Chapter 4

Algebraic Structures

4.1 Laws of internal composition (L.I.C)

Definition 4.1. Let E be a non-empty set. An internal composition law $*$ on E is a mapping from $E \times E$ to E associating every pair (a, b) in $E \times E$ with an element of E, denoted as $a * b$:

$$
\begin{aligned}
*: E \times E & \longrightarrow E \\
(a, b) & \longmapsto a * b
\end{aligned}
$$

Remark 4.1. The internal composition law can be noted by $*, \perp, \ldots$, or other symbols.

Example 4.1. - The standard operations constitute internal composition law on $\mathbb{N}, \mathbb{Z}, \mathbb{R}, \ldots$

- Intersection and union constitute internal composition laws on the power set of the set E.
- Let * be defined on \mathbb{Q} :

$$
a * b=\frac{a+b}{2}
$$

Then $*$ is an internal composition law.

- Let $*$ be defined on \mathbb{R} :

$$
a * b=\frac{1}{a+b}
$$

Then $*$ is not an internal composition law, because $(-1,1) \in \mathbb{R} \times \mathbb{R}$ does not have a defined image.

4.2 Properties of internal operations

4.2.1 Associativity

Definition 4.2. we say that $*$ is associative if and only if :

$$
\forall(a, b, c) \in E^{3}: a *(b * c)=(a * b) * c
$$

Example 4.2. Let $*$ be an internal composition law defined on \mathbb{R} by :

$$
a * b=a+b-1
$$

We have

$$
\begin{align*}
(a * b) * c & =(a+b-1)+c-1 \\
& =a+b+c-2 \ldots \ldots \ldots \tag{1}\\
a *(b * c) & =a+(b+c-1)-1 \\
& =a+b+c-2 \ldots \ldots \ldots . \tag{2}
\end{align*}
$$

when $(1)=(2)$, then $*$ is associative.

4.2.2 Commutativity

Definition 4.3. we say that $*$ is commutative if and only if :

$$
\forall(a, b) \in E^{2}: a * b=b * a
$$

Example 4.3. Let $*$ be an internal composition law defined on \mathbb{R} by :

$$
a * b=a+b-1
$$

we have

$$
\begin{aligned}
a * b & =a+b-1 \\
& =b+a-1 \\
& =b * a
\end{aligned}
$$

Then * is commutative.

4.2.3 Neutral element

Definition 4.4. The law of internal composition $*$ admits a neutral element on set E if and only if :

$$
\exists e \in E, \forall a \in E: e * a=a * e=a .
$$

Remark 4.2. The neutral element, if it exists, is unique. Indeed let e^{\prime} be another neutral element for $*$, then

$$
e^{\prime}=e^{\prime} * e=e * e^{\prime}=e
$$

Example 4.4. Let $*$ be an internal composition law defined on \mathbb{R} by :

$$
a * b=a+b-1
$$

we have

$$
\begin{aligned}
a * e=a & \Longrightarrow a+e-1=a \\
& \Longrightarrow e=1
\end{aligned}
$$

Then $e=1$ is a neutral element.

4.2.4 Symmetric element

Definition 4.5. We assume that E has a neutral element e for $*$. Let a and a^{\prime} be two elements of E. We say that a^{\prime} is symmetric to a (for the law *) if:

$$
\forall a \in E, \exists a^{\prime} \in E: a * a^{\prime}=a^{\prime} * a=e .
$$

Example 4.5. Let $*$ be an internal composition law defined on \mathbb{R} by :

$$
a * b=a+b-1
$$

we have

$$
\begin{aligned}
a * a^{\prime}=1 & \Longrightarrow a+a^{\prime}-1=1 \\
& \Longrightarrow a^{\prime}=(2-a) \in \mathbb{R}
\end{aligned}
$$

Then $a^{\prime}=2-a$ is a symmertic element.

4.2.5 Distributivity

Definition 4.6. Given two laws of internal composition $*$ et \top defined on E.

