Chapter 2

Sets and applications

2.1 Set

Definition 2.1. An ensemble, also known as a set, is a collection of objects. These objects are called the elements of the set.

Example 2.1. *1.* We denote \mathbb{N} by the set of natural numbers $\mathbb{N} = \{0, 1, \ldots\}$.

2. The set $E = \{0, 1\}$.

Definition 2.2. A set is said to be empty when it contains no elements and is denoted as \emptyset or $\{\}$.

Definition 2.3. We call the cardinality of a set E the number of elements in E denoted by card(E) or |E|.

Remark 2.1. The concept of cardinality does not apply to infinite sets, such as \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

Example 2.2. 1. Consider the set $E = \{0, 1\}$, we have card(E) = 2.

- 2. Consider the set $A = \{1, 2, 3, 4\}$, we have card(A) = 4.
- 3. If $A = \emptyset$, then card(A) = 0.

Definition 2.4. The power set of E, denoted as $\mathcal{P}(E)$, is the set of all subsets that can formed from E, and we have $card(\mathcal{P}(E)) = 2^{card(E)}$.

Example 2.3. Let $E = \{1, 2\}$, the set $\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, E\}$ and $card(\mathcal{P}(E)) = 2^2 = 4$.

2.2 The Relationships between sets

2.2.1 Inclusion

Let A and B be two subsets of a set E. We say that A is included in B(A is a subset of B, or A is a part of B), and denote this as $A \subset B$, if all the elements of a set A are elements of set B.

$$A \subset B \iff (\forall x \in E, x \in A \Longrightarrow x \in B).$$

Example 2.4. *1.* We denote \mathbb{R} as the set of real numbers. We have $: \mathbb{N} \subset \mathbb{R}$.

2. We denote \mathbb{Z} as the set of integers, and \mathbb{Q} as the set of rationals we have:

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}.$

Remark 2.2. • We have $\emptyset \subset E$ et $E \subseteq E$.

- If A, B and C are subsets of E, then:
 - 1. $A \not\subset B \iff (\exists x \in E : x \in A \land x \notin B).$
 - 2. $(A \subset B \land B \subset C) \Longrightarrow (A \subset C)$.

2.2.2 Equality

Let's consider two sets, A and B which are subsets of E. We say that A and B are equal, denoted as $(A = B) \iff [(A \subset B) \land (B \subset A)]$, when $(\forall x \in A \iff x \in B)$. Otherwise, we state that they are distinct, also noted as $A \neq B$.

2.2.3 Union

Definition 2.5. Let's consider two sets, A and B which are subsets of E. The union of A and B is the set of elements that are in A or B, and is denoted by :

$$A \cup B = \{x \in E : x \in A \lor x \in B\}.$$
$$(x \in A \cup B) \iff (x \in A \lor x \in B).$$

Example 2.5. Let $A = \{1, 3, 5\}$ and $B = \{1, x, y\}$. Then

$$A \cup B = \{1, 3, 5, x, y\}.$$

Remark 2.3. $(x \notin A \cup B) \iff (x \notin A \land x \notin B).$

2.2.4 Intersection

Definition 2.6. Let's consider two sets, A and B which are subsets of E. The intersection of A and B is the set of elements that are both in A and in B, denoted by $A \cap B$.

$$A \cap B = \{x \in E : x \in A \land x \in B\}.$$
$$(x \in A \cap B) \iff (x \in A \land x \in B).$$

Remark 2.4. $(x \notin A \cap B) \iff (x \notin A \lor x \notin B)$

Example 2.6. Let $A = \{1, 3, 5\}$ and $B = \{1, x, y\}$. Then

$$A \cap B = \{1\}.$$

Properties Let A, B and C be three sets :

- 1. $A \subset A \cup B, B \subset A \cup B$.
- 2. $A \cap B \subset A, A \cap B \subset B$.
- 3. $A \subset B \Rightarrow A \cup B = B$.

- 4. $A \subset B \Rightarrow A \cap B = A$.
- 5. $A \cap B \subset A \cup B$.
- 6. $A \cap A = A, A \cup A = A.$
- 7. $\emptyset \subset A, \ \emptyset \cap A = \emptyset, \ \emptyset \cup A = A.$
- 8. $A \cap B = B \cap A$ (commutativity of intersection).
- 9. $A \cup B = B \cup A$. (commutativity of union).
- 10. $(A \cap B) \cap C = A \cap (B \cap C)$ (associativity of intersection).
- 11. $(A \cup B) \cup C = A \cup (B \cup C)$ (associativity of union).
- 12. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ (distributivity of intersection with respect to union).
- 13. $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (distributivity of union with respect of intersection).

