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Introduction

This course is intended primarily for all students who may need mathematical analysis for their higher
education studies. Future students of computer science, technical sciences, economics, natural sciences....
will find here most tools and notions of calculus in analysis that they may need. The course is described
in detail, theorems and propositions are demonstrated. All Exercises with corrections, will help student to
integrate the concepts studied. This document contains the following 6 chapters in an easy-to-read style:

The first chapter of this presentation is devoted to the properties of the real numbers R. (this is
necessary for real analysis).

The second chapter deals with complex numbers C.
The third chapter discusses sequences of real numbers and their properties.

The fourth chapter looks at real functions with one real variable, focusing on the notion of limits and
continuity at a point.

The second-to-last chapter is devoted to differentiability, the Mean Value Theorem and its applica-
tions.

@ The last chapter covers the definitions and properties of the usual functions: logarithm functions, ex-
ponential functions, power functions, trigonometric functions, hyperbolic functions, inverse trigono-
metric functions, inverse hyperbolic functions.

Acknowledgements: I would like to thank Dr Bousaad Abedelmalik and Dr Brahimi Mahmoud for
their advice during the writing of this course.
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Chapter 1

The set of real numbers R

1.1 Usual sets of numbers

Notations:

The set of natural numbers is denoted by N: N = {0,1,2,3,....}

We denote by Z, the set of all integers, i.e. the set of all natural numbers and their
opposites: Z=1{....—2,—1,0,1,2,3....}

We denote by Q, the set of all rational numbers, which is the set of quotients Q, where p
q

and ¢ are two integers, with a non-zero ¢: Q = {g/p €Zetqel*}
q

The set of real numbers is denoted by R. It contains rational and irrational numbers such

that v/2, ...

The sets without 0 are respectively denoted by N*,Z* Q* R*

Remark:

NCZcCcQcCR

1.2 Axiomatic definitions of real numbers

The set of real numbers R has the following two operations

> (r,y) > x+y

> (r,y) > 2.y

with an ordering relation (z < y) or (y < x) satisfying the following fifteen axioms :



1.2.1 Arithmetic axioms

Al. For any z,y € R; z + y = y + = (commutativity of the addition)

A2. For any z,yetz € R; (x +y) + 2 =z + (y + 2) (associativity of the addition)
A3. There exists an element 0 € R such that, for all x € R; x + 0 = .

A4. For any = € R, there exists an element —z € R such that x + (—z) = 0.

A5. For any z,y € R; z.y = y.x (commutativity of the multiplication)

AG. For every x,yand z € R; (z.y).z = x.(y.2) (associativity of the multiplication)
AT7. There exists an element 1 € R such that, forall z e R; z.1 = x

A8. For all z € R*, There exists x~! € R* such that: z.27! =1

A9. For any z,y and z € R; z.(y + z) = x.y + x.z (distributivity)

Remark:

1.

1.2.2 Order axioms

A10. For all x € R we have: < x (Reflexivity)

Al11. For every z,y € R we have: if z < y and y < z then 2 = y (Antisymmetry)
A12. For any z,y,z € R we have: if x <y and y < z then x < z (Transitivity)
A13. Let z,y € R we have: z <yory <z

Al14. Consider z,y,z € R we have: if x <y then (z+2 <y+2) and (2.2 < y.zif 0 < 2)

Axioms (A1) and (A2) can be used to calculate the sum of three numbers .y, et z expres-
sed as x + y + z and the symbol > is used to denote the sum of n terms in the following
way:

T+ 2o+ 23+ ...l xn:ZLEk

From axiom (A3) the neutral element 0 for addition in R is unique.
From axiom (A4) the additive inverse of a number z is unique and noted by —zx.

Axioms (A5) and (A6) also allow us to calculate the product of three numbers x,y,et z
clearly in the form z.y.z and the symbol [] designates the product of n terms as follows:

From axiom (A7) the neutral element 1 for multiplication in R is unique.

By axiom (AS8), the multiplicative inverse of a number z € R* is unique, denoted by
1

xr = —.
i

Remark:



1. Axioms (A10), (A11), (A12) and (A13) express that < is a totally ordered relation (see
algebra course).

2. From the relationship (less than or equal to <) defined above, we can define its symme-
trical relationship (greater than or equal to >) as follows:

For all real numbers z,y € R; x > y if and only if y < z.

The relation > is also a totally ordered relation on R.

3. We define the relationship (strictly inferior <) by:
For any z,y € R, x < y if and only if (x < y) and (z # y).
and the relationship (strictly greater >) by:
For every z,y € R, z > y if and only if: (z > y) and (x # y).

Before stating the least-upper-bound axiom (A15) sometimes called completeness property or
supremum property, we need the following definitions

Definition 1.1: (Upper and lower bounds of a set)

Let E be a non-empty subset of R (£ C R).

« A subset E is said to be bounded from above (or right bounded) iff there exists
M € R such that:
Vee B :x <M

In this case, the real number M is called an upper bound of F.
The set of all upper bounds of E is noted by: Upper(E)

o A subset E is said to be bounded from below (or left bounded) iff there exists
m € R such that:
VieE:-m<zx

In this case, the real number m is called a lower bound of E. The set of all lower
bounds of E is noted by: Lower(E)

o A subset F is said to be bounded iff there exists m and M such that: for any
relE m<ax< M.




Examples:

1. E=]4,5]
3 and 4 are both lower bounds of E since: forall x € £, 4 <z et 3 < z.
5 and 6 are two upper bounds of E since: for any x € F, x <5 and = < 6.

2. E={-2,-1,0,14,6}
—2 is a lower bound of F since: for all x € E, —2 < z.
6 is an upper bound of E since: for every x € E, x < 6.

Remark:

1. The upper and lower bound of a set E are not unique. In fact, in R the set E=]4,5] has
an infinite number of lower and upper bounds.

2. The upper and lower bound of a set £ may or may not belong to E. For example, if the
set £ ={-2,—1,0,1,4,6}, then —2 and —4 are both lower bounds of E, —2 belongs to E
and —4 does not belong to E.

Définition 1.2: (Minimum and maximum of a set)

Let E be a non-empty subset of R (£ C R).

« The lower bound of F that belongs to F is called the smallest element or (mi-
nimum of E. This is denoted by min(£). In other words:

m € Lower(E).
m = min(k) < and < m € Lower(E)NE
mek

o The upper bound of E that belongs to E' is called the greatest element or maxi-
mum of . This is denoted by max(F). In other words:

M € Upper(E).
M =max(F) < and < M e Upper(E)NE
MeFE

Examples:

1. E = [5.20]
Since 5 is a lower bound and belongs to F, then min(F) = 5.
max(F) = 20 as 20 is an upper bound of E and 20 belongs to E.

2. E=]0,6]
min(£) does not exist because there is no lower bound of F that belongs to FE.
max(F) does not exist, since there is no upper bound of F that belongs to E.

Remark:
1. If min(FE) exists then it is unique.

2. If max(F) exists then it is unique.



Definition 1.3: (The least upper bound and the greatest lower bound)

o The greatest element in lower bounds of E is called the infimum of E and is noted
by: inf(E). in other words :

m = inf(F) < m = max(Lower(E))

o The smallest element in upper bounds of £ is called the supremum of F and is
noted by: sup(E). in other words :

M = sup(F) <& M = min(Upper(E))

Finally, we can state the least-upper-bound axiom as follows:

1.2.3 The least-upper-bound axiom

A15. For every non-empty subset F C R and bounded above, has a sup(E) in R

Consequence:

For every non-empty subset £ C R and bounded below, has a inf(£) in R

1.3 Some fundamental properties of R

The following properties are consequences of the preceding axioms



1.3.1 Inequalities

Let x,y,2,t € R on a:
I.Ifr<ythenx—2<y—=z

2. If z <y then
rz<yz ifz>0
rz>yz if2<0

3. If z <y then
2 <y’ if0<z<y
y?<a? ifx<y<o0

1 1
4. f0<zx<ythen < — < —
y

1 1
5. fx <y<0then - <—-—<0
Yy

1 1
6. If v <y with x <0 and y > 0 then — < —
r Yy

7. U0<x<1lthen0<z" <zt !'< .. <2?2<z<1ForalneN*
8. Ifl<zthenl<z<a?<... << 2" pour tout n € N*

9. Ifr<yand z<tthenx+y<y+t

10. If x <y and z <t with x >0 and z > 0 then z.z < y.t

Definition1.4: (Absolute value)

The absolute value of a real x, denoted by |z|, is defined as follows:

T siz >0
2| = .
—x six <0




1.3.2 Absolute value properties

Let z,y € R we have:
1. |z| > 0 (The absolute value is always positive)
2. | =l = |z
3. |z| > xet|z] > —x
4. |z| = max(—z,x)
5. jz]=02=0
6. Let @ > 0 then: [z|<ae —a<z<a
7 |yl = |z]|y|

8. |£|:msiy7é0
y oyl
9. ||z = lyll < |z +yl < |z + |yl

10 lz| = Jyll < [z =yl < [z] + Jy]

Définition 1.5: (Integer part of a real number)

Let x be a real number. The greatest integer less than or equal to z is called the integer
part of z. We denote it by E(x) or |[z].

Examples:

11,12 = 11, V3] =1, [—4,33] = =5, [-7] = —T7.

The following figure shows an integer function f(x) = E(x)

5 |E®)
4 —F
s +—
2 —
1 +—
r x
oH-=8 7H- =8 5=l 3 SHH=HHo + 2 3 4 5 6 7 8 9
—
—Ff -
— 3
Tt H
-




1.3.3 Properties of the integer part of a real number

1. For all z € R we have: |z] <z < |z +1]
2. For all x € R we have: |z +n| = |z| +nwithneN

3. For all z,y € R we have: |z| + |y] < |z +y| < |z]+ [y] +1

Remark:

For any x,y € R we have:

[z] + [x]
|z +y] = or
lz] + [y) +1
1.3.4 Characterization of the sup and inf
Theorem: Let E C R such that F # ¢ we have:
1. M =sup(F) &
Vee F,o < M
Ve >0,dz* e BE,M —e < z*
2. m=inf(F) &
Vee EEm<cx
Ve >0,dz* e E,x* <m+e¢

Remarks:

» If E has a maximum then sup(F) = max(FE)
» If E admits a minimum then inf(F) = min(£)
» If inf(F) € E then inf(F) = min(F)

» If sup(E) € E then sup(F) = max(FE)

1.3.5 Archimedean property

R satisfies the following Archimedean property:

Va,b € R (with b > 0) then there exists n € N such that: bn > a

1.3.6 Density of Q in R

Between every two distinct real numbers a,b there exists a rational number ¢, i.e.:
Va,b € R(aveca < b0),3¢ € Q tqa<qg<b

In this case we say that Q is dense in R.




1.4 Intervals in R

Définition 1.6:(Interval)

Let I be a subset of R
I is an interval in R if and only if:

VeyelVeeRr<c<y = cel

Remarks:
1. The intersection of two intervals in R is an interval in R.
2. The union of two intervals in R not disjoint is an interval in R.
3. The union of two intervals in R disjoint is not an interval in R.

Intervals in R can be classified into 9 kinds, as shown in the table below.
Let a,b be two real numbers such that a < b

Description Definition Notation
closed and bounded=segment {r eR/a<z<b} [a,b]
bounded and semi-open on the right | {x € R/a < x < b} [a,b]
bounded and semi-open on the left | {z € R/a < z < b} Ja,b]
A bounded open {r eR/a<z<b} Ja,b[
closed not bounded from above {r eR/a <z} [a, + oo
open not bounded from above {r eR/a <z} Ja, 4+ oo
closed not bounded from below {r e R/x < b} | — 00,b]
open not bounded from below {r e R/x < b} ] — 00,0
real line R | — 00, + o0

Lemma:
Let E be a non-empty subset in R, the following propositions are equivalent

1. F is bounded in R.
2. There exists a bounded interval I in R such that: £ C I

3. dM > 0 such that, Vo € E,|z| < M

Definition 1.7: Neighbourhood of a point

Let x be a real number. We say that V' C R is a neighborhood of x if and only if there
exists € > 0 such that: |x —exz+¢[CV

\.

Remark:

We say that V' C R is a neighborhood of 400 (respectively —oo) if and only if there exists
a € R such that: Ja, + oco[C V (respectively | — oco,a[C V)

Consequence:

Any non-empty interval I in R contains an infinite number of rationals.

9



@P\a@’b encencives with amamsers

Given z,7,z € R, a € R", Prove the following inequalities:

L |z|<ae —a<z<a 51 2 1 .2) >

2. |z +yl <zl + Jyl,
6. xy+ 22 +yz < 2? +y? + 22
3. x| =yl < |z =y

4. a2 +y? < |z| + |y 7. (Ve>0,|z| <€)= z=0

1. Let z € R, and a > 0, We have
|z] < a = 0<|z| <a
22 < a?
x2§a2
22 —a?<0
(x—a)(zr+a)<0

x € [—a;a

111t

—a<zr<qw
2. Let x,y € R, then obviously:
{ —|z] <z < |z
—lyl <y <yl
By adding them together we find:
—(lz[ + [yl) < @ +y < [=| + [y, ce qui implique que
o+ yl < |z + |y
3. Let z,y € R; As we know that: zy < |z||y|, then:
zy < |zlly| <= —2zy > —2[zy|
= Pyt - 2zy >+ - 20zl
2® = 2ay > |2 + Jy* — 2lz]ly]
(z—y)* > (Ja| = [y)?
Vi —y)2 > V(|| - ly])?

|z =yl = [[z] = [yl

4. Let x,y € R, we have:
2z|lyl > 0= 2®+y*+ 20|yl > 2® + ¢
) + [y]* + 2|z|[y| > 2 + ¢
(2] + [y)? = 2* + ¢
V([ + [y)2 > Va2 +y?
2| + Jy| = Va? + y?

11t

10




5. Let x,y € R, we have:
r—y)?P >0« 2 4+y*—22y>0
Yy Y Y
— 2+ % > 2xy

1
= 5(:102 +9?) > ay.
6. According to the previous question, we have :
@4y >y
4 2h >uz
Zh+vih >zy
By adding them together we find:

zy +rz+yz §x2+y2~|—z2
7. By Contradiction, let’s suppose that: Ve > 0, |x| < € et 2 # 0 which implies, Ve > 0,0 < |z| <

2]

1
For € = 5 we find a contradiction 1 < 5

Show that:
1. V/3 is irrational

2. for all (a,b) € Q x Q*, the numbers a + by/3 are irrational.

n3 . . .
3. —— 1is irrational.
In2

Coection2”

1. By contradiction, let’s suppose that: /3 is a rational number, then v/3 can be written as:
V3 = T, with m € N,n € N* and the Greatest Common Factor GCF(m,n) = 1, which
implies Ttlhat

3n? =m? (1)

which means that m? is divisible by 3.

Remark: m can only be written in one of the three following forms: m = 0[3|,m = 1[3],m = 23]
which gives m? = 0[3],m? = 1[3|,m? = 2% = 1[3]. The suitable hypothesis is Only the result of
the first case . So :If m? is divisible by 3, then m is also divisible by 3 . As a result, there exists
k € N:m = 3k. Substitute m in (1)), we obtain: n? = 3k? which implies that n is divisible by
3 (contradiction with GCF(m,n) = 1 ). Therfore v/3 is irrational number.

2. By Contradiction, we assume that there exist two numbers z, y with (z,y) € Q x Q* and
X =z + yv/3 € Q This hypothesis leads to a contradiction ”v/3 € Q” because:

{X:x+y\/§€(@:>{X:x+y\/§€@:>{X—x:y\/§€@ y1\/§€@

reQ —xe€Q from hypot y € Q* = &EQ*

11




:yﬁxézﬁe@

. In3 . . . In3
3. By contradiction, let’s suppose that: — is a rational number, then we ca write — =

n
. n o T 2 m
withn € N* ' m € N*, so mIn3 = nln2 = In3™ = In2". Since In is an injective function, it
In3
follows that: 3™ = 2" = 3™ = (0[2], contradiction with 3 = 1[2] = 3™ = 1[2]. Finally 22 g

] ) In2
irrational.

Justify whether the following assertions are true or false :

a. The sum, the product of two rational numbers, the reciprocal of a non-zero rational number
is a rational number.

b. The sum or product of two irrational numbers is an irrational.
¢. The sum of a rational number and an irrational number is an irrational.

d. The product of a rational number and an irrational number is an irrational.

Cometions” :

Let X € R, Recall that X is rational if and only if there exists n € Z,m € N*: X = —.
m

n
a True: Let X = —, and Y = b with n,p € Z, and m, ¢ € N* two rational numbers, then:
m q

n m
_ it mp € Q, because gn + mp € Z, et mq € N*

X+4Y = P

mq
b_
q

+

X XY =—x==—¢€Q, because np € Z, and mqg € N*

mq

313 =

1
For n # 0, inverse of X is — = — € Q
X n

b False: Let x = +/3 (irrational number), y = —+/3 (irrational number), but = +y = 0 €
Qetxzy=-3€Q.

¢ True: By cotradiction: let x € Q and y € R\Q, suppose that z +y € Q
Sincer €eQ = —2€Q
— —z+ (z+vy) =y € Q Contradiction with y € y € R\Q
d False As 0 € Q and v2 € R\Q, but 0v2=0¢€ Q

e True Let z € Q* and y € R\Q, by contradiction, let’s assume that xy € Q

reQfryeQ = (o) eQ ANzyeQ
= (Y2) x2yeQ
= yeQ
Contradiction with y € R\Q

12



Let z,y € R, show that:
1. f(z) = E(z) is an increasing function

2. B(x)+ E(y) < E(x +y) < E(z) + E(y) + 1

E
3. Vn € N*| E(

1. Let z,y € R such that: z <y

We have E(y) <y < E(y)+l,andz <y = z<y<E(y)+1
= FEx)<z<E(y+1
= FE(x)<E(y)+1

Since E(x) € Z, E(y) € Z; which implies that: E (z) < E (y)
2. Let x,y € R, we have:

{E(w) Se<BE@+L L )i B <oty<E@) +E (@) +2

E(y) <y<E(y +1
We know that

E(z + vy) is the largest integer less than or equal to z +y
E(z +y) + 1 is the smallest integer strictly greater than x + y

Then
E@x)+E(y) <E@@+y) <z+y<FElx+y +1<E(x)+E(x)+2
Consequently:
E@)+E(y) <Elx+y <FE(x)+E(x)+1
3. We have

VeeR:E(x) <z

We multiply both members of the inequality by n € N*, we get: nE () < nz. Using the fact
that E(nx) is the largest integer less than or equal to nx we obtain:

nE (x) < E(nx) = E(x) < (2)

n

Using the fact that F is increasing function, the result (2) gives: F (z) < E (E("I)).
For the inverse we have:

n n n
FE
= nk (nz) < nx
n
- E(E<nx)>§x
n

13




Using the fact that E(x) is the largest integer less than or equal to x, we find

E <E(”x)> < BE(z).

n

Consequently

For each of the following sets, describe the set of all upper bounds for the set :

1. the set of odd integers;

2. {1—l:n€N*};
n

3. {reQ:r*<8};

4. {sinz:z € R}

1. Upper(Z) =10

1
2. A= {1 ——:ne€ N*}, it is clear that [1, +oo[C Upper(A)

n
Let us suppose that there exists a € Upper(A) A a < 1, according to Archimedes’ property,

. on the other hand:

there exists n € N such that: n > 7

—«
n>% = lol—q
—Q n
= L+a<l
= 04<1—7l1

contradiction with o € Upper(A), as a result: Upper(A) = [1, +00]

3. A={re Q:m <8}={reQ:r <2} =[2,+o00[C Upper(A)
Let us suppose that there exists o € Upper(A) A a < 2, from the density of Q in R there
exists a rational number r such that o < r < 2, contradiction with o € Upper(A), as a result:
Upper(A) = [2, +o0]

4. {sinz: 2z € R} = [—1,1] = Upper(A) = [1, +o0]

For each of the sets in (1),(2),(3) of the preceding exercise, find the least upper bound of the set, if
it exists.

