<u>Academic year</u> : 2023-2024 <u>Department</u> :MI <u>Module</u> : Algebra1

Tutorial Series(2)

Exercise 1 Let A, B and C be three parts of a non empty set E. Show that :

- 1. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$
- 2. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Exercise 2 Let A and B be two parts of a set E. Show that :

- 1. $A \subset B \Leftrightarrow A \cup B = B$.
- 2. $A \subset B \Leftrightarrow A \cap \overline{B} = \emptyset$.

Exercise 3 Let A and B be two parts of a non empty set E. We call the symmetric difference of A and B denoted by $A \triangle B$, the set defined by

 $A \bigtriangleup B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$

where \overline{A} the complement of A in E and \overline{B} the complement of B in E.

- 1. Determine the sets $A \bigtriangleup E$, $A \bigtriangleup \emptyset$ and $A \bigtriangleup A$.
- 2. Show that the operator \triangle is commutative.

Exercise 4 Let $f : E \longrightarrow F$ be an application and let A_1 , A_2 be two subsets of E. Prove that :

- 1. $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$.
- 2. $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$. • Show by a counterexample that $:f(A_1) \cap f(A_2) \not\subset f(A_1 \cap A_2)$.
- 3. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2).$

Exercise 5 Let $f: E \longrightarrow F$ be an application and let B_1 , B_2 be two subsets of F. Prove that :

1. $B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2).$ 2. $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2).$ 3. $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2).$ **Exercise 6** Consider three sets E, F and G and two applications $f : E \longrightarrow F$ and $g : F \longrightarrow G$. Show that :

- 1. $g \circ f$ is injective $\Longrightarrow f$ is injective.
- 2. $g \circ f$ is surjective $\Longrightarrow f$ is surjective.
- 3. $g \circ f$ is injective and f is surjective $\iff g$ is injective.
- 4. $g \circ f$ is injective et g is injective $\iff f$ is surjective.

Exercise 7 Using the definitions of surjection, injection, and bijection of an application, determine whether the following applications are surjective, injective, or bijective.

1.
$$\begin{array}{cccc} f: [-1,1] & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f(x) = \sqrt{1-x^2} \\ g. & f: \mathbb{R} & \longrightarrow & [-3,+\infty[\\ & x & \longmapsto & f(x) = x^2 + 4x + 1 \\ g. & f: [0,+\infty[& \longrightarrow & [1,+\infty[\\ & x & \longmapsto & f(x) = 3x^2 + 4x + 1 \end{array} \end{array}$$