Chapter 2

Sets and applications

2.1 Set

Definition 2.1. An ensemble, also known as a set, is a collection of objects. These objects are

called the elements of the set.
Example 2.1. 1. We denote N by the set of natural numbers N = {0,1,...}.
2. The set E ={0,1}.

Definition 2.2. A set is said to be empty when it contains no elements and is denoted as () or

{-

Definition 2.3. We call the cardinality of a set E the number of elements in E denoted by
card(E) or |E|.

Remark 2.1. The concept of cardinality does not apply to infinite sets, such as N, Z, Q and
R.

Example 2.2. 1. Consider the set E = {0,1}, we have card(E) = 2.
2. Consider the set A ={1,2,3,4}, we have card(A) = 4.

3. If A=10, then card(A) = 0.

10



Definition 2.4. The power set of E, denoted as P(E), is the set of all subsets that can formed
from E, and we have card(P(E)) = 2¢ard(E),

Example 2.3. Let E = {1,2}, the set P(E) = {0,{1},{2}, E} and card(P(E)) = 2% = 4.

2.2 The Relationships between sets

2.2.1 Inclusion

Let A and B be two subsets of a set . We say that A is included in B( A is a subset of B, or

A is a part of B), and denote this as A C B, if all the elements of a set A are elements of set B.
ACB<+<= Vxe€ E,x € A= x € B).
Example 2.4. 1. We denote R as the set of real numbers. We have : N C R.

2. We denote Z as the set of integers, and Q as the set of rationals we have:

NcZcQcR.
Remark 2.2. o We have ) C E et EC E.
o If A, B and C are subsets of E, then:

1. A B (IreE:2€ ANz ¢ D).

2.(ACBANBCC)= (AcCC).

2.2.2 Equality

Let’s consider two sets, A and B which are subsets of E. We say that A and B are equal,
denoted as (A = B) <= [(AC B) AN (B C A)], when (Vx € A <= = € B). Otherwise, we
state that they are distinct, also noted as A # B.



2.2.3 Union

Definition 2.5. Let’s consider two sets, A and B which are subsets of E. The union of A and

B is the set of elements that are in A or B, and is denoted by :

AUB={xe E:x € AV € B}.
(r€e AUB) <= (x € AVz € B).

Example 2.5. Let A ={1,3,5} and B = {1,z,y}. Then
AUB=/{1,3,5z,y}.

Remark 2.3. (1 ¢ AUB) <= (r ¢ ANz ¢ B).

2.2.4 Intersection

Definition 2.6. Let’s consider two sets, A and B which are subsets of E. The intersection of

A and B 1is the set of elements that are both in A and in B, denoted by A N B.

ANB={reE:x€ ANz € B}.
(xre ANB) <= (x € ANz € B).

Remark 2.4. (t ¢ ANB) <= (¢ AVz ¢ B)
Example 2.6. Let A={1,3,5} and B = {1,z,y}. Then
ANB={1}.
Properties Let A, B and C be three sets :
1. ACAUB, BC AUB.
2. ANBCA ANBCB.

3. ACB= AUB=2B.



4. ACB=ANB=A
5. ANBC AUB.
6. ANA=A AUA=A.
7.0CADINA=00UA=A.
8. AN B = BN A (commutativity of intersection).
9. AUB = BUA. (commutativity of union).
10. (AN B)NC = AN (BNC) (associativity of intersection).
11. (AUB)UC = AU (B U ()(associativity of union).
12. (AUB)NC = (ANC)U (BNC)(distributivity of intersection with respect to union ).

13. (ANB)UC = (AUC) N (BUC)(distributivity of union with respect of intersection).

2.2.5 Complement

Definition 2.7. Let A be a subset of E. The complement of A in E, denoted as A°, CgA or
A is defined as:

A={r e E/x ¢ A}.
Remark 2.5. 1. z€ A<=z ¢ A
2. AUA°=F.
5. ANA°=0.
4. If E and A they are finite, we have:
card(A°) = card(E) — card(A).

Example 2.7. Let E = {1,2,3,5} and A = {3,5}, then A® = {1,2}, and card(A°) = card(E)—
card(A) = 2.