2.2.5 Complement

Definition 2.7. Let A be a subset of E. The complement of A in E, denoted as A^c , $C_E A$ or \overline{A} is defined as:

$$A^c = \{ x \in E / x \notin A \}.$$

- **Remark 2.5.** *1.* $x \in A^c \iff x \notin A$.
 - 2. $A \cup A^c = E$.
 - 3. $A \cap A^c = \emptyset$.
 - 4. If E and A they are finite, we have:

 $card(A^c) = card(E) - card(A).$

Example 2.7. Let $E = \{1, 2, 3, 5\}$ and $A = \{3, 5\}$, then $A^c = \{1, 2\}$, and $card(A^c) = card(E) - card(A) = 2$.

2.2.6 Set difference - Symmetric difference

Definition 2.8. Let A and B be two sets in E. The set difference of A and B is the set of elements in A that are not in B, denoted as $A \setminus B$ or A - B and read as A minus B

$$A \setminus B = A \cap B^c = \{ x \in E : x \in A \text{ and } x \notin B \}.$$

Proposition 2.1. *1.* $A \setminus B = \emptyset \Leftrightarrow A \subset B$.

2. If A and B are finite we have: $card(A \setminus B) = card(A) - card(A \cap B)$.

Definition 2.9. Let *E* be a non-empty set and $A, B \subset E$, the symmetric difference between two sets, *A* and *B*, is the set of elements that belong to $A \setminus B$ or $B \setminus A$ noted $A \triangle B$

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
$$= (A \cup B) \setminus (B \cap A)$$
$$= (A \cap B^c) \cup (A^c \cap B)$$
$$x \in A \triangle B \iff \{x \in (A \setminus B) \lor x \in (B \setminus A)\}.$$

Proposition 2.2. 1. $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.

- 2. $A \triangle B = \emptyset \Leftrightarrow (A \cup B) \setminus (A \cap B) = \emptyset \Leftrightarrow A = B.$
- 3. If A and B are finite, we have: $card(A \triangle B) = card(A) + card(B) 2card(A \cap B)$.

Properties Let A and B be two subsets of a set E, we have

- 1. $(A^c)^c = A$.
- 2. $(A \cap B)^c = A^c \cup B^c$ Morgan's law.
- 3. $(A \cup B)^c = A^c \cap B^c$ Morgan's law.
- 4. $(A \subset B) \iff (B^c \subset A^c)$.
- 5. $A \setminus A = \emptyset$.
- 6. $A \setminus \emptyset = A$.

2.2.7 Cartesian product

Definition 2.10. Let A, B be two sets. The cartesian product of A and B is the set of pairs such that $a \in A$ and $b \in B$. This set will be denoted by $A \times B$

$$A \times B = \{(a, b) \mid a \in A \ et \ b \in B\}.$$

Example 2.8. 1. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}.$

2. $[0,1] \times \mathbb{R} = \{(x,y) \mid 0 \le x \le 1, y \in \mathbb{R}\}$

Remark 2.6. 1. More generally, if A_1, A_2, \ldots, A_n are n sets,

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) / a_i \in A_i, i = 1, 2, \ldots, n\}$$

The set $A_1 \times A_1 \times \ldots \times A_1$ is also denoted as $\prod_{i=1}^n A_i$ and (a_1, a_2, \ldots, a_n) is called n-tuple of $A_1 \times A_1 \times \ldots \times A_1$.

