Chapter 3

Binary relations on a set

3.1 Equivalence relation

Definition 3.1. Let \mathcal{R} be a binary relation on E. \mathcal{R} is an equivalence relation if:

1. \mathcal{R} is reflexive :

$$\forall x \in E, x \mathcal{R} x$$

2. \mathcal{R} is symmetric :

$$\forall x, y \in E, \ x\mathcal{R}y \Longleftrightarrow y\mathcal{R}x$$

3. \mathcal{R} is transitive :

$$\forall x, y, z \in E, \ [x\mathcal{R}y \land y\mathcal{R}z] \Longrightarrow x\mathcal{R}z$$

Example 3.1. We consider the following relation on \mathbb{Z} :

$$\forall x, y \in \mathbb{Z}, \ x \mathcal{R} y \Longleftrightarrow \exists k \in \mathbb{Z}, \ x - y = 2k$$

it is an equivalence relation.

1. \mathcal{R} is reflexive : Let $x \in \mathbb{Z}$, we have

$$x - x = 2 \times 0 \iff x \mathcal{R} x$$

Then, \mathcal{R} is reflexive.

2. \mathcal{R} is symmetric :

Let $x, y \in \mathbb{Z}$, we have

$$x\mathcal{R}y \iff \exists k \in \mathbb{Z}, x - y = 2k$$
$$\iff y - x = 2k' \ (k' = -k \in \mathbb{Z})$$
$$\iff y\mathcal{R}x$$

Then, \mathcal{R} is symmetric.

3. \mathcal{R} is transitive : Let $x, y, z \in \mathbb{Z}$, we have

$$x\mathcal{R}y \wedge y\mathcal{R}z \iff \begin{cases} \exists k \in \mathbb{Z}, \ x - y = 2k.....(1) \\ \land \\ \exists k' \in \mathbb{Z}, \ y - z = 2k'....(2) \\ (1) + (2) \implies x - z = 2k'', \ (k'' = (k - k') \in \mathbb{Z}) \\ \implies x\mathcal{R}z \end{cases}$$

Then, \mathcal{R} is transitive.

So \mathcal{R} is an equivalence relation.

3.1.1 Equivalence class

Definition 3.2. If \mathcal{R} is an equivalence relation in a set E, the equivalence class of $x \in E$ is the set

$$\dot{x} = \{ y \in E \mid x\mathcal{R}y \}.$$

notation 3.1. We denote by E/\mathcal{R} (the set of quotients of E by \mathcal{R}) the set of equivalence classes of \mathcal{R}

 $E/\mathcal{R} = \{ \dot{x} \, / \, x \in E \}$

Example 3.2. In the previous example, give \dot{x} and E/\mathcal{R}

$$\begin{aligned} \dot{x} &= \{ y \in \mathbb{Z} / x \mathcal{R}y \} \\ &= \{ y \in \mathbb{Z} / x - y = 2k \} \\ &= \{ x - 2k / k \in \mathbb{Z} \} \\ &= \{ x$$

Proposition 3.1. Let \mathcal{R} be an equivalence relation in the set E. Then,

- $\forall x \in E, \dot{x} \subset E.$
- $\forall x \in E, \dot{x} \neq \emptyset.$
- $\forall x, y \in E, x \mathcal{R} y \Longrightarrow \dot{x} = \dot{y}.$

3.2 Order relation

Definition 3.3. Let \mathcal{R} be a binary relation on E. It 's an order relation if:

1. \mathcal{R} is reflexive :

$$\forall x \in E, \ x\mathcal{R}x.$$

2. \mathcal{R} is anti symmetric :

$$\forall x, y \in E, \ [x\mathcal{R}y \land y\mathcal{R}x] \Longrightarrow x = y$$

3. \mathcal{R} is transitive :

$$\forall x, y, z \in E, \ [x\mathcal{R}y \land y\mathcal{R}z] \Longrightarrow x\mathcal{R}z.$$

Definition 3.4. Let \mathcal{R} be an order on E.

• An order relation \mathcal{R} on a set E is total if:

$$\forall x, y \in E : x\mathcal{R}y \text{ ou } y\mathcal{R}x.$$

It is also called (E, \mathcal{R}) a totally ordered set.

• If the order \mathcal{R} is not total, we say that \mathcal{R} is a partial order.

Example 3.3. We equip \mathbb{R}^2 with the relation noted as \mathcal{R} defined by:

$$(x,y)\mathcal{R}(x',y') \Longrightarrow x \leqslant x' \ et \ y \leqslant y'.$$

Demonstrate that \mathcal{R} is order relation on \mathbb{R}^2 . Is the order total?

1. \mathcal{R} is reflexive :

Let
$$(x, y) \in \mathbb{R}^2$$
, we have $x \leq x$ and $y \leq y \Longrightarrow (x, y)\mathcal{R}(x, y)$.

2. \mathcal{R} is anti symmetric :

Let
$$(x, y), (x', y') \in \mathbb{R}^2$$
, we have $(x, y)\mathcal{R}(x', y')$ and $(x', y')\mathcal{R}(x, y)$, then we have both
 $x \leq x'$ and $x' \leq x$ then $x = x'$ and likewise $y = y'$.

3. \mathcal{R} is transitive :

Let
$$(x, y), (x', y'), (x'', y'') \in \mathbb{R}^2$$
, we have $(x, y)\mathcal{R}(x', y')$ and $(x', y')\mathcal{R}(x'', y'')$, then we have both $x \leq x' \leq x''$ and $y \leq y' \leq y''$ then $(x, y)\mathcal{R}(x'', y'')$.

So \mathcal{R} is order relation.

The order is not total, because we cannot compare (0,1) and (1,0).