14




1. the sup does not exist 3. sup(A) = min(UpperA) = 2

2. sup(A) = min(UpperA) =1 4. sup{sinz : x € R} = min(UpperA) =1

Let A, B be two non-empty bounded parts of R. Show that:
1. the subset —A = {—x, = € A} is bounded.
2. sup(—A) = —inf(A)
3. inf(—A) = —sup(A)
4. Si A C B, alors:

mch <o
inf(B) < inf(A)

5. sup(A U B) = max(sup(A),sup(B))
6. inf(AU B) = min(inf(A), inf(B))

Let A be a non-empty subset of R.

1.
A is bounded < A is bounded from below A A is bounded from above

& Ja,B8)eR*:VzeA:a<z<f
As a result
J(,f)eR?*:VzeA:a<z<pB & F,Bf)eR*:Vy=—x€(-A):—<y<—a

—A is bounded from above and below

—A is bounded
the existence of sup(—A) and inf(—A).

te e

2. According to Sup’s Theorem we have

sup(—A) —a & Vee A —r <«
Ve>0,dz, € A :a—e< —a.<a

o { Vr € A cx > —a
Ve>0,dz, € A :—a<zxz.<—a-+¢

& —ag=inf A

3. According to the previous question (2)
inf(—A) = —sup—(—A) = —sup A
4. (a) We have
Vre B:x<supB

since A C B:
Vee A:x <supB

hence sup B is an upper bound for the set A which implies that sup A < sup B

15




(b) We have
Vre B:x>inf B

since A C B:
Vere A:xz>inf B

hence inf B is a lower bound for the set A which implies that inf A > inf B

5. From (4.a), we have:

<
{ ACAUB { sup A < sup(AU B = max(sup 4, sup B) < sup(4A U B)

)
BCAUB sup B < sup(AU B)

On the other hand

r <supA
Vee AUB:{ V = = < max(sup A, sup B)
r <supB

hence max(sup A, sup B) is a an upper bound of the set AU B which implies that:
sup(A U B) < max(sup A, sup B)

Consequently
sup(A U B) = max(sup A, sup B)

6. From (4.b)

{ ACAUB { inf A > inf(AUB) min(inf A, inf B) > inf(A U B)

BCAUB inf B > inf(AU B)

In addition
>inf A

x
Vre AUB: ¢ V = x > min(inf A, inf B)
r >infB

hence min(inf A, inf B) is a lower bound of the set A U B which implies that inf(A U B) >
min(inf A, inf B). Consequently

inf(A U B) = min(inf A, inf B)

Determine ( if they exist ) sup, inf, max, min of the following sets :

1. A=[1,2]NnQ 4. D={zeR: 2* <3}
2. B=[12nQ 5. E={zeR: |z >1}
1
3-02{“n:n+1’”6N} 6. F={zeR: [z?—1]>1}
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1. It is clear that A = [1,2] N Q C [1,2] which implies that Vo € A : 1 <z < 2, consequently A
is bounded, so the existence of the sup and inf is evident. Now we will compute them

2e€ A
{ 2 is an upper bound = sup A = max A =2

le A ) )
{ 1 is a lower bound = infA=minA =1

2. We have A = [1,2][nQ C [1,2[ which means that Vo € A : 1 < x < 2, consequently A is
bounded, so the sup and inf exist. Now let’s compute them:

(a) the same reasoning with 1 gives: 'inf A = min A = 1.

(b) To compute the sup(A), we have: Upper(A) = [2, +oo[ is the set of all upper bounds of A
and as inf ([2, 400[) = 2 which shows that sup A = 2 and since 2 ¢ A, so the max doesn’t
exist.

3. We have:

VneN:n>0=n+1>1=0< <l=VneN:0<wv, <1 (3)

n
This implies that C' is bounded, hence the sup and inf exist. Now let’s compute them:
(a) For n = 0, we find vy = 1, and since 1 is an upper bound of the set C, consequently
max(C) =1 = sup(C).
(b) From the inequality (), 0 is a lower bound of the set C, which shows that

inf(C) >0

Suppose that inf(C') > 0, by applying Archimedes’ theorem with a = 1 and b = inf(C) >
0, we obtain the existence of k € N such that:

1< (k+1) (inf(C)) = %ﬂ < inf(C) = vy < inf(C) < v,,Yn € N

Contradiction with n = k. {v, < inf(C) <wv,} As aresult inf(C) =0

4. We have
reED & 2<3

s 22 —-3<0
& (x-3)(z+3)<0
& re-3,3].

which implies that

inf(D) = min(D) = -3
sup(D) = max(D) =3
5. We have
r € FE & |z| > 1( as the function z — 2? is increasing on RT, hence)
& a?>1
& 22—1>0
=

(x—1)(z+1)>0
& x €] — oo, —1[U|1, +oof

This implies that E is neither bounded from above nor from below, so E is not bounded.
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6. We have

2

r€FE & |22 —1| > 1 as the function z — 2? is increasing, hence
s (@2-17>1
s (12-1)°=-1>0
& (P-1-1)(z*-1+1)>0
& (2—=2)22 >0
& (22-2)>0
s (2-v2) (z4+v2) >0
& 1 €] — 0o, —V2[UV2, +o0]

This implies that E is neither bounded from above nor from below, so E is not bounded.

Let a, b € Q, with a < b. show that :

JeeQ: a<e<b

We have
0.be0 acQ,beQ
aecQbe b+a acQ,beQ
{ae;Q;bbEQ =< ata<bt+a = a < 5 :>{ _b+ta b ﬁ{aiec(gb
atb<b+b b+a _, =TTy
2

Which shows the existence of c€e Q:a <c<b
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Chapter

Complex numbers

2.1 Algebraic form:

the set of complex numbers is created as an extension of the set of real numbers, containing
in particular an imaginary number denoted i. This new number, combined with the real
numbers, is the basis of the complex numbers. The appearance of these numbers has simplified
the resolution of many physical problems. In particular, electronics and electrical engineering
make extensive use of complex numbers.

Definition 2.1

Every number z can be uniquely written in the algebraic form z = x + iy where x,y € R
and i = —1. This is called the algebraic form of the complex number z. The real z is
called the “real part of z” and is written Re(z). The real y is called the “imaginary part
of z” and is denoted by Im(z). If y = 0 then z € R is a real number, if = 0 then z is a
pure imaginary.

Example 2.1

1. 2+ 47 is a complex number whose real part is 2 and imaginary part is 4.
2. T+ +/2i is a complex number which real part is 7 and imaginary part is v/2.

3. 31 is pure imaginary.

Complex numbers follow the same rules as the four operations on real numbers (addition,
subtraction, multiplication and division).

Equality: Two complex numbers z = x + iy and zP"™¢ = g + ib are equal if
(x, y) = (a, b). pay attention: there is no inequality in C.

addition, multiplication: Let be two complex numbers z = x 4+ iy and
2 = a+ib.
2+ =(x+a)+i(y+Db)
22" = (xa — yb) +i(xb + ay).

Definition 2.2: Conjugate Complex Numbers

Let z = x4+ 1y be any complex number. The complex number x — ¢y is called the complex
conjugate of z | and is denoted by z .
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Example 2.2

For example, the conjugate of 2 =2 —3i est z =2+ 3¢

Proposition 2.1

Let z and 2’ be two complex numbers then:

zZ=2z

2 =Z4+7

2.2 =72.2
z+7Z =2 X Re(z)

2z —Z=2ix Im(z)
(j/)szi‘ﬁhZ’#O

2.2 Trigonometric Form of Complex Numbers :

Definition 2.3: Modulus of Complex Number

For any complex number z = x + iy, the real number r = |z|, defined by:

r=|z| = /a2 4+ y?

is called the modulus of z.

Example 2.3

The modulus of the complex number z = 2 — /2i is |z| = /22 + (v/2)2 = V/6.

Proposition 2.2

Let z and 2’ be two complex numbers then:

2| =0
2| = [Z]
2.7 = |z|?

|2l =0<=2=0
22| = [2]|#']
| Re(2)| < |2 and [Im(2)] <[]

|z"| = |z|" ,neN

| [ 2] =] =] s 2] [

|24+ 2] <z + |2] et [|2] = [2']] < [z = 2]
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Definition 2.4: Argument of Complex Number

[0,27[ defined by :

cosf = L
|yZ|
sinf = =—.
|2

where |z| is the modulus of the complex number z .

Every non-zero complex number z = x + iy can be written in the form z = |z|(

T
=+
2|

|y|i),The argument of the complex number z, denoted (arg(z)), is the real number 6 €
z

Example 2.4

for z = 1 + v/3i, we have:

in this example arg(z) =60 = g and r = |z| =2

Proposition 2.3

Let z and 2’ be two complex numbers then:

arg(z.2') = arg(z) + arg(2’)
arg(z) = — arg(z)

arg(1) = — ara()

Theorem 2.1: Trigonometric

Any non-null complex number z can be written as:

z =r(cosf +isinf) with r = |z| et 0 = arg(z) + 2km, k € Z

2.3 Exponential Form

From proposition (2.3) and since the product of two exponentials is equal to the expo-

nential of the sum. For this reason, we introduce the following notation:

e = cosf + isin b
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Definition 2.5

Any non-zero complex number z can be written in exponential form

5= |Z|€iarg(z)

Example 2.5

ﬁI

i— 2 2
e4zcosz+isin;i:\é_+z'\g_

For z = 1+ iy/3, we have:

z=1+iV3
1 V3

—9(= 4422

(5+i5)

= 2(COS% + ¢sin g)
T

=2 3

2.4 De Moiver’s Theorem and Euler’s Formula

De Moiver’s Formula

For any real number # and for any integer n:

(cosf + isin0)" = cosnb + isin nb

(eie)n — einG

Euler’s Formulas

for all z € R and all n € Z we have

T —iT
oS T — 64‘26
T —ix

sin ¢ = %
einx + efin:r
Cosnxr = f

inx —inx

sinnx = i

27

Linearization of trigonometric polynomials

It consists in transforming the powers cos™(z), sin™(z) into sums and multiples of expres-
sions of the type sin(kx) and cos(k.z) . To do this, we use Euler’s formulas and Newton’s
binomial (a + b)™.
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Example 2.6

From Euler’s formula

We have:
1.
(a+b)?= a*+b*+2ab , 1
1 . . =—(2 2 2
COS2<£L'> _ Z (6121 + 6—1233 + 2) = COoS (.T) 4 ( COS( l’) + )

which implies that:

cos?(z) = ; (cos(2x) + 1)

2.
(a+b)* = a*+ b+ 3a® + 3ab® , 1
1, . . . = =—(2 3 6
COS3(-T) — g (623:B + e—z3x + 3eir 4 36—133) cos (x) 8 ( COS( ZL’) + COS($))
which implies that:
1
cos®(z) = B (cos(3z) + 3 cos(x))
3.
(a+0b)*= a*+4a3b + 6ab* + 4ab® + b*
1 . . . :
COS4([L') — E (€z4m + 6714‘% + 461236 + 4671293 + 6)

= cos'(z) = 16 (2 cos(4x) + 8 cos(2x) + 6)

which implies that:

cost(z) = ; (cos(4x) + 4 cos(2z) + 3)

a® + 5a*b 4+ 10a3b? + 10ab> + 5ab* + b°

4.

(a+0)° =

1 . . . , . .
COS5(I) — 33 (61533 + e—sz + 5<€z3m + 6—7,33:) + 10(6” + e—zx))

which implies that:
5 1
cos’(x) = — (cos(bz) + 5cos(3x) + 10 cos(z))
5. f
a® 4+ 6a°b + 15a*b? + 20a®b® + 15a%b* + 6ab® + b°

(a+0b)° =
(62'6:): + 67i6z _|_6(6i4x + 671'4:1:) + 15(6i2x + 671'290) + 20)

6(p) —
cos’(x) ol

which implies that:

1
cos® () = D) (cos(6x) + 6 cos(4x) + 15 cos(2x) + 10)
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2.5 Square roots

Definition 2.6

The square root of a complex number a is any number b whose square is a

Example 2.7
a. 1+ and —1 — i are the square roots of 2i because (1 +14)? = (=1 —4)* = 2i.

b. —4 has two opposite square roots : 42, — 2i.

Remark 2.2

To determine the square roots of z = x + 1y it is sometimes simpler to proceed by
identification, i.e. to find the real numbers a and 3 such that (z + iy) = (a + i)* we

obtain:
a2 -5 ==z

208 =y

Definition 2.7

Let n € N*, a € C. The complex number z such that 2™ = a is called an n-th root of a.

Example 2.8

a=2b=—1—iV3,c=—1+1iV3 : these are the cubic roots of 8 in C, also known as
the third roots of 8.
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@P\a/ptm’b encencives with amamsers

Put the following complex numbers into algebraic form:

1 l 1 1
1. - 3. D.
1 1+ 1 2—|—i+2—i
2+ 1 1 l
2. 4. 6.
5—1 2—1 1+i+1-|-i
1 1x: 1 1
1.—: = — = — = —
i ixi @2 -1
2+i  (24+49)(B+i) 10+2i+5+i> 9+T7i 4 T
2. - = : = = . = =55 T 540
5—i (b—1i)(5+1) 52 — 2 26 226
g i(i — 1) 2—i —1—i 14+i 1 1
. - = = = = — —1
i+1 (i+1)(—-1) -1 =2 2 22
1 241 241 241 2 1.
4. - = : ~ = = = =_+_t
2—i  (2—0)(2+1i) 2242 5 5 5
1 2—1 2—1 2—1 2 1
_ _ _ — = 2 — Zi, and from (4) we h
2ri T @re—i) 2~ 5 5 5o ondfrom(4)wehave
1 2+1
= F T 1 1 2 1
1L _2 1 755 24755 57575
2+7 5 5
1 (1—4) i 1-i 1 1;
I s RO S ez —3 7 3h and from (3) we have :
1 1 1.
F =5 T 5t 1 ) 1 1 1 1 1 1
R SR P T A R R A R S
1+1 2 2
Determine the modulus and an argument for each complex number :
1. -2 3. 2¢7% 5o At
V3-1
2. 3i 4. —1+iV3 6. (V3 —1)°
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Lo |=2]=|-2+0i| =/(-2)2+02=V4=2

2. 13| =0+ 3i| = /(0)2+32=+v9=3

3.
12¢72% = |2 |e7%| and asVz €R:|e”| =1

= [2e7%| =12| =24 0i| = V22 + 02 = 2

I+i | _ 11+ 1]
3—1 ‘\/g—z}
_ vEaE
3 + -1y
V2 V2
V4 2
6.

V3—i|=V3+1=2 = |(V3-i)°|=2°

Find the points of the complex plane which satisfy the following conditions.

1. |2] <2 2. z+z=1 3. |z —=3+5i|=2

Cometions”

L {(z,y) e R?: /22 + 42 <2} ={(z,y) e R? : 2% + y* < 4}.

2. {(z,y) e R*: 20 =1} = {(z,y) €R2:z:%}

3. {(z,y) eR?: /(. —3)2+ (y+5)2 =2} = {(z,y) e R?: (x —3)® + (y + 5)* = 2}

Let a € R. Express cos5a as a function of cos «, then sin 5« as a function of sin «, give the value
T

f cos —.
of cos 75
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1. According to Newton’s binomial we have:
(cosa+isina)® = Y;=o CE(cosa)(isina)>*
= C%(cosa)’(isina)® + Ci(cosa)!(isina)* + C2(cosa)?(isina)?
+ C(cosa)3(isina)? + Ci(cosa)'(isina)t + C3(cosa)®(isina)®
3

= 4sin®a+ Heosasin® a — 10i cos? asin® a

4

— 10cos®asin?a + 5icos* asina + cos® a

= cos’a — 10cos® asin® a + +5 cos asin a
+ i[5cos*asina — 10 cos? asin® a + sin® a]
2. On the other hand, according to Moiver we have:

(cosa +isina)® = cos5a + isin ba

3. From (1) and (2), we find:

coshba = cos®a — 10cos® asin?a + +5cosasint a

sinha = 5costasinag — 10 cos? asin® a + sin® a
4. From the first formula in (3), we have:
( R 3 2 .4
cosba = cos’a — 10cos’asin“a + +5cosasin” a
= cos®a — 10 cos® a(1 — cos? a) + 5 cos a(l — cos? a)?

= cos®a — 10cos® a + 10 cos® a + 5cosa(l + cos* a — 2 cos? a)

= 16cos’a — 20 cos® a + Hcosa

5. For a = %, which implies that :

[ cosh~ =cost =0
cosbs = cosg =
7T 7r 7r
{ = 6008(10) 0 cos (10)+5cos(10) 0
T 4y _ 20 _
\ :>cos(10)[16cos (10) 20 cos (10)+5] 0
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If we put z = (:082(17T—0

), we get: 162 — 20x + 5 = 0.

