Chapter 1

Notions of logic

1.1 Logic

1.1.1 Assertion

Definition 1.1. An assertion or proposition is a sentence that is either true or false, not both at the same time. We generally designate an assertion with a capital letter P, Q, R, \ldots.

If an assertion P is true or false, we write

$$
\left\{\begin{array}{l}
T(\text { or } 1) \text { if it is True } \\
F(\text { or } 0) \text { if it is false }
\end{array}\right.
$$

The truth table summarizes the two possibility of P :

Example 1.1. 1)- $1+2=3$.
2)- 3 is negative.
3)- What time is it?
4) $-x+y=z$.

1) Is a true assertion and 2) is false assertion , 3) and 4) Are not assertions.

1.1.2 The logical connectors

From assertions P, Q, R, \ldots, we can form assertions using the following logical connectors : negation (no), conjunction(and), disjunction(or), implication, equivalence. These connectors are defined by their truth table.
(1)- Negation $\ll n o \gg$

The negation of an assertion P is an assertion denoted $n o(P)$ or \bar{P}, which is true if P is false, and false if P is true.

P	\bar{P}
T	F
F	T

Example 1.2. 1. We have $P: 1+2=3$ is true, then $\bar{P}: 1+2 \neq 3$ is false.
2. $P: f$ is positive function, then $\bar{P}: f$ is not positive function.

(2)- The logical connector $<$ and \gg (conjunction)

Let (P) and (Q) be two assertions.
The Conjunction of this two assertions is an assertion denoted by $(P \wedge Q)$ and reads (P and Q), which is true when the assertions P and Q are both true, and false otherwise.

We summarize this, in a truth table :

P	Q	$P \wedge Q$
T	T	T
T	F	F
F	T	F
F	F	F

Example 1.3. The assertion $[(1+2=3) \wedge(3$ is negative $)]$ is false.
(3)- The logical connector \ll or \gg (disjunction)

Let (P) and (Q) be two assertions.
The disjunction of this two assertions is an assertion denoted by $(P \vee Q)$ and reads $(P$ or $Q)$, which is true when at least one of the two assertions P or Q are true, and false otherwise. We summarize this, in a truth table :

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

Example 1.4. The assertion $[(1+2=3) \vee(3$ is negative $)]$ is true.

(4)- The implication $\ll \ggg$

Let (P) and (Q) be two assertions.
The implication from P to Q is an assertion denoted $(P \Longrightarrow Q$) reads (P implique Q) or (if Pthen Q). It is false when (P) is true and (Q) is false, and true otherwise. The mathematical definition of implication is $(\bar{P} \vee Q)$. Its truth table is therefore as follows :

P	Q	\bar{P}	$\bar{P} \vee Q(P \Longrightarrow Q)$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	T

Example 1.5. 1. $0 \leq x \leq 9 \Longrightarrow \sqrt{x} \leq 3$. is true (take the square root).
2. $\sin (\theta)=0 \Longrightarrow \theta=0$ is false(for $\theta=2 \pi$ for example).

Remark 1.1. 1. In the implication $(P \Longrightarrow Q): P$ is called sufficient condition and Q said necessary condition of implication.
2. In practice, if P, Q and R are three assertions, then:

$$
(P \Longrightarrow Q) \text { and }(Q \Longrightarrow R) \text { is written }(P \Longrightarrow Q \Longrightarrow R)
$$

(5)- Equivalence $\ll \Longleftrightarrow \gg$

Equivalence is defined by :

$$
(P \Longleftrightarrow Q) \text { is the assertion }[(P \Longrightarrow Q) \text { and }(Q \Longrightarrow P)]
$$

We will say (P equivalent to Q) or (P if and only if Q). This assertion is true when P and Q are true or when P and Q are false. The truth table is :

P	Q	\bar{P}	\bar{Q}	$P \Longrightarrow Q(\bar{P} \vee Q)$	$Q \Longrightarrow P(\bar{Q} \vee P)$	$(P \Longrightarrow Q) \wedge(Q \Longrightarrow P)(P \Longleftrightarrow Q)$
T	T	F	F	T	T	T
T	F	F	T	F	T	F
F	T	T	F	T	F	F
F	F	T	T	T	T	T

Example 1.6. 1. $x+2=0 \Longleftrightarrow x=-2$. is true.
2. For $x, x^{\prime} \in \mathbb{R}, x \cdot x^{\prime}=0 \Longleftrightarrow\left(x=0\right.$ or $\left.x^{\prime}=0\right)$ is true.

Remark 1.2.