- We say that the law \top is left distributive with respect to the law $*$ if:

$$
\forall(a, b, c) \in E^{3}: a \top(b * c)=(a \top b) *(a \top c)
$$

- We say that the law \top is right distributive with respect to the law $*$ if:

$$
\forall(a, b, c) \in E^{3}:(b * c) \top a=(b \top a) *(c \top a)
$$

The law \top is said to be distributive with respect to the law * if it is both left and right distributive with respect to $*$.

Example 4.6. Let $*$ be an internal composition law defined on \mathbb{R} by :

$$
a * b=a+b-1,
$$

and Let \top be an internal composition law defined on \mathbb{R} by :

$$
a \top b=a+b-a b
$$

Then the law \top is said to be distributive with respect to the law *. When \top is commutative, it is then demonstrated that \top is left distributive with respect to the law *.

$$
\begin{align*}
a \top(b * c) & =a \top(b+c-1) \\
& =2 a+b+c-a b-a c-1 \ldots \tag{1}\\
(a \top b) *(a \top c) & =(a+b-a b) *(a+c-a c) \\
& =2 a+b+c-a b-a c-1 \ldots \tag{2}
\end{align*}
$$

When $(1)=(2)$, then the law \top is distributive with respect to the law $*$.

4.3 Stability

Definition 4.7. Let E be a set equipped with an internal law. A subset F of E is said to be stable for this internal law if and only if :

$$
\forall a, b \in F: a * b \in F
$$

Example 4.7. \mathbb{N} is a subset of \mathbb{R} stable for internal composition laws + and \times.

4.4 Group

Definition 4.8. Let the internal composition law be defined on a set G, we say that the pair $(G, *)$ is a group if:

1. The law * is associative

$$
\forall(a, b, c) \in G^{3}: a *(b * c)=(a * b) * c
$$

2. There exists a neutral element e

$$
\exists e \in G, \forall a \in G: e * a=a * e=a .
$$

3. Every element in G has a symmetric element

$$
\forall a \in G, \exists a^{\prime} \in E: a^{\prime} * a=a * a^{\prime}=e
$$

It is also said that the set G has a group structure for the law *.

Example 4.8. 1. (\mathbb{N}, \times) not a group.
2. $(\mathbb{Z},+)$ is a group.
3. (\mathbb{Z}, \times) not a group.
4. $(\mathbb{R},+)$ is a group.

4.4.1 Subgroup

Definition 4.9. Let $(G, *)$. a non-empty subset H of G is a subgroup of G if :

$$
\left\{\begin{array}{cl}
\forall(a, b) \in H \times H & \Longrightarrow a * b \in H \ldots \ldots \ldots .(\tag{1}\\
\forall a \in H & \Longrightarrow a^{\prime} \in H \ldots \ldots \ldots(2)
\end{array}\right.
$$

Example 4.9. Let $(\mathbb{Z},+)$ be a group, then $3 \mathbb{Z}$ is a subgroup of \mathbb{Z}.
We have :

$$
\begin{aligned}
3 \mathbb{Z} & =\{3 z / z \in \mathbb{Z}\} \\
& =\{\ldots,-6,-3,0,3,6, \ldots\}
\end{aligned}
$$

1. Let $a, b \in 3 \mathbb{Z}$, then $\exists z_{1} \in \mathbb{Z}$ such that $a=3 z_{1}$ and $\exists z_{2} \in \mathbb{Z}$ such that $b=3 z_{2}$, so $a+b=3\left(z_{1}+z_{2}\right) \in 3 \mathbb{Z}$.
2. Let $a \in 3 \mathbb{Z}$, then $-a=-3 z_{1}=3\left(-z_{1}\right) \in 3 \mathbb{Z}$.

For (1) and (2), then $3 \mathbb{Z}$ is a subgroup of \mathbb{Z}.

Theorem 4.1. Let H be a non-empty subset of a group G, then H is a subgroup of G if and only if :

$$
\forall(a, b) \in H \times H \Longrightarrow a * b^{\prime} \in H
$$