2.2.6 Set difference - Symmetric difference

Definition 2.8. Let A and B be two sets in E. The set difference of A and B is the set of

elements in A that are not in B, denoted as A\ B or A — B and read as A minus B
A\B=AnNB*={r e E:x€ Aandz ¢ B}.
Proposition 2.1. 1. A\B=2 < ACB.
2. If A and B are finite we have: card(A\ B) = card(A) — card(AN B).

Definition 2.9. Let E be a non-empty set and A, B C E, the symmetric difference between
two sets, A and B, is the set of elements that belong to A\ B or B\ A noted AAB

AAB = (A\B)U(B\ A)
= (AUB)\ (BN A)
= (ANBY)U(A°NB)

r€ AAB<—= {r € (A\B)Vxe (B\ A}
Proposition 2.2. 1. (AAB)AC = AA(BAC).
2. ANB=2@ < (AUB)\(ANB)=29 < A=B.
3. If A and B are finite, we have: card(AAB) = card(A) + card(B) — 2card(A N B).
Properties Let A and B be two subsets of a set E, we have
1. (A9 = A.
2. (AN B)¢ = A°U B° Morgan’s law.
3. (AU B)¢ = A°N B¢ Morgan’s law.
4. (AC B) < (B C A°).

5. A\A=0.

(=)

CA\D = A



2.2.7 Cartesian product

Definition 2.10. Let A, B be two sets. The cartesian product of A and B is the set of pairs
such that a € A and b € B. This set will be denoted by A x B

Ax B={(a,b)/ac Aetbec B}.
Example 2.8. 1. R*Z=R xR ={(z,y) | z,y € R}.
2. 0,1 xR=A{(z,y) |0<z <1, yeR}
Remark 2.6. 1. More generally, if Ay, As,..., A, are n sets,
Ay x Ay x ... x A, = {(ar,a9,...,a,) /a; € Ay i=1,2,...,n}.
The set Ay x Ay x ... x Ay is also denoted as ﬁ A; and (ay, a9, ..., ay,) is called n-tuple
of A1 x Ap x ... X Ay. .

2. If Ay = Ay = ... = A,, we denote

Al x A x...xA = AxAx...x A
= A"
Example 2.9. Let E = {1,2,3,5,8,9,2,y}, A={1,2,3} and B ={1,2,9}
1. e ACFEand BCE.

A ¢ B because (3 € A) A (3 ¢ B).

B ¢ A because (9 € B) A (9 ¢ A).

2.« AnB=1{1,2}.
« AUB={1,2,3,9}.
3.« A\B={3}.
« B\ A=1{9).

4. An B={39}

5. Ax B=1{(1,1),(1,2),(1,9),(2,1),(2,2),(2,9), (3,1), (3,2), (3,9)}.



2.2.8 Cardinal of a finite set

Definition 2.11. The number of elements in a finite set is called the cardinal of A. This
number is denoted by Card(A) or |A|.

Example 2.10. 1. If A={1,2,3,4}, then Card(A) = 4.
2. If A=, then Card(A) = 0.

Remark 2.7. The concepts of cardinality does not apply to infinite sets, for example N, Z, Q
et R.

2.3 Application

Let F and F' be two sets.

Definition 2.12. An application f : E — F is defined for each element x € E, a unique

element of F noted f(x), where E is the domain set and F is the codomain set.

Example 2.11. 1.
f+: R—R
z— f(z) ==

f is an application

g : N— N
n+— g(n)=n—1

g s not an application



Remark 2.8. 1. The graph of f: E — F is

Ly={(z;y) e EXF/y= f(x)}.

2. Let f : E — F and g : G — H two applications. f = g if and only if E = G and
F=H andVx € E, f(z) = g(x).

3. Let f : E — F an application. Let’s firy € F, every element x € E such that : y = f(z)

1S a pre-image
notation 2.1. 1. We denote F(E, F) as the set of all applications from E to F.

2. We denote id the identity application.

d @ E— F

rr—id(z) =x

2.4 Direct and reciprocal(inverse) images

Let E and F be two sets.

Definition 2.13. (Direct image ) Let A C E and f : E — F, The direct image of A by f is
the set:

f(A) ={f(x)/x e A} CF.