In practice, if P, Q and R are three assertions, then :

$$
(P \Longleftrightarrow Q) \text { and }(Q \Longleftrightarrow R) \text { is noted }(P \Longleftrightarrow Q \Longleftrightarrow R)
$$

Proposition 1.1. Let P, Q and R three assertions.
We have the following equivalences:

1. $(P \wedge Q) \Longleftrightarrow(Q \wedge P)$ (commutativity of and).
2. $(P \vee Q) \Longleftrightarrow(Q \vee P)$ (commutativity of or $)$.
3. $(\overline{P \wedge Q}) \Longleftrightarrow(\bar{P} \vee \bar{Q})$ (morgan's laws).
4. $\overline{(P \vee Q)} \Longleftrightarrow(\bar{P} \wedge \bar{Q})$ (morgan's laws).
5. $\overline{\bar{P}} \Longleftrightarrow P$.
6. $(P \wedge P) \Longleftrightarrow P$.
7. $(P \vee P) \Longleftrightarrow P$.
8. $[(P \wedge Q) \wedge R] \Longleftrightarrow[P \wedge(Q \wedge R)]$ (associativity of and $)$.
9. $[(P \vee Q) \vee R] \Longleftrightarrow[P \vee(Q \vee R)]$ (associativity of or).
10. $[(P \wedge Q) \vee R] \Longleftrightarrow[(P \vee R) \wedge(Q \vee R)]$ (distributiveness of and with respect to or $)$.
11. $[(P \vee Q) \wedge R] \Longleftrightarrow[(P \wedge R) \vee(Q \wedge R)]$ distributiveness of or with respect to and $)$.
12. $\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$.
13. $(P \Longrightarrow Q) \Longleftrightarrow(\bar{Q} \Longrightarrow \bar{P})$ (principe of contraposition).
14. $(P \Longleftrightarrow Q) \Longleftrightarrow(P \Longrightarrow Q \wedge Q \Longrightarrow P)$.
preuve 1.1. We prove proposition (12).

P	Q	\bar{Q}	$P \Longrightarrow Q$	$\overline{P \Longrightarrow Q}$	$P \wedge \bar{Q}$	$\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$
T	T	F	T	F	F	T
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

1.1.3 Quantifiers

In mathematic, we often use expressions of the form : " for everything,...", whatever...", "there exists at least...", " there exist only one...".

This expressions specify how the elements of a set can satisfy a certain property. These expressions are called quantifiers.

There are two types of quantifiers:
(1)- The universal quantifier $<\forall \gg$

The expression " for all x of E such that $P(x)$ is written mathematically "

$$
\forall x \in E, P(x)
$$

To express that the assertion $P(x)$ is true for all elements x of E.
Example 1.7. $P(x)$: The function f is zero for all $x \in \mathbb{R}$ becomes :

$$
P(x): \forall x \in \mathbb{R}, f(x)=0 .
$$

(2)-The existential quantifier $<\exists \gg$

The expression " There existe x of E such that $P(x)$ " is written mathematically " $\exists x \in E$, $P(x)$ " to express that the assertion $P(x)$ is true for at least one x of E.
Example 1.8. $P(x)$: The function f vanishes at x_{0} becomes :

$$
P(x): \exists x_{0} \in \mathbb{R}, f\left(x_{0}\right)=0 .
$$

Remark 1.3. The expression" There exists a unique x of E such that $P(x)$ " i.e a unique x, written mathematically " $\exists!x \in E, P(x)$ " to express that the assertion $P(x)$ is true for a unique value x of E.

Remark 1.4. We can construct assertions with several quantifiers. In this cas, we will take care of the order of these quantifiers, for example the two logical sentences

$$
\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x+y>0 \text { and } \exists y \in \mathbb{R}, \forall x \in \mathbb{R}, x+y>0
$$

are different. The first is true because y can depend on $x(y=1-x)$. On the other hand the second is false $(x=-y)$.

- The negation of quantifiers

Let $P(x)$ be a proposition,

1. The negation of $\forall x \in E, P(x)$ is: $\exists x \in E, \overline{P(x)}$
2. The negation of $\exists x \in E, P(x)$ is: $\forall x \in E, \overline{P(x)}$.

Example 1.9. 1. The negation of $\left(\forall x \in\left[1,+\infty\left[, x^{2} \geq 1\right)\right.\right.$ is: $\left(\exists x \in\left[1,+\infty\left[, x^{2}<1\right)\right.\right.$.
2. The negation of $(\forall x \in \mathbb{R}, \exists y>0: x+y>0)$ is: $(\exists x \in \mathbb{R}, \forall y>0: x+y \leq 0)$.

1.2 Reasoning methods

To show that $(P \Longrightarrow Q)$ is true, we can use the following classical reasoning methods:

1.2.1 Direct Reasoning

We assume that P is true and we prove that Q is also true.
Example 1.10. Let us show that for $n \in \mathbb{N}$ if n is even $\Longrightarrow n^{2}$ is even. We assume that n is even, i.e., $\exists k \in \mathbb{N}$, $n=2 k$ then

$$
n . n=2\left(2 k^{2}\right) \Longrightarrow n^{2}=2 k^{\prime},
$$

We pose $k^{\prime}=2 k^{2} \in \mathbb{N}$ thus $\exists k^{\prime} \in \mathbb{N}, n^{2}=2 k^{\prime}, n^{2}$ is even, hence the result.