2. If $A_1 = A_2 = ... = A_n$, we denote

$$A_1 \times A_1 \times \ldots \times A_1 = A \times A \times \ldots \times A$$
$$= A^n.$$

Example 2.9. Let $E = \{1, 2, 3, 5, 8, 9, x, y\}$, $A = \{1, 2, 3\}$ and $B = \{1, 2, 9\}$

- 1. $A \subset E$ and $B \subset E$.
 - $A \not\subset B$ because $(3 \in A) \land (3 \notin B)$.
 - $B \not\subset A$ because $(9 \in B) \land (9 \notin A)$.
- 2. $A \cap B = \{1, 2\}.$
 - $A \cup B = \{1, 2, 3, 9\}.$
- $3. \quad \bullet \quad A \setminus B = \{3\}.$
 - $B \setminus A = \{9\}.$
- 4. $A \bigtriangleup B = \{3, 9\}.$

5. $A \times B = \{(1,1), (1,2), (1,9), (2,1), (2,2), (2,9), (3,1), (3,2), (3,9)\}.$

2.2.8 Cardinal of a finite set

Definition 2.11. The number of elements in a finite set is called the cardinal of A. This number is denoted by Card(A) or |A|.

Example 2.10. *1.* If $A = \{1, 2, 3, 4\}$, then Card(A) = 4.

2. If $A = \emptyset$, then Card(A) = 0.

Remark 2.7. The concepts of cardinality does not apply to infinite sets, for example \mathbb{N} , \mathbb{Z} , \mathbb{Q} et \mathbb{R} .

2.3 Application

Let E and F be two sets.

Definition 2.12. An application $f : E \longrightarrow F$ is defined for each element $x \in E$, a unique element of F noted f(x), where E is the domain set and F is the codomain set.

Example 2.11. 1.

$$\begin{array}{rcl} f & : & \mathbb{R} \longrightarrow \mathbb{R} \\ & & x \longmapsto f(x) = x \end{array}$$

f is an application

2.

$$g : \mathbb{N} \longrightarrow \mathbb{N}$$
$$n \longmapsto g(n) = n - 1.$$

g is not an application

Remark 2.8. 1. The graph of $f : E \longrightarrow F$ is

$$\Gamma_f = \{ (x; y) \in E \times F / y = f(x) \}.$$

- 2. Let $f : E \longrightarrow F$ and $g : G \longrightarrow H$ two applications. f = g if and only if E = G and F = H and $\forall x \in E, f(x) = g(x)$.
- 3. Let $f: E \longrightarrow F$ an application. Let's fix $y \in F$, every element $x \in E$ such that : y = f(x) is a pre-image

notation 2.1. 1. We denote $\mathcal{F}(E, F)$ as the set of all applications from E to F.

2. We denote id the identity application.

$$\begin{array}{rcl} id & : & E \longrightarrow E \\ & & x \longmapsto id(x) = x \end{array}$$

2.4 Direct and reciprocal(inverse) images

Let E and F be two sets.

Definition 2.13. (*Direct image*) Let $A \subset E$ and $f : E \longrightarrow F$, The direct image of A by f is the set:

$$f(A) = \{f(x) \mid x \in A\} \subset F.$$

Definition 2.14. (*Inverse image*) Let $B \subset F$ and $f : E \longrightarrow F$, The inverse image of B by f is the set:

$$f^{-1}(B) = \{ x \in E \mid f(x) \in B \} \subset E.$$

Example 2.12. *1.* Let *f* an application

$$f : \mathbb{N} \longrightarrow \mathbb{N}$$
$$n \longmapsto f(x) = 2n + 1$$

Let $A = \{0, 1, 2\}$, then

$$f(A) = \{f(n) / n \in A\}$$

= $\{f(0), f(1), f(2)\}$
= $\{1, 3, 5\}.$

Let $B = \{5\}$, then

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}$$

= $\{x \in E \mid f(x) = 5\}$
= $\{2\}.$

Properties 2.1. Let $f: E \longrightarrow F$ be an application. Let A_1 and A_2 be two subsets of E. Then,

1. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$ 2. $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2).$ 3. $A_1 \subset A_2 \Longrightarrow f(A_1) \subset f(A_2).$ 4. $A_1 \subset f^{-1}(f(A_1)).$

Let B_1 and B_2 be two subsets of F.

