Academic year : 2023-2024
Department :MI
Module : Algebra1

Tutorial Series(2)

Exercise 1 Let A, B and C be three parts of a non empty set E.
Show that:

1. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
2. $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.

Exercise 2 Let A and B be two parts of a set E.
Show that:

1. $A \subset B \Leftrightarrow A \cup B=B$.
2. $A \subset B \Leftrightarrow A \cap \bar{B}=\emptyset$.

Exercise 3 Let A and B be two parts of a non empty set E.
We call the symmetric difference of A and B denoted by $A \triangle B$, the set defined by

$$
A \Delta B=(A \cap \bar{B}) \cup(\bar{A} \cap B)
$$

where \bar{A} the complement of A in E and \bar{B} the complement of B in E.

1. Determine the sets $A \triangle E, A \triangle \emptyset$ and $A \triangle A$.
2. Show that the operator Δ is commutative.

Exercise 4 Let $f: E \longrightarrow F$ be an application and let A_{1}, A_{2} be two subsets of E. Prove that:

1. $A_{1} \subset A_{2} \Rightarrow f\left(A_{1}\right) \subset f\left(A_{2}\right)$.
2. $f\left(A_{1} \cap A_{2}\right) \subset f\left(A_{1}\right) \cap f\left(A_{2}\right)$.

- Show by a counterexample that : $f\left(A_{1}\right) \cap f\left(A_{2}\right) \not \subset f\left(A_{1} \cap A_{2}\right)$.

3. $f\left(A_{1} \cup A_{2}\right)=f\left(A_{1}\right) \cup f\left(A_{2}\right)$.

Exercise 5 Let $f: E \longrightarrow F$ be an application and let B_{1}, B_{2} be two subsets of F. Prove that :

1. $B_{1} \subset B_{2} \Rightarrow f^{-1}\left(B_{1}\right) \subset f^{-1}\left(B_{2}\right)$.
2. $f^{-1}\left(B_{1} \cap B_{2}\right)=f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)$.
3. $f^{-1}\left(B_{1} \cup B_{2}\right)=f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)$.

Exercise 6 Consider three sets E, F and G and two applications $f: E \longrightarrow F$ and $g: F \longrightarrow$ G. Show that :

1. $g \circ f$ is injective $\Longrightarrow f$ is injective.
2. $g \circ f$ is surjective $\Longrightarrow f$ is surjective.
3. $g \circ f$ is injective and f is surjective $\Longleftrightarrow g$ is injective.
4. $g \circ f$ is injective et g is injective $\Longleftrightarrow f$ is surjective.

Exercise 7 Using the definitions of surjection, injection, and bijection of an application, determine whether the following applications are surjective, injective, or bijective.

1. $f:[-1,1] \longrightarrow \mathbb{R}$

$$
x \quad \longmapsto f(x)=\sqrt{1-x^{2}}
$$

2. $f: \mathbb{R} \longrightarrow[-3,+\infty[$
$x \quad \longmapsto f(x)=x^{2}+4 x+1$
3. $f:[0,+\infty[\longrightarrow[1,+\infty[$

$$
x \quad \longmapsto f(x)=3 x^{2}+4 x+1
$$