1622 =202 +5=0 < z=21(5-VE)Vva=21(5+5)
& x~0,345Vax ~ 0,904
o T ~0,587 < cos(%) V /T =~ 0,950
We know cos N\, on [0, g] = cos(lﬂ—o) > cos(%)
Therefore: cos(%) =/s(5+ V5) =~ 0,950

Find the square roots of the following complex numbers:

1. 5+1

2. 6-8i 3. 44/3+i

Comections”

For z =5+ 1,

We have:

(z +dy) is a square root of (a +ib) < (z+iy)> =a+ib

& 22—y + 2izy = a+ib Az +iy|* = |a + ib|

2zy

z® +y° = Va*+ b

(x+iy)> =5+1

& 22—y + 2ixy =5+ i Az +iy|° = |a + ib|
( x2—y2 =5
& g 2xy =1l=(x>0Ay>0)V(z<0Ay<0)
| 22 +P=V25+1 =26
(2 :5+%/%
& 4
> _ 1 _1_2 _ _ 1
| Y T @ T 455 T 2(+v20)
S ()= (2E\EE) v () = (-2, o)
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For 2 =6 —8 We have: (z+1iy)>=6—8i

VN 22— y? + 2ixy = 6 — 8i A |z + iy|* = |6 — 8

( $2—y2 =6
= 2y =-8=(x>0ANy<0)V(Ez<0Ay>0)
\$2+y2:\/64+36 =100 =10
(@ =1
< , _ 6416
Y T e

& (1Y) =8 -V V(1,y) = (-V8V2)

For z = 4v/3 +i We have: (z+iy)? =4v3+i
& x2—y2+2ixy:4\/§+i/\|x+iy|2:|4\/§—|—z'}

( $2—y2 :4\/§
<= 2y =1=(x>0Ay>0)V(r<0Ay<O0)
| 2+ =8 F1 =/49=7

, _ AVB4T

T T
11 2 1

YT T aBen 2B

\

4/3+7 1

43+ 7 1
v (z,y) = (—\/Ta—\/m)

Solve the following equation in C:

Lo 224+ (2-2)2=3i+1 o L3 Lt 3. 28 =27i
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L 224 (2-20)2=38i+1& 22+ (2—2)z— (3i+1)=0
A =(2—-20)?+4(3i +1) =i+ 1, we are looking for the square roots of A .

For z =141, Wehave: (z+iy)*=1+1

& 22—y 4 2zy=1+4iN|z+iy]’ =1+

( 332—y2 =1
& < 2xy =1=(x>0Ay>0)V(z<0Ay<O0)
| 22 +yP=VIi+1 =2
([, 1+V2
€T =
2
&
;0 1 1 2 1
| TR TR 2010

142 1
14++2 1
1+v2 1 ’
Hence Az(\/ 5 +z\/2(1+\/§)>

. 1+v2 1
—(2—2i) — (\/ 5 +z\/2(1+\/§)>

) 21 = 9
1 2 1
(2 - 2i) — \/+\/_+i L
2 2(1 +v/2)
5 29 = 9
2 141
(3
s S RS N T

= |z|=1
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Which implies the existence of # € R such that: z = cos@ + ¢sin 6, hence

z=rcosf+isinf = 2°=(cosf+isinf)?

141

V2

= 23 =cos30+isin3h A 2> =

1+ T .. T
= COS — -+ 1SIn —

V2 4 4

= 00839+z’sin39:cos%+ising

4
= 0:1—7;+§k;7r
Fork:():éz—:zlzcosl—kisinl,
972r 9r 1927r
Fork‘:1:>9:1—%7T:>22:cosl—%7;tzsmﬁl,7
Fork::2:>9:§:>z3—cosﬁ+zsm TR

=270 = |5 =|27i| =27
= |2 =27 = (V3)°
= [2]=V3

Which implies the existence of § € R such that: z = v/3(cos + isin @), d’on

z=1+/3(cosf +isinh) = 26=27(cosf +isinh)°
= 25 =27(cos 66 + isin66) A 20 = 27i

. 7T+, . T
1 = COS — +¢8In —
2 2

= cos 66 + 7sin 60 :cosg —I—ising

S 60 =2 4+ 2%n

2
T 1
0=—+ -k
= 12—1—3 ™
T N s
Fork;—():g—?:21—\/5(008%—2+251n?),
T ™ .. bmw
Fork:—1:>9—%—2:>22—\/g(cos%—2+zsm%—2),
™ Y O
Fork:—2:>9—g=>z3—\/3(608?3+281nﬁl)é
T T T
F frnd = —_— frnd —_— ) Q] —_—
ork=3=10 D = 2 \/g(cos 19 + 7 sin D ),
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1 1 1
Fork—4:>9—ﬁ:>z5 ﬁ(cosﬁ—l—zsinﬁ)

2112 2112 2112
For k=5=0= Iy T A= \/§(COSE —Hsinl—;)

1. For all z € R, compute the following sums using the exponential form of a complex number:

A = cosz + cos 2z + cos 3x + cosdx + cos bz + cos 6z 4 cos Tx

B =sinz + sin 2z + sin 3x + sin 4x + sin bx + sin 6x + sin 7x

2. by using Euler formulas, linearize: cosz?3,sin2?, cosx®sin z?.

1. Let’s put, z = € = cosx + isinz with x # 2km, k € Z then:

z=cosx +sinz = VneC:z2"=cos(nx)+isin(nz)

k=n . k=n .
= Zk 1 2" k=1 cos(nx) + i Zk | sin(n)
o
= zZ Zk " cos(nx) +1i Y1 sin(nx)
On the other hand, we have:
2m_1 o imeinx_l - ei(nJrl)ac_eix
£S5 T € Cew—1 er—1

o (ez(n‘ﬁ‘l)lfezz)(e—“?fl) o eint _gi(nt)z _1 4 piz
(6”71)(6‘”71) - 2,(€iac+e—ix)

_ cos(nz)+isin(nz)—cos(n+1)z—isin(n+1)x+cos z+isin(z)—1

- 2(1—cos x)

_ cos(nz)—cos(n+1)x+cos(x)—1 + Z~sin(nx)—sin(n+1)x+sin(z)

2(1—cos ) 2(1—cos )

Which implies that:

{ Zk ! COS( ): cos(nx)-c;(sl(vi—l—()ls?i;-cos(x)—1

sin(nz)—sin(n+1)x+sin(x
SopTy sin(ng) = S hetsn()
1 ) i ] eia: _ e—i:c
2. From Euler’s formula |cos(z) = 3 (€ +e™)| A |sinz = — W have:
i
3 _ .3 3 2 2 ( 1
(a+0)* = Ci + 0%+ 3a°b + 3ab cos®(z) = S (2 cos(3z) + 6 cos(z))
cos®(z) = 3 (€% 47" 4 3™ 4+ 3e7)
sin®(r) = %(e’&’” — BT — 3 4 37 sin®(z) = 1 (3sinz — sin(3z))
For the last expression, we proceed as follows:
1 . . : ,
cosx3sinx? = 5 (e + e7®)3 (" — emim)d

128( z3a: + 6—23:3 + 361:5 + 3e—zw)(ei4z + e—i4a: _ 4ei2x _ 46—1'21 + 6)

— ES ([6171 + e—z?x] _ [ezSz + 6—15:7:] _ 3[ez3x + e—z3z] + 3[611 + e—zz])

= 128(2008733—2COS5$—6COS3{B+6COS]J)
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Chapter 3

Sequences of real numbers

3.1 Definitions and examples

Definition 1

A sequence of real numbers is a real-valued function whose domain is the set of natural numbers N
or an infinite subset .4 C N to the real numbers i.e:

u : N — R u : M — R
or
N
Notations:
» Forn € N, u(n) is denoted by u, and is called the general term or n-th term of the sequence.
* The sequence u is denoted by (uy)nen OF (Un)ne 4 -
Example 1
1 ) 1 1
The sequence (u,),en+ defined by: u, = —, starts with u; = 1, and up = 5 U= 3o
n
up =1
The recurrent sequence defined by: 1+ 1 starts with u; = 1, and up = 2, uz =
U, =
" Up—1
3
T
Remark

The ways in which a sequence can be defined.

* By an explicit definition of the general term of the sequence (u,) i.e.: Express u,, in terms of n.
2n+1

n+7°

For example, u, =
* By a recurrence formula, i.e. a relationship that links any term in the sequence to the one that

precedes it. In this case, to calculate u,, you need to calculate all the terms that precede it. For
example :
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ug =2
Up+1 = 3u, — 1

3.2 Bounded sequences

Let (u,)nen be a real sequence.

* A sequence (up),cn is bounded from above iff: IM € R,Vn € Nju, <M
* A sequence (up),cn is bounded from below iff: Im € R,Vn € Ny;m < u,

* A sequence (u,)yen is bounded iff: it is bounded from above and bounded from below which
means :
IMeR,,VneN; |u,| <M

N

3.3 Increasing and decreasing sequences

Let (u)nen be a sequence

* (un)nen is an increasing sequence iff: Vn € Nyu, < upqg

Un )nen 18 a strictly increasing sequence iff: Van € Nyu,, < u,4q

U, )nen is a decreasing sequence iff: Vn € Nyu, > u, 1

is monotonic if it is increasing or decreasing.

(
(tn)nen
* (un)nen is a strictly decreasing sequence iff: Vi € Nu, > uy, )
(ttn)nen
(un ) is strictly monotonic if it is strictly increasing or strictly decreasing.
(

)
)
)
Un)n
)
)

Uy )nen 1s a constant sequence iff Vo € N; u, 11 = u,

NG

3.4 Finite and infinite limit of a numerical sequence

Definition 4: Convergent sequences /

Let (u,)nen be a real sequence. We say that the sequence (u,),cn converges to [ iff:

Ve >0,IngeN,VneN;n>ny = |u,— 1| <¢€

In this case, we say that the sequence (u,),cn is convergent to the limit / and we note lirJrrl u, =1
n—s+-oo
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Remark

lun—Il|<eel—-e<u,<l+esu,cll—e,l+¢

The above definition means that for any strictly positive real €, there exists an integer ng (rank) such
that: all terms up, Upy+1,Uny+2--.. are in the interval [[ — €,1 + €].

A

Example 2
9 n
* The sequence u,, =

n

converges to 1

Using the definition of convergence, we show that lirJrrl u, =1
n——+o0

Let € > 0 we have:

& | —1|<e

ud

n+1
n

n+1
< |1-

—1|<e

—1|<e
n+1 |_

<e
n+1—

1
&S -——1<n
E

=

1 1
By setting no = LEJ >0 1, we obtain :

1
V£>0,E|n0€N(no:LEJ),VnEN;nZnO = |u,— 1| <¢

= (up)nen converges to [ = 1
Using Maple, we get the following graph:

1+&

] 6000000000 OOCOOO0

1-

- T T
i, 10 20 30

Figure 3.1: € =0.1
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Definition 5

We say that the sequence (u,),eN tends to oo as n tends to infinity and we note grerl Uy = +oo
n oo
iff:
VA>0,dnpeN,VneN;n>ny = u, > A

We say that the sequence (u,),cn tends to —eo as n tends to infinity and we note lirlel Uy = —0o0
n—s—oo
iff:
VA>0,dng e N,VneN;n>ny = u, < —-A

A
Example 3

9 * Let be the following sequences :

u, =2n—+1
vp=—3n+4

We show that lim u,, = +ocand lim v, = —oo
n——+oo n—+-o0

Let A > 0 we have:

U, > A
S2n+1>A
S2n>A-1

A—1
aoms>a—t
"=

, Al Al
Let'sputng = [——]+1> ——

2
A-1
— (VA>0,3n9 e N(np= [~

5 |+1),VneN;n>ny = u, >A)

The same method used for the sequence (vy,),en

Definition 6: divergent sequences /

Let (un)nen be a sequence of real numbers. We say that the sequence (up),cn is divergent if it is not
convergent, i.e

VIeR,3e>0,Vng e N,In e N; (n>ng) A(lu, — 1] > €)

Remark

here are two types of divergence

Divergence of infinite type: in this case the sequence converges to +oo or —oo. For example the
sequence with general term u,, = 2n + 4.

Divergence of type limit does not exist: in this case the sequence has no finite or infinite limit.
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| For example, the sequence with general term u, = (—1)"

Proof:
We will show that the sequence (—1)" does not have a finite or infinite limit.

By contradiction, suppose that: 1—1>T (—=1)"=1/1 € R. According to the convergence definition with
n oo

1
E=— t:
4wege

1

1
dnpeN,VneN;n>ny — unE[l—Z,l+Z]

It’s a contradiction.

By contradiction, suppose that: lirE (—1)" = 4-o0. According to the convergence definition with
n— o0

A =4 we get:
dngpeN,VneN;n>ny = u, >4

= uy € [4,+oo[= —1,1 € [4,+00]

It’s a contradiction.

We use the same method for the case: lim (—1)" = —oo

n——4-oo

Proposition 1:

If a sequence of real numbers (u,),cn has a limit, then this limit is unique.

Proof:

By contradiction

Iim uw, =1
Suppose that:;< "7
lim wu, =10
n— oo
b=k o
Taking € = ——— with [ # I, which implies

I eNVneN;n>n = |u,— 11| <¢€
I eNVReN;n>n = |uy—h|<e€
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Putting ng = max(ny,n)
= (VneN;n>ny = |up— 11|+ |un — b| < 2¢)
With n > ng we get

|ll—12| < ]un—ll\+|un—lz\ <?2¢€
— ’11—[2‘ <?2¢€

11 -1 £
Lkl ¢
¢ 4 2
— < 5 it’s a contradiction

Proposition 2

If (u)nen is a convergent sequence, then (u,),cn is a bounded sequence.

Proof:

We’ll show the following implication:

(Un)nen is a convergent sequence = (i, )en is bounded
Suppose that (u,),cn is convergent, then for € = 1 we have:

Iy eN,VneN;n>ny = |u,—1] <1
— m=0-1<u, <Il+1=M

So the set {upg, tpy+15--.e--- } is bounded.
On the other hand A = {uy.....,upy—2,y,—1 } is bounded (because Card(A) < +o0). Then the set of values
of () iS: {0, Uny—2, Ung—1,Ungs Ung1s---em-- } is bounded, this means (u,) is bounded.

3.5 Finding Limits: Properties of Limits

Theorem 1

Let (up)nen and (vy),en two convergent sequences with: liT u, = [ and liT vy =1I'. The
n—s-+oo n—s-+oo

properties of limits are summarized as follows:
lim Au, = Al with A € R
n—r—+oo
im (uy+vy) =1+1
n—r—-oo

ngr}rlmunvn =1l

1
If u, #0forn>ngand/# 0then lim — = —

I
If v, # 0 forn > ng and ' £ 0 then lim — = —

n—teoy, [
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Remark

lir£ U= — lir£ |un| = |I|. Be careful the reverse is not true. For example, if we take the
n—r—oo n— oo

sequence u, = (—1)" we have lirJIrl |un| =1 but lir£ u, doesn’t exist.
n—y—o0 n—y—+oo

Proposition 3: Infinite limit’s operations

Let (un)nen, (Vn)nen two sequences with: ngrilw Uy = +oo and ngrfwvn = +-oo then:

lim (u,+v,) = +oo

n—y+oo

1
IfVn >ngp,u, #0then lim — =0

3.6 Limits and inequalities

Let (¢n)neN, (Vn)nen be two convergent sequences, then:

If dng € N,Vn > ng; u, <v, thisimplies lim u, < lim v,
n—s—+oo n—r—+oo

dng € N,Vn > ng; u, <v,

If, we have (u,),en and (v,)qen two sequences which verify:- and

lim wu, = +o
n—r+oo

this implies lim v, = +oo
n——-oo

Squeeze Theorem : If (uy)uen, (Vn)nen and (wy),en three sequences with:

dng € N,Vn > ng; u, < v, <w,
and

lim u, = lim w, =1
n——-oo n——+oo

then the sequence (v,),en is convergent and lirJlrl V=1
n—r—+oo

N

3.7 Convergence theorems

Theorem 3: Convergence of monotonic sequences /

* If a sequence of real numbers is increasing and bounded from above, then it converges.

* If a sequence of real numbers is decreasing and bounded from below, then it converges.
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9

A
Example 4

9

uy = 1
Let (u,)nen be a numerical sequence defined by: 1412

2

Upt+1 =

Prove that Vn € N; u,, < 1

Deduce that the sequence (u,),cn is convergent.

1
* by using proof by induction, we have for n = 0, ug = = < 1 so the proposition is true. Let’s

assume that the proposition is true for k € {1,...,n} and we’ll show that u,,; < 1. According
to the assumption we have:

1 2
<1 — B<] — |42 <2 —s U

<1 = up1 <1

So, assertion Vn € N; u,, <1 is true.

1 2 _12
* OnaVneNuy ) —u, = +u"—un:%

¢ Since (u,)nen is increasing and bounded from above so (uy),cn is convergent.

>0

Definition 7: Adjacent sequences /

Let (u)nen and (v,)nen be two real sequences. We say that (u,),cn and (v, )nen are adjacent iff:

((un)nen  is increasing
and

{ (Vn)nen  is decreasing
and

i (=) =0

L If the sequences (uy),en and (vy,),cn are adjacent then they converge to the same limit.

A
Example 5

n
The sequences u, = Y,

k=1

2
5 and v,, = u, + — are adjacent :
k n

n+1 1 no] 1
[ ] J— — - R — > O :> . . .
Unt1 — U kgl 2 k)gl 2 r e () nen is increasing
1 2 2 n+2 . .
® Vntl —Vn = nei2 Tnkl n = —ﬁ <0 = (Vn)nen is decreasing
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tAm ) = B (=5 =0

Therefore the sequences (uy) ey and (vy),cn are convergent to the same limits.

Figure 3.2: (u,) and (v,) are adjacent

Definition 8: Cauchy sequence / A

Let (u,),en be a sequence of real numbers.
(tn)nen is called a Cauchy sequence in R iff:

Ve >0,3ng eN,Vp,geN;p,g>ny = |up—uy| <€

Remark

lup —uy| < € & the distance between u,, and u, is less than €.
So the definition above means that:- for any strictly positive real €, there exists ng (rank), such that
the distance between each two terms u,u, (With p,g > ng) is less than €.