1.
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2).$$

2. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$
3. $B_1 \subset B_2 \Longrightarrow f^{-1}(B_1) \subset f^{-1}(B_2).$

2.5 Injection

Definition 2.15. Let $f : E \longrightarrow F$ be an application. We say that f is injective if every element of F has at most one pre-image, i.e.,

$$\forall x, x' \in E : f(x) = f(x') \Longrightarrow x = x'.$$

Or

$$\forall x, x' \in E : x \neq x' \Longrightarrow f(x) \neq f(x').$$

Example 2.13. *1.*

$$\begin{array}{rcl} f & \colon & \mathbb{N} \longrightarrow \mathbb{N} \\ & & n \longmapsto 2n+1 \end{array}$$

f is injective because:

$$\forall n, n' \in E : f(n) = f(n') \implies 2n + 1 = 2n' + 1$$
$$\implies 2n = 2n'$$
$$\implies n = n'.$$

2.

$$g : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto 5x + 3$$

g is injective because:

$$\forall x, x' \in E : g(x) = g(x') \implies 5x + 3 = 5x' + 3$$
$$\implies 5x = 5x'$$
$$\implies x = x'.$$

2.6 Surjection

Definition 2.16. Let $f : E \longrightarrow F$ be an application. We say that f is surjective if every element of F at least he has a pre-image, i.e.,

$$\forall y \in F, \exists x \in E : f(x) = y.$$

Example 2.14. *1.*

$$f : \mathbb{N} \longrightarrow \mathbb{N}$$
$$n \longmapsto 2n +$$

1

f is not surjective, indeed if we assume that it is surjective, that is

$$\forall y \in \mathbb{N}, \exists n \in \mathbb{N} : f(n) = y \implies 2n + 1 = y \\ \implies n = \frac{y - 1}{2} \notin \mathbb{N} \ contradiction \ .$$

$$g : \mathbb{R} \longrightarrow \mathbb{R}$$
$$n \longmapsto 5x + 3$$

g is surjective because:

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : g(x) = y \implies 5x + 3 = y \\ \implies x = \frac{y - 3}{5} \in \mathbb{R}$$

2.7 Bijection

Definition 2.17. Let $f : E \longrightarrow F$ be an application. We say that f is bijective if it is both surjective and injective,

$$\forall y \in F, \exists ! x \in E : f(x) = y.$$

Meaning that every element in F has a unique pre-image by f.

Example 2.15. 1.

 $\begin{array}{rcl} f & \colon & \mathbb{N} \longrightarrow \mathbb{N} \\ & & n \longmapsto 2n+1 \end{array}$

f is not bijective because it is not surjective.

2. g is bijective.

2.8 The composition of applications

Definition 2.18. Let E, F, G three sets and f, g be two applications such that:

$$E \xrightarrow{f} F \xrightarrow{g} G$$

One can deduce an application from E to G, denoted as $g \circ f$ and called the composition of f and g, by

$$\forall x \in E, (g \circ f)(x) = g(f(x)).$$

Example 2.16. Let

$$f : \mathbb{R} \longrightarrow \mathbb{R}^+$$
$$x \longmapsto x^2 + 1$$

and

$$g : \mathbb{R}^+ \longrightarrow \mathbb{R}$$
$$x \longmapsto \sqrt{x},$$

then

$$g \circ f \quad : \quad \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto \sqrt{x^2 + 1}$$

Proposition 2.3. Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be two applications.

- The composition of two injections is an injection, i.e,
 (If f and g are injective, then g o f is injective).
- 2. The composition of two surjections is an surjection, i.e,If f and g are surjective, then g o f is surjective).
- The composition of two bijections is bijection, i.e,
 (If f and g are bijective, g o f is bijective).
- 4. If f and g are bijective. Then

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Proof. 1. Let's assume that f and g are injective, and let's show that $g \circ f$ is injective.

$$\forall x_1, x_2 \in E, (g \circ f)(x_1) = (g \circ f)(x_2)$$

Since g is injective, we will have:

$$g(f(x_1)) = g(f(x_2)) \Longrightarrow f(x_1) = f(x_2),$$

Since g is injective, thus :

$$(g \circ f)(x_1) = (g \circ f)(x_2) \Longrightarrow x_1 = x_2,$$

then $g \circ f$ is injective.

Proposition 2.4. 1. If $g \circ f$ is injective, then f is injective.

2. If $g \circ f$ is surjective, then f is surjective.

3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Remark 2.9. When an application f is bijective, it means that the inverse application f^{-1} exists, and f^{-1} is also bijective from F to E and $(f^{-1})^{-1} = f$.

Proposition 2.5. If $f : E \longrightarrow F$ is a bijection, then

$$f^{-1} \circ f = Id_E$$
 and $f \circ f^{-1} = Id_F$