Chapter 2

Sets and applications

2.1 Set

Definition 2.1. An ensemble, also known as a set, is a collection of objects. These objects are called the elements of the set.

Example 2.1. 1. We denote \mathbb{N} by the set of natural numbers $\mathbb{N}=\{0,1, \ldots\}$.
2. The set $E=\{0,1\}$.

Definition 2.2. A set is said to be empty when it contains no elements and is denoted as \emptyset or \{\}.

Definition 2.3. We call the cardinality of a set E the number of elements in E denoted by $\operatorname{card}(E)$ or $|E|$.

Remark 2.1. The concept of cardinality does not apply to infinite sets, such as $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}.

Example 2.2. 1. Consider the set $E=\{0,1\}$, we have $\operatorname{card}(E)=2$.
2. Consider the set $A=\{1,2,3,4\}$, we have $\operatorname{card}(A)=4$.
3. If $A=\emptyset$, then $\operatorname{card}(A)=0$.

Definition 2.4. The power set of E, denoted as $\mathcal{P}(E)$, is the set of all subsets that can formed from E, and we have $\operatorname{card}(\mathcal{P}(E))=2^{\operatorname{card}(E)}$.

Example 2.3. Let $E=\{1,2\}$, the set $\mathcal{P}(E)=\{\emptyset,\{1\},\{2\}, E\}$ and $\operatorname{card}(\mathcal{P}(E))=2^{2}=4$.

2.2 The Relationships between sets

2.2.1 Inclusion

Let A and B be two subsets of a set E. We say that A is included in B (A is a subset of B , or A is a part of B$)$, and denote this as $A \subset B$, if all the elements of a set A are elements of set B .

$$
A \subset B \Longleftrightarrow(\forall x \in E, x \in A \Longrightarrow x \in B) .
$$

Example 2.4. 1. We denote \mathbb{R} as the set of real numbers. We have : $\mathbb{N} \subset \mathbb{R}$.
2. We denote \mathbb{Z} as the set of integers, and \mathbb{Q} as the set of rationals we have:

$$
\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}
$$

Remark 2.2. - We have $\emptyset \subset E$ et $E \subseteq E$.

- If A, B and C are subsets of E, then:

1. $A \not \subset B \Longleftrightarrow(\exists x \in E: x \in A \wedge x \notin B)$.
2. $(A \subset B \wedge B \subset C) \Longrightarrow(A \subset C)$.

2.2.2 Equality

Let's consider two sets, A and B which are subsets of E . We say that A and B are equal, denoted as $(A=B) \Longleftrightarrow[(A \subset B) \wedge(B \subset A)]$, when $(\forall x \in A \Longleftrightarrow x \in B)$. Otherwise, we state that they are distinct, also noted as $A \neq B$.

2.2.3 Union

Definition 2.5. Let's consider two sets, A and B which are subsets of E. The union of A and B is the set of elements that are in A or B, and is denoted by :

$$
\begin{aligned}
& A \cup B=\{x \in E: x \in A \vee x \in B\} . \\
& (x \in A \cup B) \Longleftrightarrow(x \in A \vee x \in B) .
\end{aligned}
$$

Example 2.5. Let $A=\{1,3,5\}$ and $B=\{1, x, y\}$. Then

$$
A \cup B=\{1,3,5, x, y\}
$$

Remark 2.3. $(x \notin A \cup B) \Longleftrightarrow(x \notin A \wedge x \notin B)$.

2.2.4 Intersection

Definition 2.6. Let's consider two sets, A and B which are subsets of E. The intersection of A and B is the set of elements that are both in A and in B, denoted by $A \cap B$.

$$
\begin{aligned}
& A \cap B=\{x \in E: x \in A \wedge x \in B\} . \\
& (x \in A \cap B) \Longleftrightarrow(x \in A \wedge x \in B) .
\end{aligned}
$$

Remark 2.4. $(x \notin A \cap B) \Longleftrightarrow(x \notin A \vee x \notin B)$

Example 2.6. Let $A=\{1,3,5\}$ and $B=\{1, x, y\}$. Then

$$
A \cap B=\{1\} .
$$

Properties Let A, B and C be three sets :

1. $A \subset A \cup B, B \subset A \cup B$.
2. $A \cap B \subset A, A \cap B \subset B$.
3. $A \subset B \Rightarrow A \cup B=B$.
4. $A \subset B \Rightarrow A \cap B=A$.
5. $A \cap B \subset A \cup B$.
6. $A \cap A=A, A \cup A=A$.
7. $\emptyset \subset A, \emptyset \cap A=\emptyset, \emptyset \cup A=A$.
8. $A \cap B=B \cap A$ (commutativity of intersection).
9. $A \cup B=B \cup A$. (commutativity of union).
10. $(A \cap B) \cap C=A \cap(B \cap C)$ (associativity of intersection).
11. $(A \cup B) \cup C=A \cup(B \cup C)$ (associativity of union).
12. $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$ (distributivity of intersection with respect to union).
13. $(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$ (distributivity of union with respect of intersection).

