $P(0): 2^0 = 1 \ge 0$ is true.
- 2. Heredity: Suppose that P(n) is true. We will show that P(n+1) is also true.

We have:

$$2^{n+1} = 2^n \times 2$$

= $2^n + 2^n$
> $n + 2^n (we have $2^n \ge n)$
> $n + 1 (we have $2^n \ge 1)$$$

3. Conclusion: by the Principe of recurrence P(n) is true $\forall n \in \mathbb{N} : 2^n \ge n$.