<u>Academic year</u> : 2023-2024 <u>Department</u> :MI <u>Module</u> : Algebra1

Tutorial Series(3)

Exercise 1 In the set of integers \mathbb{Z} , we define the binary relation \mathcal{R} by :

 $x\mathcal{R}y \Leftrightarrow \exists k \in \mathbb{Z} : x - y = 3k$

- 1. Show that \mathcal{R} is an equivalence relation .
- 2. Determine equivalence classes of zero, one and two.
- 3. Find the quotient set \mathbb{Z}/\mathcal{R} .

Exercise 2 Let E be a nonempty set, and let \mathcal{R} be a reflexive relation in E such that :

 $\forall x, y, z \in E, (x\mathcal{R}y \ et \ y\mathcal{R}z) \Rightarrow (z\mathcal{R}x)$

– Show that \mathcal{R} is an equivalence relation .

Exercise 3 On \mathbb{N}^* , we define the relation \mathcal{R} as :

$$a\mathcal{R}b \Leftrightarrow \exists q \in \mathbb{N}^* : b = q.a$$

- 1. Demonstrate that \mathcal{R} is an order relation .
- 2. Is the order total?

Exercise 4 Over the power set of E, we define the relation \mathcal{R} as :

$$A\mathcal{R}B \Leftrightarrow A \subset B$$

- 1. Demonstrate that \mathcal{R} is an order relation.
- 2. Is the order total?