
4. Algebraic Structures

4.4.1 Subgroup

Definition 4.9. Let (G, ∗) . a non-empty subset H of G is a subgroup of G if :

 ∀(a, b) ∈ H × H =⇒ a ∗ b ∈ H.........(1)

∀a ∈ H =⇒ a′ ∈ H........(2)

Example 4.9. Let (Z, +) be a group, then 3Z is a subgroup of Z.

We have :
3Z = {3z/z ∈ Z}

= {. . . , −6, −3, 0, 3, 6, . . .}

1. Let a, b ∈ 3Z, then ∃z1 ∈ Z such that a = 3z1 and ∃z2 ∈ Z such that b = 3z2, so

a + b = 3(z1 + z2) ∈ 3Z.

2. Let a ∈ 3Z, then −a = −3z1 = 3(−z1) ∈ 3Z.

For (1) and (2), then 3Z is a subgroup of Z.

Theorem 4.1. Let H be a non-empty subset of a group G, then H is a subgroup of G if and

only if :

∀(a, b) ∈ H × H =⇒ a ∗ b′ ∈ H.

4.4.2 Homomorphism

Definition 4.10. For groups (G1, ∗) and (G2, ⊤), an homomorphisme from (G1, ∗) to (G2, ⊤)

is defined as any function f : G1 −→ G2 such that:

∀(x, y) ∈ G2
1 : f(x ∗ y) = f(x)⊤f(y).

Remark 4.3. • If f is bijective, it is refferred to as an isomorphism.

• An endomorphism is an homomorphism from (G1, ∗) to itself.

• An automorphism is a bijective endomorphism from (G1, ∗) to itself.



4.5. Z/nZ group

Example 4.10. The function
f : R −→ R

x 7−→ f(x) = 2x

is an homomorphism from (R, +) to (R, ×) because

∀(x, y) ∈ R2 : f(x + y) = 2x+y

= 2x × 2y

= f(x) × f(y).

Definition 4.11. Let (G1, ∗) and (G2, ⊤) be two groups, and f : G1 −→ G2 is an homomor-

phism from (G1, ∗) to (G2, ⊤).

1. The kernel of f is referred as the set

kerf = {x ∈ G1 / f(x) = e2}.

2. The image of f is referred as the set

Imf = {f(x) ∈ G2 / x ∈ G1}.

Theorem 4.2. Let f be an homomorphism from (G1, ∗) to (G2, ⊤), then:

1. kerf is a sub-group of G1.

2. Imf is a sub-group of G2.

3. f is injective ⇐⇒ kerf = {e1}.

4. f is surjective ⇐⇒ Imf = G2.

4.5 Z/nZ group

Fixing n ⩾ 1. Recall that Z/nZ is the set

Z/nZ = {0, 1, . . . , p, . . . , n}
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where p denotes the equivalence class of p modulo n. In other words:

p = q ⇐⇒ p ≡ q mod(n)

or alternatively

p = q ⇐⇒ ∃k ∈ Z : p = q + kn.

We define in Z/nZ two laws of composition :

• Addition :

p + q = p + q

• Multiplication:

p · q = p · q

Example 4.11. In Z/6Z, we have

Let x, y ∈ Z
31 + 46 = 31 + 46

= 77

= 5

and
31 · 46 = 31 · 46

= 1426

= 4

Proposition 4.1. (Z/nZ, +) is a commutative group .

4.6 Rings

Definition 4.12. Let A be a set equipped with two internal composition laws, we say that A is

a ring if:



4.7. Field

1. (A, ∗) is a commutative group .

2. The law ⊤ is associative.

3. The law ⊤ is distributive with respect to the operation ∗.

Remark 4.4. • An ring (A, ∗, ⊤) is called commutative if the operation ⊤ is commutative.

• An ring (A, ∗, ⊤) is unitary if the operation ⊤ has a neutral element.

Example 4.12. 1. (Z, +, ×) is a commutative and unitary ring.

2. (R, +, ×) is a commutative and unitary ring.

4.7 Field

Definition 4.13. Let K be a set equipped with two internal composition laws, we say that K

is a field if:

1. (K, ∗, ⊤) is a unitary ring.

2. (K − {e}, ⊤) is a group, wheree is the neutral element of ∗.

Example 4.13. 1. (Z, +, ×) is not a field.

2. (R, +, ×) is a commutative field.
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