2.2.5 Complement

Definition 2.7. Let A be a subset of E. The complement of A in E, denoted as $A^{c}, C_{E} A$ or \bar{A} is defined as:

$$
A^{c}=\{x \in E / x \notin A\} .
$$

Remark 2.5. 1. $x \in A^{c} \Longleftrightarrow x \notin A$.
2. $A \cup A^{c}=E$.
3. $A \cap A^{c}=\emptyset$.
4. If E and A they are finite, we have:

$$
\operatorname{card}\left(A^{c}\right)=\operatorname{card}(E)-\operatorname{card}(A) .
$$

Example 2.7. Let $E=\{1,2,3,5\}$ and $A=\{3,5\}$, then $A^{c}=\{1,2\}$, and $\operatorname{card}\left(A^{c}\right)=\operatorname{card}(E)-$ $\operatorname{card}(A)=2$.

2.2.6 Set difference - Symmetric difference

Definition 2.8. Let A and B be two sets in E. The set difference of A and B is the set of elements in A that are not in B, denoted as $A \backslash B$ or $A-B$ and read as A minus B

$$
A \backslash B=A \cap B^{c}=\{x \in E: x \in A \text { and } x \notin B\}
$$

Proposition 2.1. 1. $A \backslash B=\varnothing \Leftrightarrow A \subset B$.
2. If A and B are finite we have: $\operatorname{card}(A \backslash B)=\operatorname{card}(A)-\operatorname{card}(A \cap B)$.

Definition 2.9. Let E be a non-empty set and $A, B \subset E$, the symmetric difference between two sets, A and B, is the set of elements that belong to $A \backslash B$ or $B \backslash A$ noted $A \triangle B$

$$
\begin{aligned}
& A \triangle B=(A \backslash B) \cup(B \backslash A) \\
&=(A \cup B) \backslash(B \cap A) \\
&=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right) \\
& x \in A \triangle B \Longleftrightarrow\{x \in(A \backslash B) \vee x \in(B \backslash A)\} .
\end{aligned}
$$

Proposition 2.2. 1. $(A \triangle B) \triangle C=A \triangle(B \triangle C)$.
2. $A \triangle B=\varnothing \Leftrightarrow(A \cup B) \backslash(A \cap B)=\varnothing \Leftrightarrow A=B$.
3. If A and B are finite, we have: $\operatorname{card}(A \triangle B)=\operatorname{card}(A)+\operatorname{card}(B)-2 \operatorname{card}(A \cap B)$.

Properties Let A and B be two subsets of a set E, we have

1. $\left(A^{c}\right)^{c}=A$.
2. $(A \cap B)^{c}=A^{c} \cup B^{c}$ Morgan's law.
3. $(A \cup B)^{c}=A^{c} \cap B^{c}$ Morgan's law.
4. $(A \subset B) \Longleftrightarrow\left(B^{c} \subset A^{c}\right)$.
5. $A \backslash A=\emptyset$.
6. $A \backslash \emptyset=A$.

2.2.7 Cartesian product

Definition 2.10. Let A, B be two sets. The cartesian product of A and B is the set of pairs such that $a \in A$ and $b \in B$. This set will be denoted by $A \times B$

$$
A \times B=\{(a, b) / a \in A \text { et } b \in B\} .
$$

Example 2.8. 1. $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x, y \in \mathbb{R}\}$.
2. $[0,1] \times \mathbb{R}=\{(x, y) \mid 0 \leqslant x \leqslant 1, y \in \mathbb{R}\}$

Remark 2.6. 1. More generally, if $A_{1}, A_{2}, \ldots, A_{n}$ are n sets,

$$
A_{1} \times A_{2} \times \ldots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) / a_{i} \in A_{i}, i=1,2, \ldots, n\right\}
$$

The set $A_{1} \times A_{1} \times \ldots \times A_{1}$ is also denoted as $\prod_{i=1}^{n} A_{i}$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is called n-tuple of $A_{1} \times A_{1} \times \ldots \times A_{1}$.
2. If $A_{1}=A_{2}=\ldots=A_{n}$, we denote

$$
\begin{aligned}
A_{1} \times A_{1} \times \ldots \times A_{1} & =A \times A \times \ldots \times A \\
& =A^{n}
\end{aligned}
$$

Example 2.9. Let $E=\{1,2,3,5,8,9, x, y\}, A=\{1,2,3\}$ and $B=\{1,2,9\}$

1. $\cdot A \subset E$ and $B \subset E$.

- $A \not \subset B$ because $(3 \in A) \wedge(3 \notin B)$.
- $B \not \subset A$ because $(9 \in B) \wedge(9 \notin A)$.