Using Maple, we obtain the following graph of a Cauchy sequence:
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Figure 3.3: 1, — SO FSIN 1 6 08
n
|
Example 6
9 1
* u, = — is a Cauchy sequence
n
Let p,q € N* with p < g then we have:
1 1 1 1 . . . .
lup —ug| =|—=——| <|=|+|=| according to the triangular inequality
P 49 p q
2 1 1
= |up—uy| < — (because: — < —)
p q P
2 2
Let € > 0, we put ng = p +1> P
So,Ve >0,3ng e N*,Vp,g e N*; p,g >ny = |up —uy| <€

Let (u,)nen be a real sequence then:
(un)nen is a Cauchy sequence <= (u,),cn iS convergent

3.8 Subsequence

Definition 9 /

The sequence (ug(n))nen is @ subsequence of the sequence (un)nen if ¢ : N — N is a strictly
increasing sequence of of natural numbers.
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Example 7

A |
U = (—1)?" =1

2n+1 _ -1

= (—1)" —»
Uony1 = (—1)
(u2n)nern and (uz,11)nen are subsequences taken from (uy),en

vy = cos(%F) — v3, = cos(nw) = (—1)"

(v3n)nen is a sub-sequence of (vy,),en

Proposition 4:

Let (u,)nen be a sequence of real numbers:

If ,,E‘Em”" = 1, then for any subsequence (4 (n) Jnen; lim ug(,y =1

n—r—+-oo
If (uy)nen admits a divergent subsequence then (u,),cn is divergent

If (u)nen has two subsequences converging to distinct limits then (u,),cn is divergent.

9

'
Example 8
the sequence with general term u,, = (—1)" is divergent:
We have:
Uy = 1 ngToouzn =1
and = and
Uy = —1 nl_i)r_EwUZn—i-l =-1

So,(uzn)nen and (u2p+1)nen are two subsequences of (un)neny Which converge to distinct limits,
therefore (uy),cn is divergent.

Theorem 6: Bolzano-Weierstrass Property /

L Every bounded sequence has a convergent sub-sequence.

Definition 9: Cluster Points of the sequence /

A cluster Point of a numerical sequence (u,),cn is any scalar which is the limit of a subsequence of
(un)neN 0

A
Example 9

1 * Let’s consider the sequence (u,)ncn defined by: u, = cos(n%)

43



( .
ugy =cos(2nmw) =1 = lim ug, =1
n—r+-o0

,T .
Ugn1 =cos(5) =0 = nngu4”+1 =0

Uspi2 = cos(T) = —1 = nEﬁ‘m”‘*nH =-1

Ugp43 = COS(3%) =0 = ngToou4n+3 =0

So the sequence (uy),en is divergent. The numbers 1,—1,0 are the cluster points of the sequence
(Un)nen-

3.9 Limit inferior and limit superior

Definition 10

Let (u)nen be a sequence of real numbers.
Denoting by S = The set of cluster points of the sequence (uy),enN-
We define the limit superior (resp. inferior) of (uy),en as

limsupu, = supS

liminfu,, = infS

A
Example 10

Let (uy)nen defined by: u, = (—1)"
The set of all cluster points of the sequence (uy),en is S = {1,—1}
so, limsupu, = 1, and liminfu, = —1
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Let z,, be a sequence of real numbers such that liril z2 = 0. Show that liril z, = 0.
n——+00 n—-+00

According to the definition, the liril x2 = ( expression can be interpreted as follows: For every
n—-+0oo

€ > 0, there exists ng € N such that:
VneNn>0 = 122 <& —= Va2 <V = |z, <e
Which shows that

lim z, =0
n—-+o0o

Let’s consider the sequences (x,,), (Yn), (@), (by), (uyn), and (v,) of real numbers such that:
1. (VvneN, z,<2ety,<3)etz,+y,—5
2. (vneN, 0<u, <let0<uv,<1)etu,v, =1
3. a2+ b2 +a,b, =0

Show that the sequences defined above are convergent.

1. We have:
T, <2 N 0<2 -2z,
We add (2 — z,,) to the second inequality and (3 — x,,) to the first inequality, we find:

2—2,<2—2,+3—y, N 2 — 1, <5—(Tp+ yn) 0<2—2, <5—(Tn+Yn)
3_yn§3_yn+2_xn 3_yn§5_(yn+xn) Ogg_yn§5_(yn+xn)

Using the squeeze theorem and the fact that x,, + vy, — 5, we get :

< 1l — < 1l -
{ 0= B2 = Ip B ot u)]
< 1l - < I -
So
lim x,=2et lim y,=3
n—4oo n—-+0o0o
2. Since,

0 <v,<1

Vn € N, { 0 <uv, <1
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We multiply the first inequality by v,; (0 < v,,) and the second by u,; (0 < u,), we find:

n

Vo, <O v, < v, <1
v N n*n — n v N n“n — n —=
"e ’{unvn <up TN g, <ua<1

Using the squeeze theorem and the fact that v,u, — 1, we get

1< lim v, <1

n—-+o0o
1< lim u, <1

n—-+o0o

So
lim u,=1et lim v, =1
T—>+00 T—>+00
3. We have

lim a2 + b2 +a,b, =0« lim 2(a® + b2 + a,b,) =0

n—-+4o0o n—-+4o0o

& lim 2a% 4 202 + 2a,b, =0

n—-+oo

& lim az 4+ b2 + (a2 + b2 + 2a,b,) = 0
n—-+0oo

& lim a + b2+ (a, +b,)* = 0.

n—-+00

On the other hand, we have:

0<a?<a®+b:+(a,+0b,)? o 0<a?<a®+b:+(a,+0b,)?
0<b? <a®+b+(a,+0b,)? 0<b? <a®+b+(a,+b,)?

Which implies that:

3

n—-+00 n—-+o0o
0< lim b < lim [a2 + b2 + (a, + b,)? 0< lim b2 <0 lim b2 =0
n—-+o00 n—-4o0o n—-+o00 n—-+400o

3o

{O§ lim a? < lim [a2 + b2 + (an + bn)? {0§ lim a2 <0 { lim a2 =0
n—-+oo n——+00 = o=

Based on the results of exercise (1),

lim a,=0, et lim b,=0
n—-+o0o n—-+o0o

Let (u,) be a sequence of real numbers
1. If lim u,, = 400, show that lim F(u,) = +oc.

2. If the sequence (u,) converges, can we say that F(u,) converges?

1. We know that Vn € N: E(u,) < u, < E(u,) + 1. Using the squeeze theorem:
lim E(u,) < lim u, <1+ lim E(u,)

n—-+o00 n—-+00 n—-+o00

We see that the sequence u,, converges to 400
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2. For the second question, we use the following counter-example:

cos(nm) —1 _ cos(nn)

1
Let’s take the sequence u,, = ; n € N*. We know that, Vn € N*: — < —

Y

<
n n n n
so u, converges to 0. On the other hand, the sequence E(u,) diverges because it has two

1
extracted sequences (E(ug,) = E(2—) = 0 and E(ug,11) = E( ) = —1) with different
n

2n+1
limits.

Study the nature of the following sequences and determine their possible limits:

L. Vi2+n+1—n 3 sinn? + 2cosn 5. (1_'_%)71

n2

ncosn a — b 5 5
. . Ca. b elo 3 (tan S — sin 2
nd+1 ar @ €]0, o0 6. n (tann smn)

e

1 1
V2 41—y =n({/1+ -+ =)+ —=
non vn
[,/1+1+ L ]
=N —_ _— B —
n  n? /n

. : 1 1 1
Since lim 4/14+ -+ —S+—F—==1,s0
n—-+00 n n n
lim vn24+n+1—+yn=1x lim n=+oo
n—-+4o0o n—+4o0o
2. We have for all n € N:
ncos(n) n -n ncos(n) n

|cos(n)| <1 =

—
n24+1 | " n2+1 n2+1~" n2+1 —n2+1

And since
-n

lim 5 = lim — =
n—+oo N, —|—1 n—+oo N, —|—1

According to Squeeze theorem, we find :

0< tim "M o, meosn)
n—+4o0o 7’L2—|—1 n—+4o00 7’L2—|—1

=0

3. We have for all n € N:

_ ; 2

-3 _ sin(n”) + 2 cos(n) <
n2 — n? n

3
n2

|sin(n?) 4+ 2cos(n)| <3 = —

sin(n?) + 2 cos(n) 23
n2 )
And since 3 3
lim — = lim — =0
n—-4o00 n2 n—4o00o n2

According to Squeeze theorem, we find :

0< lim sin(n?) + 2 cos(n) <0 — lim sin(n?) + 2 cos(n)
n—+o00 n? n—+o0 n2

=0
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4. since a > 0, and b > 0 we can write

a”—br  Wnr—1
ar+br  Wr4+1

a

with W =

j=p)

We have three cases to look at:
First case: 0 < W <l a< b‘ We can write:

n

Wn = elnvw” = entW G4 lim W™ =0, [InW < 0] which implies that

n—-+40o

. a” — b 0—1
lim = = —
n—-+oo g™ + b 1+0

Second case: W =1<a=05>

We have lirf w"™ = 1 which implies that
n——+0o0

a—b 1-1

li = =0
n—lgli-loo a” + bn 1+1
Third case: W > 1 < a > b| we can write:
1
=t wr—1 1oy
an+bn o Wr+lo L
Wn
as, Wn = elnv" = enlnW Qg 111:{1 W" = 400, [In W > 0] which implies that
n—-+0oo
1 1
im a4 = lim weo_ 1
n—+oo q™ + b n—+o00 14 L
Wn
5. We have:
2 11’1(1 + 2/71)
2 n
lim (1 + _)n = lim 61n(1+2/n) — lim enln(1+2/n) — lim e 2/n
n—-+oo n n—-+oo n—-4oo n—-+oo

2
Let # = — which implies that if n — +o00 <= 2 — 01, and according to the known limit

In(1 T
iy 21+ 2)
x—0 €x

=1, So:
21In(1 + 2/n)

2
lim (1+—)"= lim e 2/ =e
n—-+oo n n—-+oo
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6. We have:

5 3 3 ) 3Sin— 3Sinﬁ
n (tanﬁ—smﬁ):n T 3
— CoSs — —
n n
3Sin— 1
_ n 2
= 3 3 1|n
— CoS —
n n
sin — 1 —cos—
_ n n
=3x9 3 N 3
ﬁ (ﬁ) cosﬁ
sin — 1 — cos— 1
=27 1 1

3 2
— <§) COS §
n n n

lim sin(z) =1 and lim LOS(@ = 1
z—0 xT z—0 2
Therefore;
3 3 1 1 27
li 3(tan — — sin —) = 2 IXx=x—-=—
n_1)1i100n(ann s1nn) 7 X XgX1=3

3 . .
Let x = — which implies that n — +o00 <= x — 07", and according to the two usual limits
n

e :

Let (u,) be a sequence such that ug =4 and Vn € N: w,.; =3 — o )
U,

1. Show that u,, > 2, for all n € N.
2. Prove that (u,) is a monotonic sequence.

3. Study its convergence. If it converges, compute its limit.

1. We use recurrence reasoning (Proof by Induction ) to prove that ¥n € N* : w, > 2.

(a) Statement. P, :Vn € N*: v, > 2.
(b) Base Case. ug = 4 > 2, so the property P, holds.
(c) Induction hypothesis. Let n € N such that P, is true, i.e. u, > 2, so we have:

<1l =
U,+2 U, +2

Up > 2 — U, +2>4 — > —1

— 3+

U, +2
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(d) Conclusion. the property P, is true for all n € N,

2. We have

4
Uy + 2 B
Ul Uy + 2
N Uy + 2
(un — 2)(uy, + 1)
Uy + 2
<0 because u,, > 2

un—l—l_un:g_ Unp,

Thus the sequence w,, is decreasing.

Conclution: Since the sequence u, is decreasing and bounded from below by 2 . So it
converges to a limit [ € R. On the other hand wu,.; is a sub-sequence of u,, so it also converges
to [. According to the recurrence relation for u,,, we obtain:

. 4 4 (l—=2)(1+1)
n_lﬂloou #1=3 2+ lir+n Uy, 3 [+2 [+2 0
n—-+0oo

And since u,, > 2, this means that lim wu, =[1> 2. As a result [ = 2
n—-+0o00

Let (uy)nen+ be the sequence defined by :

_n—|—2
n+1

U,

1. Show that (u,)nen+ converges to 1.

2. Find an integer ny € N such that all terms u,, of index n > ng are in the interval I =]0.98;1.2[.

1. To show that lirf u, = 1, we can use this rough draft to compute ny.
n—-+0o0

_rough draft

1 — 1 1
n -1 <e = <e = -<n+2 = --2<n
n—+2 n—+2 € €
1

20




1
Proof: Let € > 0,3ng = (E(—) + 1) eN;VneN
€

n > ng

N
Vv

—~

Ao
N—
+
—_

(-)+1-2

3 3
vV v
e

3
-+

[\

IV

Al = o

I A

n+1

0.98 < 5 <12 <12

098<1—

n + n

0.98—-1< —

<12-1
n -+

—-0.02 < —

1
n+2
n—+2>50
n > 48
n > 48 = ng

<0.2

n +

< 0.02

[ A A

Bk ——

1
For any n € N*, consider the sequence defined by: H, =1+ 5 + 3 4+ ...+ -
n

1. Compute H,, — H,

2. Show that H,, is divergent.
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1. We have

H. —1+1+1+1+1+ +1
e T R
N 1 L+ 1 1 T 1 n 1 1
n+l n+2 n+3  n+n—-2 n+n-1) n+n
—H Loy L
" i+l n+2 n+3 T n+(m—-2 n+(n-—1) 2n
Which implies that
1 1 1 1 1
HZn_Hn: + + —
n+l n+2 n+3 n+n—2 n+(n—-1 2n
k=n
B 1
k:1n+l€
On the other hand, for any 1 < k < n:
1 1
n+k<2n = > —
n+k = 2n
k=n 1 k:nl
—— > _
ZTL—F/</’_Z2n
k=1 k=1
k=n 1 1k:n
Zn+k_2n b (with u )
k=1 k=1
k=n
1 1
> >—><
;n—i—k’_Zn "
:>’“:" L1
k:1n+k_2
Consequently
1
HZn_HnZ_
2

(1)

2. Assuming that there exists [ € R such that: lim H, =, it is clear that Hy, is a sub-sequence

n—-+o0o

of H,. From the inequality , and the Squeeze theorem:

1

n—-+o0o n—-+o0o n—-+o0o

Contradiction, so the harmonic sequence H,, diverges.

1
lim H,, — lim Hn2§ — [—-1l=0>
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Chapter I

Limits and continuous functions

4.1 Overview concepts:

In this chapter we are going to study real functions of one real variables, or simply functions
which are defined on a non-empty part E of R to R with (E C R; or E =R).

4.1.1 Real function of one real variable

Definition 4.1

Any application from E to R is called a numerical function.

If E C R, we say that f is a numerical function of a real variable, or a real function of a
real variable.

We write;

f+ E — R

E is called the domain of definition of f and is denoted by Djy.

Example 4.1

For example, the function defined by:

fir R — R

r

8

is a numerical function of one real variable. In this case the domain of definition of f is
Dy =R*.

4.1.2 The Graph of a function

Definition 4.2

Let f: Dy — R be a numerical function of a real variable, the Graph of f is a set of
ordered pairs of the form (z, f(z)). And denote it by I'; i.e:

Ty ={(z, f(z))/x € Dy} C R

Remark 4.1 T'; is a subset of R?, i.e 'y C R?
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Chapter 04 Limits and continuous functions

Example 4.2

1
The graph of f(z) = — is shown below
x

1
Figure 4.1: Graph of f(z) = —
x

4.1.3 Operations on Functions

Definition 4.3: (The sum and product of two functions)

Let f: D — R and g : D — R two functions defined on D to R
o The sum of f and g is the function defined by f + ¢:

f+9g: D — R
ro— (f+9)(@) = fz)+g(x)

e The product of f and g is the function defined by f.g:

fg: D — R
r — (fg)(x) = flz).g(x)

o Let A € R, the function \.f is defined by:

\f: D — R
o (A f)(x) =\ f(2)

o4



Chapter 04 Limits and continuous functions

Figure 4.2: Graph of the sum of two functions f + g

4.1.4 Monotonicity, parity and periodicity

Definition 4.4

Let f: Dy — R be a real function.

« The function f is said to be increasing on Dy iff:

Vo,y € Dp; o <y = f(z) < f(y)

« The function f is said to be strictly increasing on Dy iff:

Ve,y € Dg; x <y = f(z) < f(y)

e The function f is said to be decreasing on D iff:

Va,y € Dy o <y = f(x) > f(y)

o The function f is said to be strictly decreasing on Dy iff:

Va,y € Dy x <y = f(z) > f(y)

« The function f is said to be a constant function on Dy iff:

Ja € R,Va,y € Dy; f(x) = f(y) =a

« The function f is said to be monotonic on Dy if it is either increasing or decreasing
on Dy

« The function f is said to be strictly monotonic on Dy if it is either strictly increasing
or strictly decreasing on Dy

25



Chapter 04 Limits and continuous functions

Example 4.3

1. The y/x function is strictly increasing on [0, +o0.

2. The function exp(x) is strictly increasing on R and In(z) is strictly increasing on
10, +o0l.

3. The function |x] is increasing on R.

4. The function |x| is neither increasing nor decreasing on R.

Figure 4.3: The functions exp(x),/z and In(z) (The function |z| on the right)

Figure 4.4: The integer part function



Chapter 04 Limits and continuous functions

Definition 4.5

Let f: Dy — R be a real function.

V$€R;$6Df - —LUGDf

o We say that f is even iff:
{Vm € Dy: f(—z) = f(x)

VZ‘ER;ZL’GDJI — —IGDf

* We say that f is odd iff: {Vx €Dy: f(—x)=—f(z)

Graphical interpretation:

o The graphical representation of an even function has the y-axis as the axis of symmetry.

o The graphical representation of an odd function has the origin of the coordinate system

as the centre of symmetry.

Example 4.4

1. Since:
{VxGDf:R — —z €Dy

then the function f(x) = z? is even.

2. Since:

D; =R
Vo € Dy; f(—x) = —2° = — f(x),
then the function f(z) = 2% is odd.

