4.4.1 Subgroup

Definition 4.9. Let (G, *) . a non-empty subset H of G is a subgroup of G if :

$$\begin{cases} \forall (a,b) \in H \times H \implies a * b \in H.....(1) \\ \forall a \in H \implies a' \in H.....(2) \end{cases}$$

Example 4.9. Let $(\mathbb{Z}, +)$ be a group, then $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

We have :

$$3\mathbb{Z} = \{3z/z \in \mathbb{Z}\}\$$

= $\{\dots, -6, -3, 0, 3, 6, \dots\}$

- 1. Let $a, b \in 3\mathbb{Z}$, then $\exists z_1 \in \mathbb{Z}$ such that $a = 3z_1$ and $\exists z_2 \in \mathbb{Z}$ such that $b = 3z_2$, so $a + b = 3(z_1 + z_2) \in 3\mathbb{Z}$.
- 2. Let $a \in 3\mathbb{Z}$, then $-a = -3z_1 = 3(-z_1) \in 3\mathbb{Z}$.

For (1) and (2), then $3\mathbb{Z}$ is a subgroup of \mathbb{Z} .

Theorem 4.1. Let H be a non-empty subset of a group G, then H is a subgroup of G if and only if :

$$\forall (a,b) \in H \times H \Longrightarrow a * b' \in H.$$

4.4.2 Homomorphism

Definition 4.10. For groups $(G_1, *)$ and (G_2, \top) , an homomorphism from $(G_1, *)$ to (G_2, \top) is defined as any function $f : G_1 \longrightarrow G_2$ such that:

$$\forall (x,y) \in G_1^2 : f(x*y) = f(x) \top f(y).$$

Remark 4.3. If f is bijective, it is refferred to as an isomorphism.

- An endomorphism is an homomorphism from $(G_1, *)$ to itself.
- An automorphism is a bijective endomorphism from $(G_1, *)$ to itself.

Example 4.10. The function

$$\begin{array}{rccc} f: \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & f(x) = 2^x \end{array}$$

is an homomorphism from $(\mathbb{R}, +)$ to (\mathbb{R}, \times) because

$$\begin{aligned} \forall (x,y) \in \mathbb{R}^2 : f(x+y) &= 2^{x+y} \\ &= 2^x \times 2^y \\ &= f(x) \times f(y). \end{aligned}$$

Definition 4.11. Let $(G_1, *)$ and (G_2, \top) be two groups, and $f : G_1 \longrightarrow G_2$ is an homomorphism from $(G_1, *)$ to (G_2, \top) .

1. The kernel of f is referred as the set

$$kerf = \{ x \in G_1 \, / \, f(x) = e_2 \}.$$

2. The image of f is referred as the set

$$Imf = \{ f(x) \in G_2 \mid x \in G_1 \}.$$

Theorem 4.2. Let f be an homomorphism from $(G_1, *)$ to (G_2, \top) , then:

- 1. kerf is a sub-group of G_1 .
- 2. Imf is a sub-group of G_2 .
- 3. f is injective $\iff kerf = \{e_1\}.$
- 4. f is surjective $\iff Imf = G_2$.

4.5 $\mathbb{Z}/n\mathbb{Z}$ group

Fixing $n \ge 1$. Recall that $\mathbb{Z}/n\mathbb{Z}$ is the set

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{p}, \dots, \overline{n}\}\$$

where \overline{p} denotes the equivalence class of p modulo n. In other words:

$$\overline{p} = \overline{q} \iff p \equiv q \mod(n)$$

or alternatively

$$\overline{p} = \overline{q} \Longleftrightarrow \exists k \in \mathbb{Z} : p = q + kn.$$

We define in $\mathbb{Z}/n\mathbb{Z}$ two laws of composition :

• Addition :

$$\overline{p} + \overline{q} = \overline{p+q}$$

• Multiplication:

$$\overline{p} \cdot \overline{q} = \overline{p \cdot q}$$

Example 4.11. In $\mathbb{Z}/6\mathbb{Z}$, we have

Let $x, y \in \mathbb{Z}$

and

$$\overline{31} + \overline{46} = \overline{31 + 46}$$
$$= \overline{77}$$
$$= \overline{5}$$
$$\overline{31} \cdot \overline{46} = \overline{31 \cdot 46}$$
$$= \overline{1426}$$
$$= \overline{4}$$

Proposition 4.1. $(\mathbb{Z}/n\mathbb{Z}, +)$ is a commutative group .

4.6 Rings

Definition 4.12. Let A be a set equipped with two internal composition laws, we say that A is a ring if:

- 1. (A, *) is a commutative group.
- 2. The law \top is associative.
- 3. The law \top is distributive with respect to the operation *.
- **Remark 4.4.** An ring $(A, *, \top)$ is called commutative if the operation \top is commutative.
 - An ring $(A, *, \top)$ is unitary if the operation \top has a neutral element.

Example 4.12. 1. $(\mathbb{Z}, +, \times)$ is a commutative and unitary ring.

2. $(\mathbb{R}, +, \times)$ is a commutative and unitary ring.

4.7 Field

Definition 4.13. Let \mathbb{K} be a set equipped with two internal composition laws, we say that \mathbb{K} is a field if:

- 1. $(\mathbb{K}, *, \top)$ is a unitary ring.
- 2. $(\mathbb{K} \{e\}, \top)$ is a group, where is the neutral element of *.

Example 4.13. 1. $(\mathbb{Z}, +, \times)$ is not a field.

2. $(\mathbb{R}, +, \times)$ is a commutative field.