2. - $A \cap B=\{1,2\}$.

- $A \cup B=\{1,2,3,9\}$.

3. $-A \backslash B=\{3\}$.

- $B \backslash A=\{9\}$.

4. $A \triangle B=\{3,9\}$.
5. $A \times B=\{(1,1),(1,2),(1,9),(2,1),(2,2),(2,9),(3,1),(3,2),(3,9)\}$.

2.2.8 Cardinal of a finite set

Definition 2.11. The number of elements in a finite set is called the cardinal of A. This number is denoted by $\operatorname{Card}(A)$ or $|A|$.

Example 2.10. 1. If $A=\{1,2,3,4\}$, then $\operatorname{Card}(A)=4$.
2. If $A=\emptyset$, then $\operatorname{Card}(A)=0$.

Remark 2.7. The concepts of cardinality does not apply to infinite sets, for example $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ et \mathbb{R}.

2.3 Application

Let E and F be two sets.

Definition 2.12. An application $f: E \longrightarrow F$ is defined for each element $x \in E$, a unique element of F noted $f(x)$, where E is the domain set and F is the codomain set.

Example 2.11. 1.

$$
\begin{aligned}
f: & \mathbb{R} \longrightarrow \mathbb{R} \\
& x \longmapsto f(x)=x
\end{aligned}
$$

f is an application
2.

$$
\begin{aligned}
g: & \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto g(n)=n-1 .
\end{aligned}
$$

g is not an application

Remark 2.8. 1. The graph of $f: E \longrightarrow F$ is

$$
\Gamma_{f}=\{(x ; y) \in E \times F / y=f(x)\}
$$

2. Let $f: E \longrightarrow F$ and $g: G \longrightarrow H$ two applications. $f=g$ if and only if $E=G$ and $F=H$ and $\forall x \in E, f(x)=g(x)$.
3. Let $f: E \longrightarrow F$ an application. Let's fix $y \in F$, every element $x \in E$ such that : $y=f(x)$ is a pre-image
notation 2.1. 1. We denote $\mathcal{F}(E, F)$ as the set of all applications from E to F.
4. We denote id the identity application.

$$
\begin{aligned}
i d: & E \longrightarrow E \\
& x \longmapsto i d(x)=x
\end{aligned}
$$

2.4 Direct and reciprocal(inverse) images

Let E and F be two sets.

Definition 2.13. (Direct image) Let $A \subset E$ and $f: E \longrightarrow F$, The direct image of A by f is the set:

$$
f(A)=\{f(x) / x \in A\} \subset F
$$

Definition 2.14. (Inverse image) Let $B \subset F$ and $f: E \longrightarrow F$, The inverse image of B by f is the set:

$$
f^{-1}(B)=\{x \in E / f(x) \in B\} \subset E
$$

Example 2.12. 1. Let f an application

$$
\begin{aligned}
f: & \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto f(x)=2 n+1
\end{aligned}
$$

Let $A=\{0,1,2\}$, then

$$
\begin{aligned}
f(A) & =\{f(n) / n \in A\} \\
& =\{f(0), f(1), f(2)\} \\
& =\{1,3,5\} .
\end{aligned}
$$

Let $B=\{5\}$, then

$$
\begin{aligned}
f^{-1}(B) & =\{x \in E / f(x) \in B\} \\
& =\{x \in E / f(x)=5\} \\
& =\{2\} .
\end{aligned}
$$

Properties 2.1. Let $f: E \longrightarrow F$ be an application. Let A_{1} and A_{2} be two subsets of E. Then,

1. $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.
2. $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$.
3. $A_{1} \subset A_{2} \Longrightarrow f\left(A_{1}\right) \subset f\left(A_{2}\right)$.
4. $A_{1} \subset f^{-1}\left(f\left(A_{1}\right)\right)$.

Let B_{1} and B_{2} be two subsets of F.

1. $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.
2. $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.
3. $B_{1} \subset B_{2} \Longrightarrow f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$.

2.5 Injection

Definition 2.15. Let $f: E \longrightarrow F$ be an application. We say that f is injective if every element of F has at most one pre-image, i.e.,

$$
\forall x, x^{\prime} \in E: f(x)=f\left(x^{\prime}\right) \Longrightarrow x=x^{\prime}
$$

Or

$$
\forall x, x^{\prime} \in E: x \neq x^{\prime} \Longrightarrow f(x) \neq f\left(x^{\prime}\right)
$$

Example 2.13. 1.

$$
\begin{aligned}
f: & \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto 2 n+1
\end{aligned}
$$

f is injective because:

$$
\begin{aligned}
\forall n, n^{\prime} \in E: f(n)=f\left(n^{\prime}\right) & \Longrightarrow 2 n+1=2 n^{\prime}+1 \\
& \Longrightarrow 2 n=2 n^{\prime} \\
& \Longrightarrow n=n^{\prime} .
\end{aligned}
$$

