Academic year : 2023-2024
Department :MI
Module : Algebra1

Tutorial Series(3)

Exercise 1 In the set of integers \mathbb{Z}, we define the binary relation \mathcal{R} by:

$$
x \mathcal{R} y \Leftrightarrow \exists k \in \mathbb{Z}: x-y=3 k
$$

1. Show that \mathcal{R} is an equivalence relation.
2. Determine equivalence classes of zero, one and two.
3. Find the quotient set \mathbb{Z} / \mathcal{R}.

Exercise 2 Let E be a nonempty set, and let \mathcal{R} be a reflexive relation in E such that :

$$
\forall x, y, z \in E,(x \mathcal{R} y \text { et } y \mathcal{R} z) \Rightarrow(z \mathcal{R} x)
$$

- Show that \mathcal{R} is an equivalence relation.

Exercise 3 On \mathbb{N}^{*}, we define the relation \mathcal{R} as:

$$
a \mathcal{R} b \Leftrightarrow \exists q \in \mathbb{N}^{*}: b=q \cdot a
$$

1. Demonstrate that \mathcal{R} is an order relation.
2. Is the order total?

Exercise 4 Over the power set of E, we define the relation \mathcal{R} as:

$$
A \mathcal{R} B \Leftrightarrow A \subset B
$$

1. Demonstrate that \mathcal{R} is an order relation.
2. Is the order total?