Definition 2.14. (Inverse image ) Let B C F and f : E — F, The inverse image of B by f

is the set:
fY(B)={zx€eE/f(x)e B}CE.
Example 2.12. 1. Let f an application

f o N—N
n+— f(z) =2n+1



Let A ={0,1,2}, then
fA) = {f(n)/ne A}
= {/f(0), f(0), f(2)}
= {1,3,5}.
Let B = {5}, then

f7(B) = {z<€E/f(x)e B}
= {zeE/f(z)=5}
= {2}

Properties 2.1. Let f : E — F be an application. Let A, and Ay be two subsets of E. Then,
L f(A1U Ay) = f(A) U f(Ay).
2. f(A; N As) C F(A)N f(A).
3. Al C Ay = f(A)) C f(Ay).
4. A C fTHf(AY).
Let By and By be two subsets of F.
1. 7Y B1UBy) = fYB)) U f1(By).
2. f7YB1NBy) = fYBy) N f1(By).

3. B C By — fﬁl(Bl) C fﬁl(B2>.

2.5 Injection

Definition 2.15. Let f : E — F be an application. We say that f is injective if every element

of F has at most one pre-image, i.e.,
Ve,o' € B f(z) = f(2)) =z =1,

Or



Ve,o' € B o # 1/ = f(x) # f(2)).
Example 2.13. 1.
f: N—N
n+—2n+1

f is injective because:

Vn,n' € E: f(n)=f(n) = 2n+1=2n"+1

= 2n =2n'

= n=n
2.
g : R—R
T +— bxr+3

g 1s injective because:

Ve,o' € E:g(x) =g(2') = bxr+3=52"+3
= bSx =52

= z=2a.

2.6 Surjection

Definition 2.16. Let f : E — F' be an application. We say that f is surjective if every

element of F at least he has a pre-image, i.e.,
Vye F,dz e E: f(z) =v.

Example 2.14. 1.
f+: N—N
n+— 2n+1

f is not surjective, indeed if we assume that it is surjective , that is

VyeN,dIneN: f(n)=y = 2n+1l=y

= n= y—;l ¢ N contradiction .



g : R—R
n+——or+3

g is surjective because:

VyeR, Iz eR:g(x)=y = bx+3=y

= $:3’%3€R

2.7 Bijection

Definition 2.17. Let f : E — F be an application. We say that f is bijective if it is both

surjective and injective,
Vye F,dlz € E: f(x) =1y.
Meaning that every element in F has a unique pre-image by f.

Example 2.15. 1.
f: N—N
n—2n+1

f is not bijective because it is not surjective.

2. g is bijective.

2.8 The composition of applications
Definition 2.18. Let E, F, G three sets and f, g be two applications such that:
ELFS G

One can deduce an application from FE to G, denoted as g o f and called the composition of f

and g, by

Ve E,(go f)(x) =g(f(z)).



Example 2.16. Let

f: R—RT
r— 2+ 1
and
g : Rt —R
T\,
then

gof : R— R

r— a2+ 1.

Proposition 2.3. Let f : E — F and g : F — G be two applications.

1. The composition of two injections is an injection, i.e,

( If f and g are injective, then g o f is injective).

2. The composition of two surjections is an surjection, i.e,

If f and g are surjective, then g o f is surjective).

3. The composition of two bijections is bijection, i.e,

(If f and g are bijective, g o f is bijective).

4. If f and g are bijective. Then
(gof)t=f"og"
Proof. 1. Let’s assume that f and g are injective, and let’s show that g o f is injective.
Vry, 2 € B, (go f)(z1) = (g0 f)(x2)
Since g is injective, we will have:
9(f(21)) = g(f(22)) = f(21) = f(22),

Since g is injective, thus :



(go f)(x1) = (9o f)(22) = 71 = 13,

then g o f is injective.

Proposition 2.4. 1. If go f is injective, then f is injective.
2. If go f is surjective, then f is surjective.
3. If go f is bijective, then f is injective and g is surjective.

Remark 2.9. When an application f is bijective, it means that the inverse application f~!

exists, and f~' is also bijective from F to E and (f~1)~1 = f.
Proposition 2.5. If f: E — F is a bijection, then

flof=1Idg and fo f~' = Idp.
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