2.

$$
\begin{aligned}
g: & \mathbb{R} \longrightarrow \mathbb{R} \\
& x \longmapsto 5 x+3
\end{aligned}
$$

g is injective because:

$$
\begin{aligned}
\forall x, x^{\prime} \in E: g(x)=g\left(x^{\prime}\right) & \Longrightarrow 5 x+3=5 x^{\prime}+3 \\
& \Longrightarrow 5 x=5 x^{\prime} \\
& \Longrightarrow x=x^{\prime} .
\end{aligned}
$$

2.6 Surjection

Definition 2.16. Let $f: E \longrightarrow F$ be an application. We say that f is surjective if every element of F at least he has a pre-image, i.e.,

$$
\forall y \in F, \exists x \in E: f(x)=y
$$

Example 2.14. 1.

$$
\begin{aligned}
f: & \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto 2 n+1
\end{aligned}
$$

f is not surjective, indeed if we assume that it is surjective, that is

$$
\begin{aligned}
\forall y \in \mathbb{N}, \exists n \in \mathbb{N}: f(n)=y & \Longrightarrow 2 n+1=y \\
& \Longrightarrow n=\frac{y-1}{2} \notin \mathbb{N} \text { contradiction } .
\end{aligned}
$$

2.

$$
\begin{aligned}
g: & \mathbb{R} \longrightarrow \mathbb{R} \\
& n \longmapsto 5 x+3
\end{aligned}
$$

g is surjective because:

$$
\begin{aligned}
\forall y \in \mathbb{R}, \exists x \in \mathbb{R}: g(x)=y & \Longrightarrow 5 x+3=y \\
& \Longrightarrow x=\frac{y-3}{5} \in \mathbb{R} .
\end{aligned}
$$

2.7 Bijection

Definition 2.17. Let $f: E \longrightarrow F$ be an application. We say that f is bijective if it is both surjective and injective,

$$
\forall y \in F, \exists!x \in E: f(x)=y
$$

Meaning that every element in F has a unique pre-image by f.

Example 2.15. 1.

$$
\begin{aligned}
f: & \mathbb{N} \longrightarrow \mathbb{N} \\
& n \longmapsto 2 n+1
\end{aligned}
$$

f is not bijective because it is not surjective.
2. g is bijective.

2.8 The composition of applications

Definition 2.18. Let E, F, G three sets and f, g be two applications such that:

$$
E \xrightarrow{f} F \xrightarrow{g} G
$$

One can deduce an application from E to G, denoted as $g \circ f$ and called the composition of f and g, by

$$
\forall x \in E,(g \circ f)(x)=g(f(x))
$$

Example 2.16. Let

$$
\begin{aligned}
f: & \mathbb{R} \longrightarrow \mathbb{R}^{+} \\
& x \longmapsto x^{2}+1
\end{aligned}
$$

and

$$
\begin{aligned}
g: & \mathbb{R}^{+} \longrightarrow \mathbb{R} \\
& x \longmapsto \sqrt{x},
\end{aligned}
$$

then

$$
\begin{aligned}
g \circ f: & \mathbb{R} \longrightarrow \mathbb{R} \\
& x \longmapsto \sqrt{x^{2}+1}
\end{aligned}
$$

Proposition 2.3. Let $f: E \longrightarrow F$ and $g: F \longrightarrow G$ be two applications.

1. The composition of two injections is an injection, i.e,
(If f and g are injective, then $g \circ f$ is injective).
2. The composition of two surjections is an surjection, i.e,

If f and g are surjective, then $g \circ f$ is surjective).
3. The composition of two bijections is bijection, i.e,
(If f and g are bijective, $g \circ f$ is bijective).
4. If f and g are bijective. Then

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1} .
$$

Proof. 1. Let's assume that f and g are injective, and let's show that $g \circ f$ is injective.

$$
\forall x_{1}, x_{2} \in E,(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)
$$

Since g is injective, we will have:

$$
g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right),
$$

Since g is injective, thus :

$$
(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right) \Longrightarrow x_{1}=x_{2},
$$

then $g \circ f$ is injective.

Proposition 2.4. 1. If $g \circ f$ is injective, then f is injective.
2. If $g \circ f$ is surjective, then f is surjective.
3. If $g \circ f$ is bijective, then f is injective and g is surjective.

Remark 2.9. When an application f is bijective, it means that the inverse application f^{-1} exists, and f^{-1} is also bijective from F to E and $\left(f^{-1}\right)^{-1}=f$.

Proposition 2.5. If $f: E \longrightarrow F$ is a bijection, then

$$
f^{-1} \circ f=I d_{E} \text { and } f \circ f^{-1}=I d_{F} .
$$