Vo € Dy; f(—x) = (—2)* = 2® = [ (=),

x=0 estun axe de symétrie

¢ -47

Figure 4.5: The function z? and 23

Le point-(0,0)
estun centre de symétrie
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Chapter 04 Limits and continuous functions

Definition 4.6

Let f: Dy <— R be a real function.
We say that a function f is periodic, with period p € R, if

\V/$€R; I’GDf — m+pEDf
Vz € Dy; f(x+p) = f(z)

Graphical interpretation:

o« If fisa peri_o)dic function with period p, then the graph of f is invariant by the translation
of vector p 7 .

o2
T
LI

LA
Uik

iy

2mi

<;
<;

¢ Y

Figure 4.6: sin(z) is 2m-periodic

4.1.5 Bounded functions

Definition 4.7

Let f: Dy — R be a real function.

o If there exists m € R such that: m < f(z) for all € Dy, then the function f is
said to be bounded from below by m. i.e

dm € R,Vz € Dy; m < f(x) < the function f is bounded from below

o If there exists M € R such that: f(z) < M for all x € Dy, then the function f is
said to be bounded from above by M. i.e

dM € R,Vx € Dy; f(x) < M < the function f is bounded from above

o If there exists M, m € R such that: m < f(z) < M for all z € Dy, then the
function f is said to be bounded. i.e

dM,m € R,Vz € Dg; m < f(x) < M < the function f is bounded

Remark 4.2 Also, we can say that f is bounded on Dy iff: AM € Ry, Vx € Dy; |f(z)| < M.
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Chapter 04 Limits and continuous functions

m

¢ 4] 4

Figure 4.7: The bounded fom below function (in the left) and The bounded from above function
(in the right)

q v Tl v :
o

_44

Figure 4.8: bounded function

Definition 4.8

Let f: D — R and g : D — R tow functions. We can write:

e f<gifft: Vo€ D; f(z) < g(z)
o f<ygiff: Ve D; f(x) <gx)
e [=gift: Vo e D; f(z) = g(x)

Rappel:-
Let f: Dy — R be a real function. Recall that f(Dy) is the set of all values of f denoted by:

f(Dy) ={f(x)/x € Dy}

Let’s put:
xseugf(f () = sup(f(Dy))
xiengf(f(w)) = inf(f(Dy))
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Chapter 04 Limits and continuous functions

Definition 4.9

 The smallest upper bound of f on Dy is called sup (f(z)) and is denoted by :
xGDf

sup f = sup (f(z))

LIZEDf CCEDf

« The greatest lower bound of f on Dy is called iGDDf (f(x)) and is denoted by :
z€Dy

inf f = inf (f(2))

CEEDf CEEDf

Proposition 4.1

Let f: Dy — R be a real function, then we have the following equivalences:

« f is bounded from above on Dy. < sup f € R and we write : sup f < +o00.
CCEDf l‘eDf

« f is bounded from below on Dy. < ing f € R and we write : ian f > —o0.
zeDy z€Dy

o f is bounded on D;. < supf, inf f € R and we write : sup f < +oo and
zeDy €Dy z€Dy

inf f > —oo0.
CCEDf

C M= () e {1 00 T S

z€D; Ve > 0,3x¢ € Dp; M —e < f(x0)
Ve € Dy m <
e m= inf (f(z)) & v€Dyim < flz)
zeDj Ve > 0,3x¢ € Dy; f(xg) <m+e¢

4.1.6 The composition of two functions

Definition 4.10

Consider f: Dy — R and g : D, — R be two functions such that: f(Dy) C D,. Then
the composition of f and g, denoted by g o f is defined as the function:

Vo € Dy; (go f)(z) = g(f(z))

The below figure shows the representation of composite functions:

f g
Df—>Dg—>]R

]
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Chapter 04 Limits and continuous functions

Example 4.5

Let f and g be two functions defined by:

f: R —R g: [-1,400o] — R
r —r2+1 r — Vr+1

We have f(R) = [1,+o0] = f(Dy) C D,
So g o f defined as follows:

Ve € R; (go f)(x) = g(f(x)) = Va? +2

4.2 Limits of Functions

4.2.1 Limite finie en un point z,

Definition 4.11

Let f: Dy — R be a real function, xy and [ two numbers (with xy € D or zg ¢ Dy).
We say that f(z) tends to [ when x tends to z iff:

Ve > 0,30 >0,Vx € Dy; |[x —xo| <9 = |f(z) =] <¢

and we write :rli_g:lo flz)=1

Remark 4.3
1. Inequality |x — xo| < 0 <= x €]zg — J, 20 + 0].
2. Inequality |f(z) — 1| <e <= f(x) €|l —e,l +¢].

3. We can replace inequality "<” by "<7” in the definition.

Graphical interpretation:

For any interval of type J =]l — ¢,l + €[ with € > 0, we can find an interval of type I =

|zo — 0,29 + &[, such that the graphical representation of f restricted to I is included in J.

xj-d %t
—_t—

-4 -3 -2 -1 0 1 % 2 3 4

Figure 4.9:
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Example 4.6

Show that li_)ng(élas +1)=09.
Let € > 0, we have:

[(dz+1) -9 <ecee|dr—8|<ceedlr-2<ce|jr—2/<

= ™

€
Let’s put 6 = 1 we obtain:

Ve>0,35>0(5:i),VweR;|x—2|§5 — |4z +1) -9/ <e

— lim(4dx+1)=9

r—2

Proposition 4.2

If a function f has a limit at xg, then this limit is unique.

By contradiction, suppose that, f has two distinct limits [; and lo. ({1 # l3) en .

1
By setting: ¢ = §|l1 — ly| > 0 because Iy # .

We have:
b /) =
et
tm, f(@) = ts
01(e) > 0,Vz € Dy; |z —xo| <01 = |f(z) — | <¢

- et
3(52(8) > O,VZ' € Df; |$ — ZL‘Q| <y — |f(l‘) — lg| <e

By choosing: § = min(dy, dy) we get:

Vo € Dy v — x| <0 = [f(z) — | <¢
and
Vo € Dy |z —a| <0 = |f(x) =] <e

= Vo € Dy; |[v—zo| <0 = |f(x) = L]+ |f(z) =] < 2¢ (4.1)

According to the triangle inequality we have:
= b =l = f(x) + f(2) = L] < |f(z) = L]+ [f(2) = (4.2)
2 2
(31) and (32) — “1 — lz| <2 = ‘ll — lg‘ < §|l1 — lg‘ = 1< g

So we end up with a contradiction, this means that f admits a unique limit at
point xg.
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Chapter 04 Limits and continuous functions

4.2.2 Left and Right-Hand Limits

Definition 4.12

Let f: Dy — R be a real function, zy and [ be two real numbers. (with zq € Dy or
zo ¢ Dy).

o We say that [ is the left limit of the function f at a point xg iff:
Ve>0,30 >0,V € Dy; g —0 <z <z9g = |f(x)—1I|<e

and we write: lim f(z) =lor lim f(x)=1
xi)zo T—xy

o We say that [ is the right limit of the function f at a point z iff:

Ve>0,30 >0,V € Dy; xp<x<x0+0 = |f(x) -1 <e

and we write: lim flz)=1lor lim f(x)=1

—"sx0 T—T)
Example 4.7

o prove that: lim zcos(1) =0
z—0+t z

We have: ] ]

- < =) <

o cos()] < foleos( )] < [
(a5 cos( )] < 1)
cos(—
s
1
= \xcos(5)| < |z| (4.3)
Let e >0, withd =e. fwehave: 0 <2 <d & 0<zr<e = |z[]<¢
(3.3) = |zcos(l)| <e.
So, Ve >0,30 >0(0=¢),VzeR; 0 <z < = |zcos(2)| <e¢
= lim xcos(2) =0
z—0+t z

o Show that lir(I)l z cos(1) = 0 (Using the same technique as above)
z—0~
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Chapter 04 Limits and continuous functions

0.5

-0.54

_14

Figure 4.10: Graph of the function z cos(2)

Theorem 4.1

Let f: Dy — R be a real function, x¢,! € R (with 2y € Dy or x9 ¢ D). The following
propositions are equivalent

1. xlirglo flz)=1
2. lim f(x)= lim f(z)=1
(E;l’o T—X0
Result:
If we have: lim f(x)# lim f(z) then lim f(z) doesn’t exist.
ccim:o xim’o o

Example 4.8

Let’s consider the function f(x) = m We have:
x
x
1 = lim —— = -1
S )=y
I = lim © =
MRS = g

—> lim f(x)# lim f(x) then lim f(x) doesn’t exist.
z—0t z—0

z—0~
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Chapter 04 Limits and continuous functions

4.2.3 Infinite limit of a function at x,.

Definition 4.13

Let f: Dy — R be a real function and =y € R (with g € Dy or x¢ ¢ Dy)

o It is said that f tends to 400 when x tends to x iff:
VA>0,30 >0,V € Dy; |zt —20| <0 = f(x)> A
and we write xhjg:lo f(z) = +o0
o It is said that f tends to —oo when x tends to x iff:
VA> 0,30 >0,Ve € Dy; |z —x9] <0 = f(z) < -A

and we write Jgrgslo f(z) = —o0

Example 4.9

1
Show that lim — = +o0
z—0 132

Let A > 0 we have:

Lsder<lor_loosse L (:)||<1
= < — &t — TE|——,—F— r| < —
x? A A~ A VA ~ VA
1 1
Putting(;:ﬁthen‘v’xGDf; || <60 = EZA
1 1 .1
— VA>O,E|5>O((5:ﬁ),VxGDf; 2| <6 = ?214 therforeglglg%ﬁz—i-oo

1
Figure 4.11: The graph of a function —
x
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4.2.4 Finite limit of a function at —oo and +oo

Definition 4.14

« Let f be a function defined on an interval of type | — 00, a] (i.e | — 00, a] C Dy)
We say that f tends to [ (I € R) when x tends to —oo iff:

Ve >0,3B >0,Vr € Dy; < —B = |f(z) —|<¢
and we write lim flz)=1

« Let f be a function defined on an interval of type [a, +o0[ (i.e. [a, +00[C Dy).
We say that f tends to [ (I € R) when x tends to +oo iff:

Ve >0,3B > 0,Vx € Dy; v > B = |f(z) —l|<c¢

and we write lim f(z) =1

T—+00
Example 4.10

prove that lim

=1 Let € > 0, we have:

T—+00 1 +
T 1 1
—1’§5<:>“§5<:>|x+1|2
z+1 r+1 €
1
r+1>-— x> -—1
€ €
= or <~ or
1 1
r+1< —— r<—-1-—-
€ €
1 . T
Weset B=-—1,ifx > B = —1‘35
€ r+1
So,Ve >0,3B>0(B=-—-1),Vx€ Dy; > B = ’ —I‘SS
€ r+1
= lim =
z—+oo x4+ 1

Figure 4.12: The graph of a function
x
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4.2.5 Infinite limit of a function at +oco and —oo

Definition 4.15

« Let f be a function defined on an interval of type [a,+o0[ (i.e. [a,+00[C D). We
say that f tends to +0o0 when x tends to +oo if:

VA>0,3B>0,Ve € Df; x > B = f(z) > A

and we write: lim f(z) = 400
r—+00

o Let f be a function defined on an interval of type | — 00, a] (i.e. | — 00, a] C Dy)
. We say that f tends to 400 when z tends to —oo if:

VA>0,3B>0,Vr € Dy; s <—-B = f(z) > A

and we write: lim f(x) = +o0

e Let f be a function defined on an interval of type [a, +o0[ (i.e. [a,+o0[C Dy)
We say that f tends to —oo when x tends to +oo if:

VA>0,3B>0,Vr € Ds; x > B = f(z) < —-A

and we write: xggloo flz) = —o0
« Let f be a function defined on an interval of type | — 00, a] (i.e. | — 00, a] C Dy)

We say that f tends to —oco when z tends to —oo if:
VA>0,3B >0,V € Dy; x < —B = f(z) < —-A

and we write: lim flz) = -0

Notation: Let R denote the set defined by:
R =RU {400, —00}

R is called the extended real line.

4.2.6 Relationship between limits and sequences

Theorem 4.2

Let f: Dy — R be a real function, zg € R (with zg € Dy or 29 ¢ D;) and | € R. The
following properties are equivalent:

1. lim f(x)=1

Tr—rx0

2. For any sequence (%,)nen in Dy such that: Vn € N;z, # z, and 1_1}1;{1 Tp = Xo,
n o0

then we have n1~1>IJIrloo flzn) =1
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Chapter 04 Limits and continuous functions

« First, we prove implication (1 = 2).
Let € > 0,
0. > 0,Vx € Dy; |[v — x| < 6. = |[f(x) 1] <e

(As Jim () =1
0: >0 = Ing(d:) e N,VneN; n>ng = |z, —x0| <6

(Because lim x, = x¢)
n—+o0o

(3.4) et (35) = |f(z,) =1l <c¢
= Ve>0,Ing e N,VneN; n>ny = |f(z,) 1| <e

= lim_fe) =1

» Next, we prove the implication (2 = 1) by contradiction proof,

converges to [ and lim f(z) £ 1.
T—T0

Vn € N*; | f(z,,) — [| > €), which contradicts our hypothesis.

(4.4)

(4.5)

we assume that for any sequence (z,,)n,eny C Dy that converges to zg we have f(x,)

xli_)rgclo (x) #1 < 3 >0,¥0 > 0,3z" € Dy; 2" —z| <OA|f(z") =1 >¢ (4.6)
1
We set: 0 = g/n e N*
1
(3.6) = Vn e N*, 3z, € Dy; (|z, — x| < ﬁ> A(f(xn) =1 >¢)
So we have found a sequence (z,,)nen+ C Dy that converges to .
(since VYn € Nz, — zo] < ﬁ) et f(x,) doesn’t converge to [ (as

Remark 4.4 If there are two sequences (Tn)nen, (Yn)nen of Dy such that:

lim x, = xg
n—+o00
and A nl_lgloo flzn) # nETOO f(yn)

lim vy, = xg
n——+oo

Then lim f(x) doesn’t exist.
T—To
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Example 4.11

R — R
Let f . 1
r > sin(s)
1 1
We have lim sin() doesn’t exist because: If we set z, = — et y, = ————
z—0 v nmw 5+ 2nm
The sequences (T, )nen+, (Yn)nen+ in R* and nl_l)gloo Ty = nl_i}rfoo Yn =0
nl_lgloo flz,) = nETw sin(nm) =0
On the other hand, we have: et
. o o _
S ) =l _sin(G + 2nm) =1
= nl_lgloo flxn) # nl—1>r-|I-1<>o f(Yn)
= lim f(z) doesn’t exist.
T—T0
4.2.7 Limits operations
Proposition 4.3: (The limit of sum of two or more functions)
Let f,g be two functions and x5 € R. Then we have:
Jim f(z) | lim g(z) | lim (f(z) + g(2))
ll eR lQ eR ll + l2
L eR +oo +oo
+00 +00 +00
—00 —00 —00
400 —00 Indeterminate form
—00 +00 Indeterminate form
Let f, g be two functions and x5 € R. Then we have:
lim g(x)
oo Iy >0 o <0 0 +oo oo
lim f(x)
T—x()
1 >0 lim fx)g(xz) =1l1l2 l1lo 0 +oo —o00
T—x()
11 <0 I1lg 1o 0 —oo +o0
0 0 0 0 Indeterminate form Indeterminate form
“+o0 “+oo —o0 Indeterminate form “+o0 —o00
—oo —oo +oo Indeterminate form —o0 “+oo
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Proposition 4.5: (The limit of quotient of two functions)

Let f, g be two functions defined on D with g(z) # 0 on D and xy € R. Then we have:
lim g(x)
roro la >0 o <0 ot 0~ +oo —o0
lim f(x)
T—=x(
11 >0 im 2@ _ b b +oo S 0 0
Tz g(x) la lo
l1 1y
1 <0 — — —o0 +oo 0 0
lo lo
ot 0 0 Indeterminate form Indeterminate form 0 0
(O 0 0 Indeterminate form Indeterminate form 0 0
+oo “+o00 —o0 “+oo —o0 IF IF
o oo +oo0 —o +oo IF IF

Remark 4.5 According to the previous propositions, the indeterminate forms are:

0
x 2 Also we can deduce the other forms which are: 0°, oo, 1%

+00 — 00, ;, 0

4.2.8 Limit of Composite Functions

Proposition 4.6

Let f: Dy — R, g: D, — R and x, yo,! € R.

Aim f(z) = yo
If we have: et then h_)m (go flx)=1
T—IQ
Jim g(x) =1

Example 4.12

f: R — R
Let e —1 and
r

X

. . (e =1
tiny (o) = iy (=) =
We have: and

lim g(z) = lim In(z) = 0

r—1
Then lig(l)(go f)(z) =limIn <e ) =0

z—0 x




Chapter 04 Limits and continuous functions

4.2.9

Proposition 4.7

1.

Finding Limits: Properties of Limits

If we have: lim f (x) = [ then there exists o > 0 such that the function f is
T—T0

bounded on |xy — «, g + .

If we have: f(z) < g(z) in the neighbourhood of xy and lim fz) =1, lim g(x) =
T—x0 T—T0
lQ then ll S lg.

. The Squeeze Theorem: Let f,g,h be three functions with the following property

f(z) < g(x) < h(x) in the neighbourhood of .
If we have: :rlgglo flz) = zli_}rg() h(x) = [ then zli_}rg() glx) =1

Let f, g two functions which verify f(x) < g(z) in the neighbourhood of x

lim f(z) = 400 then lim g(z) = +oo
T—T0

If we have: ¢ ©7%°
lim g(z) = —oo then lim f(x) = —c0
T—T0 T—x0

Let f be a bounded function in the neighborhood of zy and g a function verifying
lim g(x) = 0 then lim f(z)g(z) = 0.
T—T0 T—x0

Definition 4.16: (important definition)

Let f: Dy — R be a real function. We say that f is defined in the neighborhood of zg
iff: there exists an interval of the following type I =]zy — ¢, 20 + €[ such that: [ C Dy.
(I is an interval with center xy and radius € > 0).
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4.3 Continuous Functions

4.3.1 Continuity at a point x

Definition 4.17

the point xg iff:
lim f(z) = f(zo)

Tr—xQ

ie Ve>0,36 >0,V €Dy |z —z9| <6 = |f(x) — flxg)] <€

Let f be a function defined in the neighborhood of xy. We say that f is continuous at

Example 4.13

Let f be a function defined by:

Show that f is continuous at zy = 0.
1. Dy =R = f is defined in the neighbourhood of zy, = 0.

2. We'll show that lig(l) f(x)=0.
We have: ]
Vo € R*; |z sin(—[< |z]
x

If we choose 6 = ¢ (with e > 0), we find:
1
Ve>0,30>0(0=¢),Vz €R; [2] <6 = [rsin(|<e
T

= lin% f(z) =0 = f is continuous at
z—

4.3.2 Left and right continuity at a point z

Definition 4.18

« Let f be a function defined on an interval of kind [z¢, x¢ + h[ with A > 0
(i.e.;[xo, xo + h[C Dy). A function f is right continuous at a point z iff:

lim  f(z) = f(zo)

xiﬁco
& Ve>0,30 >0,Ve € Dy; mg<a<zo+6 = |f(z) — f(m)| <e

« Let f be a function defined on an interval of kind [z — h, o[ with A > 0
(i.e.;[wo — h,zo[C Dy). A function f is left continuous at a point z iff:

lim f(z) = f(wo)

Tr—>rx0

&Ve>0,30 >0,V € Dy; zg—0 <z <zg = |f(x) — f(20)] <€
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Example 4.14

Let f be a function defined by:

sin(x)

fla)=q ol

1 siz=0

siz#0

1. We'll study the right continuity of f at g =0

« We have Dy =R = f is defined in the right of o =0

sin(z) . sin(z) _ 1)

e lim

xiﬂ] |'T| _xi>0

x
So f is right continuous at z.
2. The continuity of f at the left of zy = 0.