1.2.2 Case by case reasoning

If you want to check $\forall x \in E: P(x)$. We show $\forall x \in A: P(x)$ and $\forall x \in \bar{A}: P(x)$ where A part of E.
Example 1.11. Demonstrate that $\forall n \in \mathbb{N} \Longrightarrow \frac{n(n+1)}{2} \in \mathbb{N}$.
cas $1: n$ is even, $\exists k \in \mathbb{N}$ such that $n=2 k \Longrightarrow \frac{2 k(2 k+1)}{2}=k(2 k+1) \in \mathbb{N}$.
cas 2: n is odd, $\exists k \in \mathbb{N}$ such that $n=2 k+1 \Longrightarrow \frac{(2 k+1)(2 k+1)+1}{2}=\frac{(2 k+1)(2 k+2)}{2}=(2 k+$ 1) $(2 k+1) \in \mathbb{N}$.

Conclusion in any case $\forall n \in \mathbb{N} \Longrightarrow \frac{n(n+1)}{2} \in \mathbb{N}$.

1.2.3 Reasoning by the contrapositive

Knowing that $(P \Longrightarrow Q) \Longleftrightarrow(\bar{Q} \Longrightarrow \bar{P})$, to show that $(P \Longrightarrow Q)$ we use the contrapositive, that's to say it is enough to show that $\bar{Q} \Longrightarrow \bar{P}$ directly, we assume that \bar{Q} is true and we show that \bar{P} is true.
Example 1.12. Let $n \in \mathbb{N}$. Show that n^{2} is even $\Longrightarrow n$ is even .
We assume that n is not even. We want to show that n^{2} is not even. n is not even, it is odd then $\exists k \in \mathbb{N}: n=2 k+1 \Longrightarrow n^{2}=2 l+1$ et $l=2 k^{2}+2 k \in \mathbb{N}$. and then n^{2} is not even. By contrapositive this is equivalent to if n^{2} is even $\Longrightarrow n$ is even.

1.2.4 Reasoning by the absurd

To show that an assertion R is true by the absurd, we assume that \bar{R} is true and we show that we then obtain a contradiction. Thus, to show by the absurd, the implication $P \Longrightarrow Q$, we assume both P is true and that Q is false (i.e., $P \Longrightarrow Q$ is false) and we look for a contradiction. Example 1.13. Let n be a natural number. Let show by the absurd that if $3 n+2$ is odd \Longrightarrow n is odd.

Suppose that $3 n+2$ is odd and n is even.
n is even then $\exists k \in \mathbb{N}: n=2 k \Longrightarrow 3 n+2$ is even, we thus obtain that $3 n+2$ is even and $3 n+2$ is odd, contradiction.

1.2.5 Counter example

To show that a proposition is false, it is enough to give what is called a counter example, that is to say a particular case for which the proposition is false.

Example 1.14. The proposition (n is an even number) $\Longrightarrow\left(n^{2}+1\right.$ is even), false because for $n=2,4+1=5$ is not even, it is a counter-example.

1.2.6 Reasoning by recurrence

To show that $\forall n \in \mathbb{N}, n \geq n_{0}, P(n)$ is true, we follow three steps:

1. Initialization: We show that $P\left(n_{0}\right)$ is true.
2. Heredity: We assume that $P(n)$ is true for $n \geq n_{0}$ and demonstrate that $P(n+1)$ is true.
3. Conclusion: By the principe of recurrence $\forall n \in \mathbb{N}, P(n)$ is true.

Example 1.15. Show that $\forall n \in \mathbb{N}: 2^{n} \geq n$.
Let us denote by $P(n)$ the following assertion $\forall n \in \mathbb{N}: 2^{n} \geq n$. We will prove by recurrence that $P(n)$ is true.

1. Initialization: $P(0): 2^{0}=1 \geq 0$ is true.
2. Heredity: Suppose that $P(n)$ is true. We will show that $P(n+1)$ is also true.

We have:

$$
\begin{array}{rlc}
2^{n+1} & = & 2^{n} \times 2 \\
& = & 2^{n}+2^{n} \\
& > & n+2^{n}\left(\text { we have } 2^{n} \geq n\right) \\
& > & n+1\left(\text { we have } 2^{n} \geq 1\right)
\end{array}
$$

3. Conclusion: by the Principe of recurrence $P(n)$ is true $\forall n \in \mathbb{N}: 2^{n} \geq n$.
