Chapter 1

Notions of logic

1.1  Logic

1.1.1 Assertion

Definition 1.1. An assertion or proposition is a sentence that is either true or false, not both

at the same time. We generally designate an assertion with a capital letter P,Q, R, ....

If an assertion P is true or false, we write

(‘or 1) if it is True
F( or0) if it is false

The truth table summarizes the two possibility of P :

P

Example 1.1. 1)- 1+2=3.
2)- 3 is negative.

3)- What time is it ?



4)- x+y==z.

1) Is a true assertion and 2) is false assertion , 3) and 4) Are not assertions.

1.1.2 The logical connectors

From assertions P, @, R, ..., we can form assertions using the following logical connectors
: negation (no), conjunction(and), disjunction(or), implication, equivalence. These
connectors are defined by their truth table.

(1)- Negation < no >

The negation of an assertion P is an assertion denoted no(P) or P, which is true if P is

false, and false if P is true.

F

Example 1.2. 1. We have P : 1+ 2 =3 is true, then P: 1+ 2 # 3 is false.

2. P : f is positive function, then P : f is not positive function.

(2)- The logical connector < and > (conjunction)

Let (P) and (Q) be two assertions.
The Conjunction of this two assertions is an assertion denoted by (PAQ) and reads (P and Q),
which is true when the assertions P and () are both true, and false otherwise.

We summarize this, in a truth table :

PlQ|PAQ




Example 1.3. The assertion [(1 4+ 2 = 3) A (3 is negative )] is false.

(3)- The logical connector < or > (disjunction)

Let (P) and (Q) be two assertions.
The disjunction of this two assertions is an assertion denoted by (P V @) and reads (P or Q),
which is true when at least one of the two assertions P or () are true, and false otherwise.

We summarize this, in a truth table :

PlQ|PvQ
F
F| F

Example 1.4. The assertion [(1 42 = 3) V (3 is negative)| is true.

(4)- The implication <=—=>>

Let (P) and (Q) be two assertions.
The implication from P to @ is an assertion denoted (P = () reads (P implique Q)) or
(if Pthen@). 1t is false when (P) is true and (@) is false, and true otherwise. The mathemati-
cal definition of implication is (P V Q). Its truth table is therefore as follows :

PIQ|P|PvQPr=Q)
F
F|F F
F
F|F

Example 1.5. 1. 0 <2z <9= /x <3.is true ( take the square root).



2. sin(f) =0 =0 =0 is false( for 0 = 27 for example).

Remark 1.1. 1. In the implication ( P = Q): P is called sufficient condition and

Q said mecessary condition of implication.

2. In practice, if P,Q) and R are three assertions, then :

(P = Q) and (Q = R) is written (P = Q = R).

(5)- Equivalence <<=>>

Equivalence is defined by :
(P <= Q) is the assertion [(P = @) and (Q = P)|.

We will say (P equivalent to Q) or (P if and only if Q). This assertion is true when Pand

are true or when Pand () are false. The truth table is :

PIQIPIQIP=QPVQ) | Q=PQRVP)| (P=Q)ANQ=P)(P Q)
F|F
F|F F
F F F
F|F

Example 1.6. 1. 24+2=0<+= 2= -2.1is true.
2. Forz,2' e R, -2/ =0<= (x =0 ora’ =0) is true.

Remark 1.2.

In practice, if P, and R are three assertions, then :

(P <= Q) and (Q <= R) is noted (P <= ) <= R).



Proposition 1.1. Let P, and R three assertions.

We have the following equivalences:

1.

10.
11.
12.

15.

14.

(PAQ) < (Q A P) (commutativity of and ).

(PV Q) < (QV P) (commutativity of or ).

(PAQ) < (PVQ)( morgan’s laws ).

(PV Q)<= (PAQ) (morgan’s laws ).

P P.

(PAP) <P,

(PV P) < P.

[(PAQ)ANR] < [PA(QN R)](associativity of and ).

[(PVQ)VR| <[PV (QV R)] (associativity of or ).

[(PAQ)V R]| < [(PV R)A(QV R)| (distributiveness of and with respect to or ).

[(PVQ)AR| < [(PAR)V(QAR)] distributiveness of or with respect to and ).

(P= Q) < (PNQ).

(P = Q) < (Q = P) (principe of contraposition,).

(P<—= Q)<= (P=QNQ = P).

preuve 1.1. We prove proposition (12).

PlQQ|P=Q|P=Q|PAQ|(P=0Q)= (PAQ)
F F
F F
F F F F
F|F F F




1.1.3 Quantifiers

In mathematic, we often use expressions of the form : ” for everything,...”

, whatever...”,
"there exists at least...”; ” there exist only one...”.

This expressions specify how the elements of a set can satisfy a certain property. These expres-
sions are called quantifiers.