« We have Dy = R = f is defined in the left of 2y = 0.

sint) 14 ()

e lim = lim —M
xiﬂ) ‘.T’ xi>0 'y

So f is not left continuous at xg.

Figure 4.13: Graph of the function f

Theorem 4.3

are equivalent:
1. f is left and right continuous at xg.

2. f is continuous at x.

Let f be a function defined in the neighborhood of xy3. The following two propositions

Remark 4.6 Our example (4.14) shows that f is right continuous at xo = 0 and is not left

continuous at xog = 0. which implies that f is not continuous at ro = 0.
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4.3.3 Continuous extension to a point

Definition 4.19

Let f: Dy — R be a real function and =y € R Such that: 2o ¢ Dy. If lim f(x) =1 €

T—rT0
R.exists, but f(zo) is not defined, we define a new function:

f: Dju{zm} — R

o f(x):{f(w) if = # g

) if x = x

which is continuous at xy. It is called the continuous extension of f to xg.

Example 4.15

Let
fi R — R

sin(x)

r

T

Can we extend the function f to be continuous at zy = 0.

sin () =1 = f has a finite limit at 29 = 0

We have: lir% f(z) = lin%)
g r—r
So f is extendable by continuity at xy = 0 and the extension by continuity of f at zy =0

is defined by: .

f: R — R
sin(z)

ifx#£0
1 ifzx=0

T — f(x):

4.3.4 Operations on continuous functions at z

Theorem 4.4

Let f, g be two continuous functions at a point o € R and A € R. Then:
1. The function |f| is continuous at .

2. The functions Af, f + g and fg are continuous at xg.

3. If g(xg) # 0 then f is continuous at .
g
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Proposition 4.8

Let f: Dy — R and g : D, — R be two functions such that: f(Dy) C D,.

If we have:

f is defined in a neighborhood of xy and continuous at xg
et

g is defined in a neighborhood of yy = f(xg) and continuous at ¥

Then (g o f)(x) is continuous at .

4.3.5 The sequential continuity theorem

Theorem 4.5

Let f: Dy — R be a real function. The following two statements are equivalent:
1. f is continuous at xg.

2. for each sequence (x,,)neny C Dy such that z, — zo, then f(z,) — f(xo).

The proof of this theorem follows from theorem (4.2)

Proposition 4.9

Let f: Dy — R be a real function and zy € Dy.
If f is continuous at zo and f(xg) # 0 then there exists a neighborhood (V) of zy such
that:

VeeV; f(x)#0
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We have f is continuous at z so,

1. f is defined in a neighborhood of xg

< 3n > 0 such that: I =|zg — 1,20 + n[C Dy (4.7)

2. lim f(x) = f(zo)

Tr—x0

& Ve>0,30 >0,Ve € Dy; |x —x9] <6 = |f(z) — f(zo)| < ¢ (4.8)

If we put: € = 3| f(xo)| then:

35> 0,V € Dys |o— o] <6 —> |f(&) = f(wo)] g;f(xo)\

(3.7) = B >0V el: |z—z0| <6 = |f(x) — flwo)| < ;\f(x0)|

— Vi € Infay — 5,20+ 1l 17(2) — f(ao)| < 510 (1.9

Let’s put : V = IN|xg — §, 29 + J], then V is a neighborhood of z.
On the other hand, according to the triangular inequality, we have:

[ (o) = | f (@) < [[f(wo)| = |F ()] < [f (o) = f2)] < ;!f(l‘o)l

(19) = Vo € V| f(@)] - ()] < 51 f @)

1
—> V€ Vi 1f(@)] 2 51 (ao)] £0
So there is a neighbourhood V of xy such that: Vo € V; f(z) # 0.

4.3.6 Continuity over an interval

Definition 4.20

1. f is said to be continuous on an open interval of type |a, b[ iff: it is continuous at
any point on the interval ]a, b].

2. f is said to be continuous on an interval of type [a, 8] iff: it is continuous on |a, b]
and continuous to the right of a and to the left of b.

3. f is said to be continuous on an interval of type ]a,b] iff: it is continuous on |a, b
and continuous to the left of b.

4. f is said to be continuous on an interval of type [a, b[ iff: it is continuous on |a, b]
and continuous to the right of a.
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4.3.7 Uniform continuity

Definition 4.21

Let f: Dy — R be a real function. We say that f is uniformly continuous on D iff:

Ve >0,3(e) > 0,Vz,y € Dy; |z —y| < d(e) = |f(x)— f(y)| <e

Remark 4.7 Note that uniform continuity is a property of the function over the set Dy, while
continuity can be defined at a point xy € Dy. The number 6 depends only on € in the case of

uniform continuity, but in the case of continuity at a point xo, d depends on € and x.

Example 4.16

Show that the function f(x) = /z is uniformly continuous on R.
Solution: Step 01: In this step, we’ll show that:

Ve,y e Ry o +y <o+ yand [Vo— /fyl < \/lz —y|
1. Let z,y € Ry we have: 0 < 2yaz/ly & o +y < c+2/s/y+y & av+y <

(VE+vE) & VETG< IVE+ VIl = Vit 7
SoVa,y € Ry o +y < o+ \/y.

2. Let z,y € R, we have:

(z—y)<l|lz—yl = y+(x—y) <y+|z—y|

= Vo <\y+lz—yl <Vy+/lz—yl

— Vi-vi<lo—yl (4.10)

on the other hand, we have:

—2)<|y—2 = s+ y—2) <v+r—y

= Vy<yrtlr—yl < Vot /lz -yl
— el <VEi-vE (1.11)
(4.10) and (4.11) = Va,y € Ry; [Vo — fy| < \/|z — |

Step 02:
In this step we will show the uniform continuity of the function f(z) = /x
Let € > 0 and z,y € R, we have:

Vz =yl < /lz =yl
Let’s put § = £2 then:
2 -yl <0 = ]z —yl<e = Vo -yl <e

= Ve>0,30>0(0=¢*)Vo,y e Ry; |z —y| <6 = |Vr—y| <e

therefore, f(x) = \/x is uniformly continuous on R,
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Example 4.17

Show that the function f(z) = z? is not uniformly continuous on R.
Solution:
f(x) = 2? is not uniformly continuous on R

&3 >0,¥>0,3r,y€R; |z —y| <A |22 — 3P| > ¢

Let’s put: e =1

Let 6 > 0, we will confirm the existence of z,y € R such that:|z —y| <6 A |22 — y?| > ¢

1
2 1

|22 — 2| > 14:)|x2—x2—x6—152| >1<:)|162+x5| > 1

1 1
Let’s take : y:x—|—§6 = r—y=-0 = |x—y|:§5§5

1 1 1 1
Ifwechoosez:5+i(5, theny:5+i(5+25:5+i5
1
—yl==0<§
=yl =3

|22 —y?| =1+ 62 > 1

1 3 1 v -yl <0
2? — | > 1

= f(z) = 2? is not uniformly continuous on R.

Proposition 4.10

Let f: Dy — R be a real function, then we have the following implication:

f is uniformly continuous on Dy == f is continuous on Dy

Remark 4.8 The converse is false: a function can be continuous on Dy without being uniformly
continuous on D;. From example (4.16) we have: f(x) = x? is continuous on R but not

uniformly continuous on R.

4.3.8 Theorems about continuous functions

Theorem 4.6: (Heine’s theoem)

Every continuous function on an interval of type [a,b] is uniformly continuous on this
interval.
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In this theorem, we’ll show the following implication:

f is continuous on [a,b] = f is uniformly continuous on [a,b]. By contradiction, we
assume that f is continuous on [a, b] and not uniformly continuous on [a, b].

f is not uniformly continuous on [a, b] <

20, V6 > 0,3z, y € [a,0]; (| —y| < 0) A (1f(x) = f(y)] > €0)

1
Let’s put: 6 = — tq: n € N*
n

1
= Vn € N* 3z, y, € [a,b]; |z, —yn| < - N f(zn) — flyn)|> €0 (4.12)

So we have constructed two sequences (x,,)nen+ and (Y, )nen+ which are included in [a, b].
(Zn)nen+ C [a,b] = (Zn)nen+ is a bounded sequence.

According to bolzano weierstrass’s theorem, there exists a sub-sequence (¢(n))nen+ such
that: lim wy,) =1 with [ € [a,b].

n—-+0o
1
On the one hand we have: [24(m) — Ygm)| < ) — nl_igloo(%(n) — Yp(n)) = 0
L (2o = Yorm)) = 0
So | and = nl_lgloo ys(n) =1
i) = 5
f is continuous at | = In > 0,Vz,y € [a,b]; |z —y| <n = |f(z) — f()| < 30.

The sequences (24(n))nen+ and (ys(n))nen+ converges to !

dng e N*,Vn e Ns n>ng = |2y — | <0 = |[(2gm) — f(D)] < %0
== and
£
I €N Vne N n2n = [yom) — Ul <1 = [f(ysm) — FID] < 30
If we put: n* = max(ng,n1) we get:
x x x * 2e
" e N Vn e Ny n>n" = [f(zom) — (D] + [f(Ysm) — F(D] < ?0
According to the triangular inequality we have:
280
7o) — F )| < 7o) — SO+ | F o) — FD] < 22
. 2e
—> Vn > n" we have: |f(24m) — [ (Wom))| < 70 (4.13)
2e
(3.12) and (3.13) = Vn > n";50 < |f(@owm) — FWew)| < 70

2e0 . .
= gy < > is a contradiction

so the multiplication (f is continuous on [a,b] = f is uniformly continuous on [a, b))
is true.
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Theorem 4.7: (Weirstrass’s theorem)

Let f be a continuous function on [a, b], then:

f is bounded on [a, b]
and

Az, 29 € [a,b] tq:f(x1) = min (f(z)) and f(x2) = max (f(z))

z€[a,b] z€la,b]

(i.e. f is bounded and reaches its bounds on [a, b].)

Figure 4.14: A continuous function on [a, b]
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1. Let’s assume that f is not bounded on [a, b] <
Vn € N*, 3z, € [a,b] tq: |f(z,)| > n (4.14)

So we constructed a sequence (x,)pen+ C [a,0] = (2 )nen+ is bounded.
According to B.W’s theorem there exists a sub-sequence (Zg(n))nen+ Of (Z7)nen
such that:

nl—lgloo Tyn) = L avec | € [a, b]

l € la,b] = f is continuous at | = ngrfoof(x¢(n)) =f(l)eR
(3.14) = Yn e N*; |f(zg(mm)| > d(n) = ngrfoof(%(")) = 400 is a contradiction
—> [ is bounded.
m= it (1) = wi(f([o,b)
2. We put and
M = sup (f(x)) = sup(f([a,b]))

z€la,b]
From the definition of sup and inf we have:

dx* € [a,b]; f(z*) <m+e
Ve > 0, and
€ fa,b]; M —e < f(y")

1
Let’s put: ¢ = —/ n € N*, we get:
n

1
dx,, € [a,b]; f(z,) <m+ -
Vn € N*; and
1
Fyn € [a,0]; M < f(ya) +

So we constructed two sequences (Z,)pen+ and (Y,)nen+ which are included in
[a,b] = (Zn)nen+ and (Y, )nen+ are bounded. According to B.W’s theorem we

have:
(2 p(n) Jnen+ such that:nl_i&loo Ty =/ o € [a, b]
and
(Yo (n) Jnen- such tnat: nEIJIrloo Yon) = B/ B € [a,b]
f is continuous at « —> 1_1)1;{1 f(@gm)) = fla)
a, € [a,b] = and
f is continuous at f = Erf fWomy) = f(B)
1
f(@om) — = <m < fzsm)
n
— Vn € N and Passing to the limits we

f(ya(n)) <M< f(ya(n)) + l

obtain: m = f(a) = 2:gﬁlfb](f(av)) = wrél[zr}ﬂ(f(x)) witqbl a € [a,b].
) = max (f(x)) with g € [a, b]

and M = f(f) = Sl[lpl(f(x)
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Theorem 4.8: (Bolzano-Cauchy)

Let f be a continuous function on the interval [a, b] such that: f(a).f(b) <0, then there
exists at least ¢ € [a, b] verifying f(c) = 0.

Assume that f(a) < 0et f(b) > 0. Let’s put: F = {x € [a,b]/f(x) <0}.

Since (F' C [a, b)), the set F' is bounded above.

According to the completeness axiom for the real numbers, we have: 3¢ € R; sup(F) = ¢
with a < ¢ <b (since b € Upper(F) and a € F)).

l.c=sup(F) = Ve>0, I € F; c—e<a*<c
Let’s take ¢ = —
n
. 1
= VneN dz,eF;c——<uz,<c (4.15)
n

So we constructed a sequence (z,)pens C F
According to (3.15) 1_131 x, = ¢ (Squeeze theorem).

f is continuous at ¢ = £r+n f(zn) = f(o).
On the other hand, we have: (x,)pens C F = Vn € N*; f(z,) <0 = f(c) <0

h—
2. Let’s consider the sequence y,, = ¢ + i /n € N*.
n
b—c

—— <0 = (Yn)nen+ is decreasing, then:

We have: yp11 — Y = —

VneN, e<y, <yp=0>

—> (Yn)nen+ is a sequence in [a, b] which converges to c.
f is continuous at ¢ = l_1>rJ£1 flyn) = fle).
n o0

On the other hand, we have: Vn € N*; ¢ <y, = f(y,) >0 = f(c) > 0.

Finally, from (1) and (2) we get: 3c € [a,b]; f(c) =0

Example 4.18

Let
f:[0,2nr] — R
x +—— sin(x) + (z — 1) cos(x)

1. The function f(z) is continuous on [0,27] (since f is a sum of two continuous
functions on [0, 27])

2. f(0O)=—land f2r=2r—1>0 = f(0)f(27) <0

According to B.C’s theorem, there exists at least one real ¢ € [0, 27] such that: f(c¢) =0
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Figure 4.15: The graph of f(z) = sin(z) + (x — 1) cos(z) on the interval [0, 27].

Theorem 4.9: (The Intermediate Value Theorem)

Let f be a continuous function on [a, b] we have:
1. If f(a) < f(b) then Vv € [f(a), f(b)], Jc € [a,b] such that:f(c) =~
2. If f(b) < f(a) then Yy € [f(b), f(a)],3c € |a,b] such that:f(c) =~

Proposition 4.11

Let f : I — R be a continuous function on interval I (where [ is an arbitrary interval).
Then f(I) is an interval.

Let y1,y2 € f(I) such that: y; < yo = Fz1,29 € I such that: y; = f(z1) Ay = f(z2).
Let’s put: @ = min(zy,x2) and b = max(z,x). We have: a,b € I.

Let y € [y1,y2] = e € [a,b]; f(c) =y (LV.Th).

We have: [a,b] C I (as [ is an interval) = y = f(c) € f(I).

Yy, y2 € f(I),Vy €R; y € [y1,y2] = y € f(I) = f(I) is an interval.

Remark 4.9 If f is a continuous function on |a,b] then, f(|a,b]) = [m, M]
with m = m[lri](f(a:)) and M = m[aug](f(x))
x€|a, re|a,

4.3.9 Monotonic functions and continuity

Theorem 4.10

Let f: I — R be a function (/ is an interval). If f is strictly monotone on the interval
I, then f is injective on [.
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Let’s show that f is injective. consider xy,x9 € I; 11 # X3
1. Sizy < zyet fis strictly increasing = f(x1) < f(z2) = f(z1) # f(x2).

2. Sixy < 9 et f is strictly decreasing

= [(21) > [(x2) = 1) # [(22)

The same technique is used for x; > .
So Vay, 29 € I; @1 # 29 = f(x1) # f(xe) = f is injective.

Theorem 4.11

Let f: I — R be a monotonic function defined on an interval I. Then the following
two statements are equivalent

1. f is continuous on I.

2. f(I) is an interval.

Theorem 4.12: (bijection theorem)

Let f: I — R be a function.
If f is strictly monotone and continuous on I, then

1. f is a bijection from I into J = f(I).

2. The inverse function f~': J = f(I) —> I is strictly monotonic and continuous on
J (and varies in the same direction as f).
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Find the domain of definition of the following functions:

1 Ya-z) siz>0
1‘ - et
fil@) Vr+yVl—u 4 falz) 1 six <0

Ya—2) siz>0

2. fo(z) = In(lnx) 5. [5(x) = { 4

r*—1x slx < —2

3. fo(a) = 6. fo(x) :{ 11/w<2—x> siz>3

E(z)—2 stz <0

1.
Dy ={r€eR:z2>0,1-2>0,V/z+V1—1z#0}
={zeR:0<z<1IAVz+V1—1#0}

Let’s assume that there exists € [0,1], such that :v/z + /1 —2z = 0. Since /z >
0 and /1 — 2 > 0 hence the following implication:

Vi+Vl—2=0 = V2=0AV1—-2=0 = z=0Az=1.

Which is impossible, as a result Dy, = [0, 1]

Dy, ={reR:2>0, and In(x) > 0}
According to the exp properties we have:

0

In(z) >0 < @ > —= z>1

Consequently Dy, =]0, oo[N]1, co[=]1, 00|

Dy ={x e R: E(x) # 2}
On the other hand we have:
(E(z) =2 <= 2<2<2+1) < (E(x)=2 < 2<1<3)
(E(x) =2 <= z € [2,3])
(E(x) #2 <= z€R—[2,3])

11

As aresult Dy, =R —[2,3]
4. 1€0,+00] = Dy, =R — {1}
5.3€[0,400[ = Dy, =] — o0, —2[UR" — {3}

6. 0 ¢ [3,+00[, et 2 ¢ [3,400[ = Dy, =] — 00,0[U[3, +00]
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Solve the following equations in R

IL.In(z—1)+In(2z —1)=0 2. 230 — 3oF2 = 3ol _ pdut2 3. (Vz)* =aV®

Cometion2”

1
1. The resolution domain of this equation is D =|1, —|—oo[ﬁ]§, +oo[=]1, +o0o[
9 3
In(z —1)22—-1)=0 <= 22°-32+1=1 <= 2(2x - 3) =0 <= :v:O\/x:§

3
Since 0 ¢]1, 4o00], so the solution to the equation is z = 5

2. The resolution domain of this equation is R

231‘ o 3m+2 — 3m+l o 231-‘,—2 — 0 23:): 4 23x+2 3:1c+1 3x+2

5(2)% = 12(3)"

In(5) + 3z In(2) = In(12) +xln(3)
In(12) — In(5) = #[31n(2) — In(3)]
In(12) —In(5) = 2[In(8) — In(3)]

IHIIHIM

!

