Chapter 4

Algebraic Structures

4.1 Laws of internal composition (L.I.C)

Definition 4.1. Let E be a non-empty set. An internal composition law * on E is a mapping from $E \times E$ to E associating every pair (a, b) in $E \times E$ with an element of E, denoted as a * b:

Remark 4.1. The internal composition law can be noted by $*, \perp, \ldots$, or other symbols.

Example 4.1. • The standard operations constitute internal composition law on \mathbb{N} , \mathbb{Z} , \mathbb{R} ,

- Intersection and union constitute internal composition laws on the power set of the set E.
- Let * be defined on \mathbb{Q} :

$$a * b = \frac{a+b}{2}$$

Then * is an internal composition law.

• Let * be defined on \mathbb{R} :

$$a * b = \frac{1}{a+b}$$

Then * is not an internal composition law, because $(-1,1) \in \mathbb{R} \times \mathbb{R}$ does not have a defined image.

4.2 Properties of internal operations

4.2.1 Associativity

Definition 4.2. we say that * is associative if and only if :

$$\forall (a,b,c) \in E^3: \ a*(b*c) = (a*b)*c$$

Example 4.2. Let * be an internal composition law defined on \mathbb{R} by :

$$a * b = a + b - 1$$

We have

$$(a * b) * c = (a + b - 1) + c - 1$$

= a + b + c - 2.....(1)
$$a * (b * c) = a + (b + c - 1) - 1$$

= a + b + c - 2.....(2)

when (1) = (2), then * is associative.

4.2.2 Commutativity

Definition 4.3. we say that * is commutative if and only if :

$$\forall (a,b) \in E^2: \ a*b = b*a$$

Example 4.3. Let * be an internal composition law defined on \mathbb{R} by :

$$a \ast b = a + b - 1$$

we have

$$a * b = a + b - 1$$
$$= b + a - 1$$
$$= b * a$$

Then * is commutative.

4.2.3 Neutral element

Definition 4.4. The law of internal composition * admits a neutral element on set E if and only if :

$$\exists e \in E, \forall a \in E : e * a = a * e = a.$$

Remark 4.2. The neutral element, if it exists, is unique. Indeed let e' be another neutral element for *, then

$$e' = e' \ast e = e \ast e' = e$$

Example 4.4. Let * be an internal composition law defined on \mathbb{R} by :

$$a * b = a + b - 1$$

we have

$$a * e = a \implies a + e - 1 = a$$

 $\implies e = 1$

Then e = 1 is a neutral element.

4.2.4 Symmetric element

Definition 4.5. We assume that E has a neutral element e for *. Let a and a' be two elements of E. We say that a' is symmetric to a (for the law *) if:

$$\forall a \in E, \exists a' \in E : a * a' = a' * a = e.$$

Example 4.5. Let * be an internal composition law defined on \mathbb{R} by :

a * b = a + b - 1

we have

$$a * a' = 1 \implies a + a' - 1 = 1$$

 $\implies a' = (2 - a) \in \mathbb{R}$

Then a' = 2 - a is a symmetric element.

4.2.5 Distributivity

Definition 4.6. Given two laws of internal composition * et \top defined on E.

• We say that the law \top is left distributive with respect to the law * if:

$$\forall (a,b,c) \in E^3: a \top (b*c) = (a \top b) * (a \top c)$$

• We say that the law \top is right distributive with respect to the law * if:

$$\forall (a, b, c) \in E^3 : (b * c) \top a = (b \top a) * (c \top a)$$

The law \top is said to be distributive with respect to the law * if it is both left and right distributive with respect to *.

Example 4.6. Let * be an internal composition law defined on \mathbb{R} by :

$$a \ast b = a + b - 1,$$

and Let \top be an internal composition law defined on \mathbb{R} by :

$$a \top b = a + b - ab$$

Then the law \top is said to be distributive with respect to the law *. When \top is commutative, it is then demonstrated that \top is left distributive with respect to the law *.

$$a \top (b * c) = a \top (b + c - 1)$$

= 2a + b + c - ab - ac - 1.....(1)
$$(a \top b) * (a \top c) = (a + b - ab) * (a + c - ac)$$

= 2a + b + c - ab - ac - 1.....(2)

When (1) = (2), then the law \top is distributive with respect to the law *.

4.3 Stability

Definition 4.7. Let E be a set equipped with an internal law. A subset F of E is said to be stable for this internal law if and only if :

$$\forall a, b \in F : a * b \in F$$

Example 4.7. \mathbb{N} is a subset of \mathbb{R} stable for internal composition laws + and \times .

4.4 Group

Definition 4.8. Let the internal composition law be defined on a set G, we say that the pair (G, *) is a group if:

1. The law * is associative

$$\forall (a,b,c) \in G^3 : a * (b * c) = (a * b) * c$$

2. There exists a neutral element e

 $\exists e \in G, \, \forall a \in G : \, e * a = a * e = a.$

3. Every element in G has a symmetric element

 $\forall a \in G, \exists a' \in E : a' * a = a * a' = e$

It is also said that the set G has a group structure for the law *.

Example 4.8. 1. (\mathbb{N}, \times) not a group.

- 2. $(\mathbb{Z}, +)$ is a group.
- 3. (\mathbb{Z}, \times) not a group.
- 4. $(\mathbb{R}, +)$ is a group.

4.4.1 Subgroup

Definition 4.9. Let (G, *) . a non-empty subset H of G is a subgroup of G if :

$$\begin{cases} \forall (a,b) \in H \times H \implies a * b \in H.....(1) \\ \forall a \in H \implies a' \in H.....(2) \end{cases}$$

Example 4.9. Let $(\mathbb{Z}, +)$ be a group, then $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

We have :

$$3\mathbb{Z} = \{3z/z \in \mathbb{Z}\}\$$

= $\{\dots, -6, -3, 0, 3, 6, \dots\}$

- 1. Let $a, b \in 3\mathbb{Z}$, then $\exists z_1 \in \mathbb{Z}$ such that $a = 3z_1$ and $\exists z_2 \in \mathbb{Z}$ such that $b = 3z_2$, so $a + b = 3(z_1 + z_2) \in 3\mathbb{Z}$.
- 2. Let $a \in 3\mathbb{Z}$, then $-a = -3z_1 = 3(-z_1) \in 3\mathbb{Z}$.

For (1) and (2), then $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Theorem 4.1. Let H be a non-empty subset of a group G, then H is a subgroup of G if and only if :

$$\forall (a,b) \in H \times H \Longrightarrow a * b' \in H.$$