There are two types of quantifiers :

(1)- The universal quantifier < V>

The expression ” for all z of E such that P(z) is written mathematically ”

Ve € B, P(x)
To express that the assertion P(x) is true for all elements x of E.
Example 1.7. P(z): The function f is zero for all x € R becomes :

P(x):Vz e R, f(zx)=0.

(2)-The existential quantifier < 3>

The expression ” There existe x of E such that P(x) ” is written mathematically "Jx € F,
P(x)” to express that the assertion P(x) is true for at least one = of F.

Example 1.8. P(z): The function f vanishes at xo becomes :
P(z): Jzg € R, f(x9) = 0.

Remark 1.3. The expression ” There exists a unique x of E such that P(x) 7 i.e a unique x,
written mathematically "3z € E, P(x)” to express that the assertion P(x) is true for a unique

value x of E.

Remark 1.4. We can construct assertions with several quantifiers. In this cas, we will take

care of the order of these quantifiers, for example the two logical sentences
VeeR, JyeRx+y>0 and JyeR, Ve R,z +y >0

are different. The first is true because y can depend on x(y = 1 — x). On the other hand the

second is false (x = —y).



- The negation of quantifiers

Let P(z) be a proposition,

1. The negation of Vo € E, P(x) is: Jo € E, P(x).

2. The negation of 3z € E, P(x) is: Yz € E, P(x).
Example 1.9. 1. The negation of (Vx € [1,+o0[, 22 > 1) is: (Ix € [1,+o00[, 2% < 1).

2. The negation of (Vx € R, Jy>0: z+y>0)is: (Jxr e RVy >0: x4+ y <0).

1.2 Reasoning methods

To show that (P = @) is true , we can use the following classical reasoning methods:

1.2.1 Direct Reasoning

We assume that P is true and we prove that @) is also true.
Example 1.10. Let us show that for n € N if n is even = n? is even. We assume that n is

even, i.e., 3k € N, n = 2k then
n.n = 2(2k?) = n? = 2K/,

We pose k' = 2k* € N thus 3k’ € N, n? = 2k', n? is even, hence the result.

1.2.2 Case by case reasoning

If you want to check Vo € E : P(x). We show Vo € A : P(z) and Vo € A : P(z) where A
part of E.
Example 1.11. Demonstrate that Yn € N —- @ e N.

cas 1 : n is even, 3k € N such that n = 2k = % =k(2k+1) e N.

cas 2 : n is odd, 3k € N such that n = 2k + 1 = GEFUCEEDIL _ CEEDEER2) _ (9f 4
1)(2k+1) e N.

Conclusion in any case VYn € N = @ e N.



1.2.3 Reasoning by the contrapositive

Knowing that (P = Q) <= (Q = P), to show that (P = Q) we use the contrapositive,
that’s to say it is enough to show that Q = P directly, we assume that @ is true and we show
that P is true.

Example 1.12. Let n € N. Show that n? is even = n is even .
We assume that n is not even. We want to show that n® is not even. n is not even, it is odd
then 3k € N:n =2k +1 = n? =21+ 1 etl = 2k*> + 2k € N. and then n? is not even. By

contrapositive this is equivalent to if n? is even = n is even.

1.2.4 Reasoning by the absurd

To show that an assertion R is true by the absurd, we assume that R is true and we show
that we then obtain a contradiction. Thus, to show by the absurd, the implication P = @), we
assume both P is true and that @ is false (i.e., P = @ is false) and we look for a contradiction.
Example 1.13. Let n be a natural number. Let show by the absurd that if 3n + 2 is odd =
n 1s odd.

Suppose that 3n + 2 is odd and n is even.

n is even then dk € N: n = 2k = 3n + 2 is even, we thus obtain that 3n + 2 is even and

3n + 2 is odd, contradiction.

1.2.5 Counter example

To show that a proposition is false, it is enough to give what is called a counter example,
that is to say a particular case for which the proposition is false.
Example 1.14. The proposition (n is an even number ) = (n*+1 is even), false because for

n=2,4+1=0>5 is not even, it is a counter-example.



1.2.6 Reasoning by recurrence

To show that Vn € N, n > ng, P(n) is true, we follow three steps:

1. Initialization: We show that P(ng) is true.
2. Heredity: We assume that P(n) is true for n > ngy and demonstrate that P(n+1) is true.

3. Conclusion: By the principe of recurrence Vn € N, P(n) is true.

Example 1.15. Show that Vn € N : 2" > n.
Let us denote by P(n) the following assertion ¥n € N : 2" > n. We will prove by recurrence
that P(n) is true.

1. Initialization: P(0): 2° =1> 0 is true.

2. Heredity: Suppose that P(n) is true. We will show that P(n + 1) is also true.

We have:
ontl — 2" x 2

— 2n+2n
> n+ 2"( we have 2™ > n)

> n+ 1( we have 2™ > 1)

3. Conclusion: by the Principe of recurrence P(n) is true Vn € N : 2" > n.
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