3. The resolution domain of this equation is ]0, +o00[

(Vz)* =2V® <= zlnvo =+zlnz
1
— 5361113::\/51113;

= \/Elnx[ﬂ—l] =0
= —\/_lnx[\/E— 2]=0

<— xr=0Vzx=1VvVz =14

Since 0 ¢]0, +o00[, so the solution to the equation is x =1V z = 4.

Prove that:

. . . 2 9 _ .
1. }Egni3x+1—4 2. xginoox +r—2=+400 3. lim - = —0o

z—0— T
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1. lirq 3r + 1 =4. We're looking for 6 > 0, such that:
T—

Ve>0,30 >0,V eR,(Jzr — 1| <0 = [Bx+1—4|<e¢)
for this purpose, we use this draft:

_ Draft

Bz +1—4|<e=1[3x—3|<e
= 3lz—1| <e

€
_]_<_
— fo—1 <3

It is enough to take 6 <

Wl ™

Hence
€

3

€
3
— 3|z —1| <e
— 3z —3| <e
= Bz +1-4|<e

Ve>0,30=-,VeeR, |z -1 <§ = |z —1| <

2. lim 2%+ x —2 = 4+o00. We're looking for B > 0, such that:

T—r+00
VA>0,3B>0,VzeR,(z>B = 22 +z—-2> A)
for this purpose, we use this draft:

_ Draft

PHr-2>A <= fla)=2*+2-(24+A4) >0, A=1+42+4)=4A4+9>0
11— VAIAF9 1+ AAFD

T = 2 y L2 9
x —00 Z1 T2 +00
f(z) >0 =0 <0 =0 >0
—1++V4A4+9 —-1+3
It is enough to take B = x5 = i 5 + > 2+ =1>0
So
—1++4A —14++v4A+9
VA >0,38 = - 24 T OVieR > B — 2> +2 +

— 2 4+r-2-A>0
— 2’4+ -2>A
1 .
3. lim — = —o0. We're looking for § > 0, such that:

z—0— T

1
VA>0,30>0,Vx e R, -0 < <0 = 5<—A
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for this purpose, we use this draft:

_ Draft

1 —1
—< A &= — <z<.
T A

-1
It is enough to take 6 = =

So

1 —1 1
>0,VreR, <r<0) == —<2<0 = —< -4

Determine the following limits when = converges to 0.
Vite—(1+3) 3. x+1+ 2
x? x
5 V222 +5x+9—-3 A vitr—1
‘ T V4o -1

T
. 2]

1. We have
Vita-(1+3) Witz (1+3)]

Vitae—(1+9)IVI+ta+ (1+3)]

2V1I+z+ (1+2)]

A1z 4+ (1+%)]
—1

TAVitat (1r9)]

Therefore
i Vitzr—(1+%) i ~1 -1
im —

11m
70 2 —04[\1T+z+ (1+%)] 8

2. We have a

(V222 + 52 +9 —3) (V22% + 5249 — 3) (V22? + 5z + 9 + 3)
x (V222 4 bz + 9+ 3)

222 + bx

x(\/2x2+5x+9+3)
20+ 5

(V222 + 524+ 9+ 3)

Therefore

(V242 + 52 +9 —3) . 22 +5 5

im = =

im -
z—0 T z—0 ( 2x2+5x+9+3) 6
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3. We have,

Sixz — 0"  then x+1+m:x+1+1:x+2—>2
Siz — 0~ then x+1+m:x+1—1:x—>0.
T

Consequently the limit does not exist

4. By the following change of variable:

y=vVitoreyyf=1+reVite=y»*AVIi+r=y*A(Siz — 0alors y — 1)

we find
Vitz—1 y*—1
N+z—1 y2—1
which implies that:
VI +rz—1 | P =Dy +1) (V+y+1) 3
lim ——— = lim =1 = AL
z—0 w3/]_—|—x—]_ y%lyQ—l y—1 (y—l)(y+1) y—1 (y—|—1) 2
Determine the following limits when = tends to +oo
202 +3x — 1 5 N
3r2+1 ' V4T
2In(z) — In(32% — 2)
2. x—Vat—x xsin(Y/z)
- 31
202 (1 4+ — — =
. 227+ 3w —1 , ’ ( +2x x2>
z1—1>+oo 3$2+1 - ccEI—II—loo 1
32 ([ 1+ —
3x?
3 1
21+ ———=
_ (+2x x?
= 1
3(1+ —
+331:2
~ 2(14+0+40)
 3(1+0)
-3
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Since lim In
T—+00

(

(¢ - VaZ—7) (2 + VT =)

lim 2 —+vV22—2 = lim
T—~400 T——+00 (Z’ + 4 /12 — LE)
T
= lim ———
z=+00 g+ /22 — 1
. r x1
= lim
Tr—+00 1
T (1 +4/1— —)
\ T
1
= lim
Tr—+0c0

N | —

lim
T—+00

T+ \/x

8

= T
T—r+00
Ve l+ —
x
. 1 v
= lim
T—+00 1 X L
NI
=1
— 2 _ 2\ _ 2 _
lim 2In(z) — In(3z* — 2) — m In(z?) — In(32* — 2)
T—+00 . 1 r——+00 . 1
xsin(—)  sin(-)
x , T
x
n
. (31‘2 - 2)
= lim — 1
r—+00 Sll’l(—)
x
1
x
1
. I s
3x2_2)—1n§——1n3/\m21&0 l =1, so
x
_ 2 _
lim 2In(z) — In(3z* — 2) 3
T—+00

Rt
xsm(;)
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Let be the numerical function defined by:

0, st x €] — 00,2
b
fl)=4 a— =, siz€]2,4]
T
1, st x €4, 00|

Determine the real parameters a and b so that the function f is continuous on R. Then draw the
graph of f.

It is clear that f is continuous on
1. ] = 00,0 f(z) =0 = Constant.
2. |4,400[:  f(z) =1 = Constant.

b
3. 12,4]:  f(z) = a— —, as the inverse of a strictly increasing and continuous function f(x) = x
x

whose denominator does not equal zero. There remain the points 1 = 2, x5 = 4, which means
that:

lim f(z)=lim f(z)=f(2)=0et lim f(z)= lim f(z)=f(4)=1

z—21 T2 z—4t T4~

oozt = = {ih = {2

We get:

Which of the following given functions f; : R* — R can be extended to become a continuous function
at 0.

(1 , 1 :
xsin(—=), siz >0 xcos(—=), sixzx>0
— xr —_
L filw) = 4 sin(x) , 3. fal2) =9 1 cos(xz) .
, stx <0 —— st <0
\ @ T
)
1—
Loeos@) s 0
2. fa(z) = 4 1
xsin(—), st x <0
L x
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Cometion

We have

a.

1 1
Vr € R*; —1 <sin (—) <1 = —z<zxsin <—) <z
x

= lim—-z<lmzsin| -] <limz
z—0 z—0 x x—0

= 0 <limzsin (l) <0
x—0 €x

. ) 1
= lim zsin (—) =0
z—0 x

1
b. using the same reasoning, we find: lim x cos <—> =0

x—0 x
i 1-— 1
z—=0 I z—0 2 2

From a,b, and ¢, we find the following results (1), (2), and (3):

lirgl+ filx) = liIgl+ rsinl/z =0

Tr— xr— . .

lim fi(2) = lim snefo =1 > tim fi(e) 7 lm fi() (1)
z—0— z—0~

This implies that f; cannot be extended by continuity at 0.

: . l—cos(z) 1
lim f2 (:E) = lim ———M % = — ' '
z—0+ z—0+ x? 2 = lim fy(z) # lim fy(2). (2)
lim f2 (37) = lim zsin 1/ac =0 z—07F z—0~
z—0~ z—0—

This implies that f, cannot be extended by continuity at 0.

lim f3(z) = lim zcoslfe =0
z—0*t z—0+ . .
, _ 1—cos(z) 1 = lim f3(z)# lim f3(z). (3)
lim f3(z) = lim ———— = z—0t 2—0
z—0— z—0~ T 2

This implies that f3 cannot be extended by continuity at 0.

Let f :]0,2] — R be a continuous function such that: f(0) = f(2). Show that there exists at least
one element « of [0, 1] for which we have: f(a) = f(a+1).

From the question we can form an auxiliary function g : [0,1] — R defined as suit: g(x) =
f(x+1) — f(x), it is clear that if z € [0, 1] implies that = + 1 € [0,2] which proves that ¢ is well
defined. Now we apply Bolzano-Cauchy’s theorem:

1. since f is continuous on [0, 2] implies that g is continuous on [0, 1]
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Which implies that g(0)g(1) <0
3. According to Bolzano-Cauchy’s theorem Ja € [0, 1] such tnat: g(a) =0
4.

the existence of @ € [0,1] : g(a) =0 <= the existence of a € [0,1] : f(a+1) — f(a) =0
<= the existence of « € [0,1] : f(a+ 1) = f(a).

Let f,g:[0,1] — R be two continuous functions satisfying :

f((c)l) =g(1) =0
f(1) =g(0) =1

Show that for every a > 0, we can associate an element z, € [0,1]: f(z,) = ag(z,)

Let o > 0, from the question we can form an auxiliary function A : [0,1] — R defined as follows:
h(z) = f(z) — ag(x), it is clear that h is well defined. Now we apply the Bolzano-Cauchy theorem:

1. h is continuous on [0, 1] by virtue of the continuity of f on [0, 1].

2.
h(0) = F(0) — ag(0)
M) = 7(0) —agl) _ (10 =0 hon =
f(0) =g(1) =0 h(1) =1
f(1)=g(0)=1
Which implies that A(0)h(1) <0

3. According to Bolzano-Cauchy’s theorem 3z, € [0,1] tq: h(z,) =0
4.

the existence of z, € [0,1] : h(z,) =0 <= the existence of z,

[0,1] : f(za) — ag(za) =0
<= the existence of z, € [0, 1] :

[7 ] f(xa):ag(fa)-

S
S

1 1
Show that the function f : [0, Z] — [0, Z_l] defined by :




1
1S —-contraction.
32

Recall

A function f is said to be contracting on an interval I, if there exists a real 0 < k < 1 such that: for
all real x and y of the interval I we have :

[f(x) = f(y)] < klz —y]

1
Let z,y € [0, Z]’ we calculate the difference between f(z) and f(y):

1 1
4422 4492
4+y? —4—a?
(4+y?) (4 + 2?)

y2—x2
(4+y?) (4 +2?)
(y — ) (y + )
(4+y?) (4 + 2?)

If (@) = fl =

1
And since z,y € [0, Z] which implies that

(y + )
(44+y%) (44 22) —

This gives

On the other hand we have:

ogxgl 0§x2§i
0< <ZIL - 0< 2<116
=Y¥=7 =Y = 16
4 <4+
- {4§4+y2
1 1
4+x2§é_1
N 1 <1
4+y%2 ~ 4
11,
r+y< - 172
_ 1 L Vg <ixlull
dara2) \apy2) TV =573
Therefore we find: ] ]
VL@/G[O,Z]: !f(:v)—f(y)lﬁﬁl(y—x)l

which proves that f is a k-contracting function
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Chapter 5

Differential Calculus-Functions of One Variable-

5.1 The Derivative of a Function at a Point

Let f be a function defined in the neighborhood of zy. We say that f is differentiable at
a point xg if the limit
1o @) = fw)

T—XTQ T — X

exists in R. When this limit exists, it is denoted by f’(z() and called the derivative of f
at xg.

T — X h
we can define the notion of differentiability of f at xq in the following way:

h) —
Remark 5.1 If we put x —x¢ = h, the quantity CTRAD) f(xo)‘ So

f(xo +h) — f(x0)

exists in R
h

f is differentiable at the point xq < }lbir%
ﬁ.

Notations: p
We can use the notations f'(zg), Df(xg), df(zzzo) to designate the derivative of f at z.
T

Example 5.1

1. The function f(x) = 22 is differentiable at any point zo € R and the derivative
f'(xg) = 2x9. As an explanation, given zy € R we have:

lim f(zo+h) — f(xo) — lim

h—0 h h—0

h 2 .2
(zo + h) To _ }lg%(h + 2x¢) = 2xo.

2. The function f(z) = sin(x) is differentiable at any point zo € R and the derivative
f'(xg) = cos(xg). As an explanation, given xy € R we have:

lim f(zo+ h) — f(xo)  lim sin(xg + h) — sin(xg)
h—0 h h—0 h
. 21’0 +h sin (%)
= lim cos 7
h—0 2 3

= cos(xy)
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Chapter 05 Differentiable Functions

Definition 5.2: (Left and right derivative)

1. Let f be a function defined on an interval of type [zg, z¢g + o with o > 0. We say
that f is right-differentiable at x iff:

lim f(zo+h) — f(xo)
h—0t h

exists in R. This limit is denoted by f/(zo) and is called the right derivative of f
at xg.

2. Let f be a function defined on an interval of type |xg — «, 2] with o > 0. We say
that f is left-differentiable at z iff:

i @0+ h) — flo)

h—0~ h

exists in R. This limit is denoted by f/(xo) and is called the left derivative of f at
Zg.

Proposition 5.1

Let f be a function defined in the neighborhood of x4, we have:
f is differentiable on the right and left at zq

f is differentiable at xy <= and

fi(wo) = fi(x0)

Example 5.2

Let f(x) = |x|, we have:

- fO+R)—fO) o A A
R I N o
Jmp, S = Jm, T = lim 2= 1= £(0)

=—> The function f is differentiable on the right and on the left at xy = 0 and
moreover f/(0) =1 and

11(0) = =1, s0 f/(0) # f/(0) = f is not differentiable at zy =0

5.1.1 (Geometrical interpretation

The figure below shows the graph of a function y = f(x):

The ratio f(wo + ) = f(wo)

h
to point B(xg + h, f(zo + h)) on the graph. When h — 0, this line tends towards the tangent
(AC) to the curve at a point A(xg, f(zo)). So we get:

(o) = tim LT I ) O2

= tan(f) is the slope of the straight line joining point A(xq, f(xo))

is the slope of the tangent to the curve at point A(zg, f(zo)).
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Chapter 05 Differentiable Functions

Figure 5.1: Geometrical Interpretation of Differentiability at a point xq

Remark 5.2 According to the figure above, the equation of the tangent to the curve y = f(x)
at the point A(zo, f(x0)) is y — f(20) = f'(z0)(z — z9)

Proposition 5.2

Let f be a function differentiable at a point x(, then f is continuous at x.

Proof:

We have: lim (f(x) — f(zo)) = lim (
T—T0

Since f is differentiable at =, we get:

lim (f(z) — f(z0)) = xlgl:}o f'(xo)(x —x9) =0 = f is continuous at x

Tr—xTQ

fl@) - f(%)) T

r — T

Remark 5.3 The opposite of this theorem is incorrect. A function can be continuous at a
point xy without being differentiable at the same point. For example, the function x w— |z| is
continuous at xo = 0 but not differentiable at the same point.

5.2 Differential on an interval. Derivative function.

Definition 5.3

Let f be a function defined on an open interval I. We say that f is differentiable on I if:
it is differentiable at any point on I. The function defined on I by: x — f'(z) is called
the derivative function or simply the derivative of the function f and is denoted by f’ ou
daf

%.

Remark 5.4 let f be a function defined on an interval I and a,b € RU {400, —0c0} then:

o We say that f is differentiable on I = [a,b] iff: it is differentiable on the open interval
la,b[ and differentiable on the right at a and on the left at b.
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Chapter 05 Differentiable Functions

o We say that f is differentiable on I = [a,b[ if: it is differentiable on the open interval
la,b[ and differentiable on the right at a.

o We say that f is differentiable on I =|a,b] if: it is differentiable on the open interval |a, b
and differentiable on the left at b.

5.3 Operations on differentiable functions

Proposition 5.3: (At a point)

Let f, g be two functions differentiable at z, then we have:
o [+ g is differentiable at z( et (f + g)'(z0) = f'(z0) + ¢'(z0)

o f.g is differentiable at zq et (f.g)"(xo) = f'(x0).9(x0) + f(x0).9'(z0)

1 1 ' f/($0)
o If we have: f(x 0, alors — is differentiable at zg et | — | (z9) = —
(o) 70, alors oo (5) e =~

o If we have: g(z¢) # 0, then g is differentiable at zy and

Proposition 5.4: (On an interval)

Let f and g be two functions differentiable on an open interval [ then:
o f+ g is differentiable on I and (f +g)' = f'+ ¢’
o f.g is differentiable on I and (f.g) = f'.g+ f.¢'

I

1 1\’
o If f#0Oo0on I, ? is differentiable on I and (—) = _f2

f

e Ifg#0on I, i is differentiable on I and
g

(z)’ _[9—19g
g 9?
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Chapter 05 Differentiable Functions

Proposition 5.5: Differentiability and composition

Let f: I — R and g : J — R be two functions where I and J are two open intervals
such that: f(I) C J

« Differentiability at a point: If f is differentiable at zy and g is differentiable at
f(zo), then g o f is differentiable at xz¢ and (g o f) (zo) = f'(z0).¢'(f(20))

« differentiability on an interval: If f is differentiable on I and g is differentiable
on J, then g o f is differentiable on I and (go f) = f'.(¢' o f)

Proposition 5.6: Differentiability and inverse function

Let f : I — J be a bijective and differentiable function at zq € I. Then f~! is
differentiable at yo = f(z¢) if and only if f’(xg) # 0 and in this case: (f~1)(yo) = Filze)’
Lo

Proposition 5.7

Let f: I — J be a bijective and differentiable function on I. If f' # 0 on I, then f~!

1
is differentiable on J and we have : (f~!)’

