Chapter 3

Binary relations on a set

3.1 Equivalence relation

Definition 3.1. Let \mathcal{R} be a binary relation on $E . \mathcal{R}$ is an equivalence relation if:

1. \mathcal{R} is reflexive :

$$
\forall x \in E, x \mathcal{R} x
$$

2. \mathcal{R} is symmetric :

$$
\forall x, y \in E, x \mathcal{R} y \Longleftrightarrow y \mathcal{R} x
$$

3. \mathcal{R} is transitive :

$$
\forall x, y, z \in E,[x \mathcal{R} y \wedge y \mathcal{R} z] \Longrightarrow x \mathcal{R} z
$$

Example 3.1. We consider the following relation on \mathbb{Z} :

$$
\forall x, y \in \mathbb{Z}, x \mathcal{R} y \Longleftrightarrow \exists k \in \mathbb{Z}, x-y=2 k
$$

it is an equivalence relation.

1. \mathcal{R} is reflexive : Let $x \in \mathbb{Z}$, we have

$$
x-x=2 \times 0 \Longleftrightarrow x \mathcal{R} x
$$

Then, \mathcal{R} is reflexive.
2. \mathcal{R} is symmetric :

Let $x, y \in \mathbb{Z}$, we have

$$
\begin{aligned}
x \mathcal{R} y & \Longleftrightarrow \exists k \in \mathbb{Z}, x-y=2 k \\
& \Longleftrightarrow y-x=2 k^{\prime}\left(k^{\prime}=-k \in \mathbb{Z}\right) \\
& \Longleftrightarrow y \mathcal{R} x
\end{aligned}
$$

Then, \mathcal{R} is symmetric.
3. \mathcal{R} is transitive : Let $x, y, z \in \mathbb{Z}$, we have

$$
\left.\begin{array}{rl}
x \mathcal{R} y \wedge y \mathcal{R} z & \Longleftrightarrow\left\{\begin{array}{c}
\exists k \in \mathbb{Z}, x-y=2 k \ldots \ldots \ldots(1) \\
\wedge
\end{array}\right. \\
\exists k^{\prime} \in \mathbb{Z}, y-z=2 k^{\prime} \ldots \ldots . .(2)
\end{array}\right] \begin{array}{cc}
\exists-z=2 k^{\prime \prime},\left(k^{\prime \prime}=\left(k-k^{\prime}\right) \in \mathbb{Z}\right) \\
(1)+(2) & \Longrightarrow \mathcal{R} z
\end{array}
$$

Then, \mathcal{R} is transitive.

So \mathcal{R} is an equivalence relation.

3.1.1 Equivalence class

Definition 3.2. If \mathcal{R} is an equivalence relation in a set E, the equivalence class of $x \in E$ is the set

$$
\dot{x}=\{y \in E / x \mathcal{R} y\} .
$$

notation 3.1. We denote by E / \mathcal{R} (the set of quotients of E by \mathcal{R}) the set of equivalence classes of \mathcal{R}

$$
E / \mathcal{R}=\{\dot{x} / x \in E\}
$$

Example 3.2. In the previous example, give \dot{x} and E / \mathcal{R}

$$
\begin{aligned}
& \dot{x}=\{y \in \mathbb{Z} / x \mathcal{R} y\} \\
&=\{y \in \mathbb{Z} / x-y=2 k\} \\
&=\{x-2 k / k \in \mathbb{Z}\} \\
&=\{\ldots, x-4, x-2, x, x+2, x+4, \ldots\} \\
&=\{y \in \mathbb{Z} / 0 \mathcal{R} y\} \\
&=\{\ldots,-4,-2,0,2,4, \ldots\} \\
& \dot{1}=\{y \in \mathbb{Z} / 1 \mathcal{R} y\} \\
&=\{\ldots,-3,-1,1,3, \ldots\} \\
& \dot{2}=\dot{0} \\
& \mathbb{Z} / \mathcal{R}=\{\dot{x} / x \in \mathbb{Z}\} . \\
& \mathbb{Z} / \mathcal{R}=\{\dot{0}, \dot{1}\} .
\end{aligned}
$$

Proposition 3.1. Let \mathcal{R} be an equivalence relation in the set E. Then,

- $\forall x \in E, \dot{x} \subset E$.
- $\forall x \in E, \dot{x} \neq \emptyset$.
- $\forall x, y \in E, x \mathcal{R} y \Longrightarrow \dot{x}=\dot{y}$.

3.2 Order relation

Definition 3.3. Let \mathcal{R} be a binary relation on E. It 's an order relation if:

1. \mathcal{R} is reflexive :

$$
\forall x \in E, x \mathcal{R} x
$$

2. \mathcal{R} is anti symmetric:

$$
\forall x, y \in E,[x \mathcal{R} y \wedge y \mathcal{R} x] \Longrightarrow x=y
$$

3. \mathcal{R} is transitive :

$$
\forall x, y, z \in E,[x \mathcal{R} y \wedge y \mathcal{R} z] \Longrightarrow x \mathcal{R} z
$$

Definition 3.4. Let \mathcal{R} be an order on E.

- An order relation \mathcal{R} on a set E is total if:

$$
\forall x, y \in E: x \mathcal{R} y \text { ou } y \mathcal{R} x
$$

It is also called (E, \mathcal{R}) a totally ordered set.

- If the order \mathcal{R} is not total, we say that \mathcal{R} is a partial order.

Example 3.3. We equip \mathbb{R}^{2} with the relation noted as \mathcal{R} defined by:

$$
(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right) \Longrightarrow x \leqslant x^{\prime} \text { et } y \leqslant y^{\prime} .
$$

Demonstrate that \mathcal{R} is order relation on \mathbb{R}^{2}. Is the order total?

1. \mathcal{R} is reflexive :

$$
\text { Let }(x, y) \in \mathbb{R}^{2} \text {, we have } x \leqslant x \text { and } y \leqslant y \Longrightarrow(x, y) \mathcal{R}(x, y)
$$

2. \mathcal{R} is anti symmetric :

Let $(x, y),\left(x^{\prime}, y^{\prime}\right) \in \mathbb{R}^{2}$, we have $(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right) \mathcal{R}(x, y)$, then we have both $x \leqslant x^{\prime}$ and $x^{\prime} \leqslant x$ then $x=x^{\prime}$ and likewise $y=y^{\prime}$.
3. \mathcal{R} is transitive :

Let $(x, y),\left(x^{\prime}, y^{\prime}\right),\left(x^{\prime \prime}, y^{\prime \prime}\right) \in \mathbb{R}^{2}$, we have $(x, y) \mathcal{R}\left(x^{\prime}, y^{\prime}\right)$ and $\left(x^{\prime}, y^{\prime}\right) \mathcal{R}\left(x^{\prime \prime}, y^{\prime \prime}\right)$, then we have both $x \leqslant x^{\prime} \leqslant x^{\prime \prime}$ and $y \leqslant y^{\prime} \leqslant y^{\prime \prime}$ then $(x, y) \mathcal{R}\left(x^{\prime \prime}, y^{\prime \prime}\right)$.

So \mathcal{R} is order relation.
The order is not total, because we cannot compare $(0,1)$ and $(1,0)$.

