University year : 2023-2024 Department :MI <u>Module</u> : Algebra 2

Tutorial Series(1)

Exercise 1 For any $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, define an operation of addition "+"(internal composition law) by

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

and an operation of scalar multiplication "." (external composition law) by

$$\forall \alpha \in \mathbb{R}, \, \forall (x_1, x_2) \in \mathbb{R}^2; \ \alpha \cdot (x_1, x_2) = (\alpha \cdot x_1, \alpha \cdot x_2)$$

Is $(\mathbb{R}^2, +, .)$ a vector space on the field \mathbb{R} ?

Exercise 2 Determine which of the following subsets are subspaces of \mathbb{R}^3 . Give reasons for your answers.

1. $F_1 = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 0\}.$ 2. $F_2 = \{(x, y, z) \in \mathbb{R}^3 | x - y + z = 1\}.$ 3. $F_3 = \{(x_1, 0, x_3) \in \mathbb{R}^3 | x_1 \leq 0 \text{ et } x_3 \in \mathbb{R}\}.$

Exercise 3 Show that in the space \mathbb{R}^3 , the vectors u = (-5, 6, 4), v = (1, 0, -2) and w = (0, 3, 5) are linearly independent.

Exercise 4 let F be the subset of \mathbb{R}^3 defined as :

$$F = \{ (x_1, x_2, 0) \in \mathbb{R}^3 \, | \, x_1, x_2 \in \mathbb{R} \}$$

- 1. Show that F is a vector subspace of \mathbb{R}^3 .
- 2. Find the basis of F. Deduce the dimension of F.

Exercise 5 Let \mathbb{R}^3 be the vector space on the field \mathbb{R} ,

- 1. Show that the set $\{v_1 = (0, 1, 1), v_2 = (1, 0, 1), v_3 = (1, 1, 0)\}$ is a basis of \mathbb{R}^3 .
- 2. Find the components of a vector w = (1, 1, 1) in the basis $\{v_1, v_2, v_3\}$