T fre i

5.4 Mean value Theorem

Theorem 5.1: (Rolle’s theorem)

Let f be a function defined on [a, b]. If we have:
1. f is continuous on [a, b].
2. f is differentiable on ]a, b[
3. fla) = f(b)

then there exists a real number ¢ €]a, b] such that f'(c) =0
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Chapter 05 Differentiable Functions

Figure 5.2: Geometrical interpretation of Rolle’s theorem

Theorem 5.2: (Mean value Theorem)

Let f be a function defined on [a, b], if we have:

1. f is continuous on [a, b].
2. f is differentiable on ]a, b

then there exists a real number ¢ €]a, b] such that:

f() = fa) = f'(c)(b—a)

Figure 5.3: Geometrical interpretation of the mean value theorem

Consequence:(second form of the mean value theorem)
Let f be a function defined on I, h > 0 and zy € I such that xo + h € I, then if we have:
1. f is continuous on [xg, zg + hl.
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Chapter 05 Differentiable Functions

2. f is derivable on |zg, xo + h|

then there exists a 6 €]0, 1] such that:

f(xo+h) — f(zo) = /(w0 + 0.R)h

Example 5.3

By using the mean value theorem, show that:
Vo > 0; sin(x) <z

By putting f(t) =t — sin(t) we get:
f is continuous on [0, z]
Vz > 0 we have: and

f is differentiable on |0, x|
According to the mean value theorem, there exists ¢ €]0, x[ such that:

f(x) = f(0) = f'(e)(z = 0)
<=z —sin(x) = (1 — cos(c))x <= sin(x) = cos(c)x

— sin(x) < z (as cos(c) < 1)

Theorem 5.3: Generalized mean value theorem

Let f and g be two real functions defined on [a, b] such that:
1. f and g are continuous on [a, b].
2. f and g are differentiable on ]a, b].

Then there exists a real number ¢ €]a, b] such that:

(f(0) = f(a)g'(¢) = (9(b) = g(a)) f'(c)

Proposition 5.8: (Variations of a function)

1. If f'(x on |a, b[, then f is strictly increasing on [a, b].

>0
2. If f/(x) > 0 on ]a,b[, then f is increasing on [a, b].
on |a, b[, then f is strictly decreasing on [a, b].

<0
< 0 on |a, b, then f is decreasing on [a, b].

()
()
3. If f(x)
4. I f'(x)

()

5. If f'(x

0 on ]a, b, then f is constant on [a, b].

Let f be a continuous function on [a, b] and differentiable on ]a, b, we have:
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Chapter 05 Differentiable Functions

5.4.1 L’Hopital’s rules

Theorem 5.4: (First rule of L’Hépital)

Let f and g be two continuous functions on I (where [ is a neighborhood of ),
differentiable on I — {z(} and satisfying the following conditions:

1. lim f(x) = lim g(z) =0

T—xQ Tr—xT0
2. Ve el —{xo}; ¢(x) #0

Then:

= ¢ (2) 5 g(a)

Example 5.4

sin(z) lim cos(z)

=0 xz—0 1

2

Remark 5.5 The converse is generally false. For example: f(z) = 2®cos(1), g(z) = x.

/
We have: lim @) = limzcos(%) = 0. While lim f'@) = lim (27 cos(1) + sin(2)) does not
z—0 g(]j) z—0 z z—0 g’(]j) z—0 z z
exist (since: 1% sin(1) does not eist)

Remark 5.6 Also, the Hopital’s rules is true when x — 400

Theorem 5.5: (Second rule of L’Hopital)

Let f and g be two functions defined on I (where [ is a neighborhood of zy), differentiable
on I — {x¢} and satisfying the following conditions:

1. lim f(z) = lim g(x) = o0
Tr—T0

Tr—x0

2. Ve el —{xo}; ¢(x) #0

Then: )
lim f(z) =[] = lim @:l
T—T0 g’(m) T—T0 g I‘)
n n—1 -1 n—2 | 0
lim T lim ne = lim u = . = lim mr_ 0
z—+o0 et xr—~+00 er T—+400 et rz—+oo et
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Chapter 05 Differentiable Functions

5.5 Higher Order Derivatives

Definition 5.4

Let f be a function differentiable on I, then f’ is called the 1st-order derivative of f; if
f" is differentiable on I, then its derivative is called the 2nd-order derivative of f and is
denoted by f” or f®. Recursively, we define the derivative of order n of f as follows:

dn
Another notations used are: D,, f, df for f(
xn

Example 5.6

sin™ (z) = sin(x + ng) and  cos™ () = cos(z + ng)

Definition 5.5: (Class Functions: C")

Let n be a non-zero natural number. A function f defined on I is said to be of class C"
or n times continuously differentiable if it is n times differentiable and f™ is continuous
on I, and we note f € C™(I).

Remark 5.7 A function f is said to be "of class C°” if it is continuous on I.

Definition 5.6: (Class Functions: C'™)

A function f is said to be of class C'*° on [ if it is in the class C™. Vn € N

5.5.1 n-th derivative of a product (Leibniz rule)

Theorem 5.6

Let f and g be two functions n times differentiable on I, then fg is n times differentiable
on I and we have:

Ve e I (fg)'(x) = 3. CF o H () g (x)

n!

ith: OF = ———
with: O = i = )
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Chapter 05 Differentiable Functions

Example 5.7

Compute (z%sin(2z))® According to Leibniz’ formula, we have:

(22 sin(2z))® = ;; C¥ (22) 3R (sin(22))®

=CY(2%)® (sin(22))© + C3 (2@ (sin(2z)) V)
+ C’g(x2)(1)(sin(2x))(2) + C’g’(x2)(0)(sin(2x))(3)
=12 cos(2z) — 24x sin(2x) — 82* cos(2x)

5.6 Taylor’s formulas

Theorem 5.7: (Taylor’s formula with Lagrange remainder)

Let 2o € [a,b] et f : [a,b] — R be a function that checks:
1. feC"on [a,b].
2. f™ is differentiable on ]a, b].

then, Vz € [a, b] (witha # (), Jc € [a, b] such that:

O (24 O (2, ) ) (5, )
flay =) + T gy T ey TR0
ST (e) n+1
+ ) (x — )

This expression is the Taylor formula of order n with the Lagrange remainder

14(e)

Pn(, o) = (n+1)!

(23 _ l’o)n+1

Theorem 5.8: (Taylor Mac-Laurin formula)

If we set zop = 0 in the Taylor-Lagrange formula, we obtain:
30 €]0, 1] such that:

f(”)(O)xn f(nﬂ)(ex) Lt
1! 21 n! (n+1)!

This is Taylor Mac-Laurin’s formula.

Remark 5.8 In practice, the Taylor Mac-Laurin formula is used to calculate the approximate
values.
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Chapter 05 Differentiable Functions

Example 5.8

Show that for every x € R

2 2 3
x—%ﬁln(l—i—m) Sx—%—i—%
Let x > 0, Applying the Taylor Mac-Laurin formula of order 2 to the function

f(z) =1In(1 + z), we find:
2 3

Since x > 0 then,

— r— — <In(1+x) (5.1)

On the other hand m

:>ln(1+x)§x—%+% (5.2)

from (5.1) and (5.2) we get:

2 2 3

x—%gln(1+w)§x—%+%
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@W’A encencives with amamsers

By calculating the right and left derivatives of the following functions, determine which one is
differentiable at a:

L filz) =2*+ [z +1], a=1,-1 5 f()_{L si v € R*
. J2 =

1+ e/’ ,a=0

2 ] . > ]

?—r—1 s < -1

(a) For the point a = 1. f(1) =3
The right derivative is the following limit:

— f(1 2 —2 —1 2
o TE M) re=2 o @mDEE2) a3
z—1+ r—1 z—1+t  x—1 z—1+ r—1 z—1+
The right derivative is the following limit:
— f(1 2 -2 —1 2
g L@ SO =2 B DERY) o
r—1- x—1 r—1— x—1 r—1— x—1 r—1—
As a result

fp (1) = fi (1) = f is differentiable at the point a = 1
(b) Fora=—1. f(-1)=1
The right derivative is the following limit:

— (=1 2 1
lim flz) — f( ): lim u: lim x(x—_‘—): lim z = —1
z——11 rx—1 r—1+ x4+ 1 z——1+ x4+ 1 z—1+

The right derivative is the following limit:

—f(-1 2 _g-2 1)(z — 2
f L@ —FED o2 G DE=2 3
rx—1- T + 1 r——1— T + 1 r——1— T + 1 r——1—
As a result

fp(=1) # f&(=1) = f is not differentiable at the point a = —1

x
. R*
2. folx) =< 1+e'’ e ,a=0;ona f(0)=0
0, st x =0
The right derivative is the following limit:
x
_ T4 1
lim M: lim 1tel _ lim —— =
r—0t xT z—0t T z—=0+ 1+ e [
On the other hand, the left derivative is the following limit:
x
— 14 ol 1
lim —f@) /) = lim liett lim ———~ =
z—0~ x z—0~ x z—0- 1+ e [

Therefore
fp (0) # f&(0) = f is not differentiable at the point a = 0
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Compute the derivatives of the following functions and precise their domains of definition.

1. vVa? 4. x/x, n € N* 8. a® ,a € R
9 _T 5. xzln|z + 1| 9. (z+1Inz)", neN*
341
, 6. z%e'" 10. 23 1In(x)
1
(z+1)? . sin(cos(5x)) . x%e

We denote by D: the domain of derivation of f’.

1. D:]O’—Foo[,
F@ =V~ @) =rt s =St =T -
2. D =R\ {-1}, we know that if f is in fractional formf—% then f/ g’hh—zgh/' 5
T / 2% +1— 323
fo)=—m= = f)= -
- f/(x) 223 + 1
B x
3 D=T\{-1)
z)° (1+v2) (@ +1)° =21 +2) 1+ a)’
f(x):M () = 2\/‘ 4
(x+1) (x+1)
= f( ):(1+\/5)2(—:v—4;/5+3)
2V (z+1)

" 1 . D =Rifnisodd
4. f(z)=x \/Ez(x)Hn,neN. { D =RTifniseven

f(a:)zx(“r%) = fl(z)=(1+1%)zn
= fl(z)=(1+2%)
5. D =R\ {-1},
f(a;):x1n|1+x|:f’<x):1n|1+x|+xi+1
6. D= R*,
f(z) =22 = f'(2)=2a %—%e%xQ
& P = o)l
7. D=R,

f (x) =sin(cos (5z)) = f'(z) = (cosbz) cos (cos5x)
= f'(x) = —5sin (5x) cos (cos bx)
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8. D=R,

n
(55 = o
= f'(z) = (Ina)e*™@
= f'(z) = (Ina)a”
9. D= R,
f@)=(z+ha)" = f’(x):n(l—i—%)(x—klnx)"_l
10. D = R+,
f(x)=2*Inz = [ (z)=32"Inz+1(z?)
= f'(z)=32"Inx + 2?
= f'(z)=2>Blnz+1)
11. D =R,

f(z)=2%" = [ (x)=2ze" + e"2?
= f'(x)=(2+x)ze”

Study the differentiability on R of the following functions:

1. f(x) =x|x 2 1 .
(x) Ed 3. h(x) = z”cos —, six #0
2. g(z) = 1 0, stx=0
‘ 2+ |z|
1.
flx) = xlx|
B 2 si x>0
- —2% ,si <0
(a) Tt is clear that 2? is differentiable on R* =] — oo, 0[U]0, +o0o[, with (2?)" = 2x
(b) There remains the point 0. For this point we have f(0) = 0 and
lim L&=O — iy 2l
z—0 z z—=0 T
lim ||
z—0
=0

hence the function f is differentiable at the point a = 0..
Therefore f is differentiable on {0} U] — oo, 0[U]0, +o00[= R.

1 .

g(a:):{ 5 >8>0

(a) —2 ¢ [0,400[= f is differentiable on [0, +oc], the same reasoning with the point a = 2 ¢
[—00, 0[= f is differentiable on [—o0, 0], therefore f is differentiable on | — oo, 0[U]0, 4+00].

(b) There remains the point 0. For this point we have f(0) = 1 and for calculating lim f@)-7O)

z—0 z
we must calculate the left and right derivative of f at 0 because f changes its form in the

neighbourhood of 0.
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lim {@=F© oy Zee lim f@=FO) iy, ZEo2
=0~ r 20~ f . z—0+ r w0+ f )
= s = Jm oo e
— 1 2 (2= - 1 2 _(24w)
= xlggl_ 2:5(12—33) 22(2—1) = xlggﬁ 2m(21+x) 2w (2+)
= s = e
1 R
We have
— f(0 —1 — f(0 1
lim M = — # lim M = — = fis not differentiable at the point 0
z—0+t X 4 z—0t X 4

Therefore g is differentiable on | — 0o, 0[U]0, +00[= R*.

0, stz =0
is differentiable on R* =] — 0o, 0[U]0, +-00[, with

2 et e 1
3. For the function h(x) = { TS, S E 70 . Tt is clear that the function f(x) = x?cos —
x

1 -1 1
f'(z) = 2wcos—+ — <— sin —) x?

x a2

x
1
= 2xcos— +sin—
x x
— f(0
There remains the point 0. To calculate lir% M, we have:
z— T
— (0 22 cos *
L) = f0) | aost
z—0 T z—0 x
= limxcos *
z—0 z
= 0
_ Explication
1
Ve e R*:|cos—| <1 = |z COS—' < ||
x x

xcos—‘ < |z|
x

= —|z| <zcos— < |z| since lim |z| = lim — |z| =0
x x—0 x—0
= limxzcos— =0
z—0 x

Therefore f is differentiable on {0} U] — oo, 0[U]0, +00[= R.

Compute the nth derivative of the following functions

1. z\/x 2. In(z) 3. e** 4 . 1
—x
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1. D=R*"

f(m):x\/fzxx%:x%
() = 5ot

3 (3 3
" = __1 572
=5 (3-1)e

3 /(3 3 3
(3) - (Z_1 2 _ 2-3
=y (o) (a2

3 /(3 3 3 3
Wy =21(2 = i e 54
- ) ) ()

3/(3 3 3 3
Wy=2(2-1)(Z2=2)(2=3)...... - 1) 22
o= (a) (7)) (ae)s

_ The induction proof
(a) Statement.
3
PovneN:fM@)=3E-1)3-2)E2-3)-3-n+1)a2
(b) Base Case. For n = 1, we have f0(z) = f/(z), and (2 —1+1) 227" = 322!

f'(x) so the property P; holds.

(c¢) Induction hypothesis. Let n € N* such that P, is true, i.e.

then we have:

(d) Conclusion. The property P, is true for all n € N*.

VnEN*:f(”)(x)zg(g—1> <g—2> (2—3) ------ (;—n—i-l)xg_”,

7 ()
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f(z) =Inzx
N S flz) = e
o /-
r)=— " — 42,0z
o=
fW(x) = =3 x 227 fW(z) = a*e™
fOx) =4x3x227°

with induction proof here with induction proof here

4. D =R\ {1}

_induction proof

(a) Statement.
P, :¥n e N*: f(z) =n!(l —z)~ D

(b) Base case. Forn = 1, we have fM(2) = f/(z),and 1!/(1—2)"2 = (1-2)72 = f'(x)
so the property P; holds.

(c¢) Induction hypothesis. Let n € N* such that P, is true, i.e:
FO () = n 11— ),

them we have:

fO@) = n(l=a) D = (F0) () = (1 =)~
= (f7) (@) = (=) [~ (n+ D]n(l =)
= (f7) (@) = (n+ D)1~ 2)™
= (f) (@) = (n+ )1 =)
= fOr(z) = (n+ 1)(1 — )~ (+2)

(d) Conclusion. the property P, is true for all n € N*.
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Let a and b be two real numbers and f be a function defined on [0, +oo[ by

f(x):{2\/§’ si0<z<1

ar+b, stx>1

Find a and b so that f is differentiable on ]0, +-o00[

Concetons 1

1. Tt is clear that 2y/z is differentiable on ]0, 1], with (24/x) = —

B

2. The same on |1, +o00[ with (ax +b)' = a

3. There remains the point a = 1, for this point we need to calculate the right and left derivatives
as the function f changes its form at 1.

f@)-f(1) 2(va-1)(Va+1)

lim L@=FQ) oy 2E2 g
xigl— z—1 :El)I{l— z_;(z—l) wigl— (x_l)(\g%‘f‘l)

o ey R
lim fl@)—f1) _ lim ar+b—2 __ lim az+b—(a+b)
a1t 1 z—1+ ( _1) z—1t o=l

= lim =D g
z—1t T

Since f is continuous at the point ¢ = 1, lim f(z) =2 = lim+ flx)=a+0b
rz—1— z—1

From the previous section we find

Show that:

1. Vx €]0,7[ : 2z cos(z) — sin(x) < 0

2
2. Vx €]0, g[ : ?x <sin(zr) <z

1. we use the Mean Value Theorem (MVT) with the function h(t) = tcost —sint on the interval
[0, 2] € [0, 7], which explains the existence of ¢ €]0, z[ such that:

h(z) — h(0) = ' (c)r < zcosx —sinz = (cosc— csine — cosc)
& xceosx —sinx = —cz (sinc)
= xcosx —sinx > (0 since 0 < ¢ <z <7 with sine > 0

112




sin x

s

2

2. We are studying the function g(z) = on the interval ]0, [, we have:

T COST — SINT
g'(x) = - 2

From the previous question, g is strictly decreasing on ]0, 5[€]0, 7], which imlies that:

sin T : . :
O<x<g = 32 o ¥|E o iy 2L
25 z z—0+ T

sinz
= §<T<1
= = Jsinx <u,

which completes the demonstration

In which of the following functions Rolle’s theorem is applicable?

1. 2% — 2, sur [-2,2] 3. v1—2a2, sur [—1,1]
T T
2. |z —2|, sur [1,3] 4. tan(a), sur [, 7]

To answer this question, we need to check the Rolle conditions for each function.

1. For the first function f(x) = 2? — 2, sur [—2,2], we have:

(a) f is continuous on [—2,2],

(b) f is differentiable on | — 2,2[ with f'(x) = 2z
(©) f(=2)=F(2)=2
So the answer is "Yes".

r—2 = x>2

2. For the second function f(x) = |z — 2| = { R

on [1, 3], we have:

(a) f is continuous on [1, 3],

(b) f(1)=/f3) =1
(c) It is clear that f is differentiable on ]1,2[U]2, 3], there remains the point a = 2. For this
point we have:

lim {&2E = gy o2 =
T—27 T—27
et
lim {®=f@  _ i 2=2 — 1
z—2F =2 r—2— T2
Since lim % + lirn+ % so f is not differentiable at the point 2 €]1, 3].
T—2~ r—2

So the answer is "No".

3. For the third function f(z) = v/1 — 2%, on [—1, 1], we have:
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(a) f is continuous on [—1, 1],
(b) f is differentiable on | — 1, 1[ with f/(z) = —==

(¢) f(=1)=f1)=0

So the answer is "Yes".

4. For the fourth function f(x) = tan(x), on [}, %], we have:
(a) f is continuous on [7, %],
(b) f is differentiable on |7, 3 with f'(x) = L

1+tan?(z)
(c) f(5)=1but, f(§)=V3#f(})

So the answer is "No".

Let f be a function defined by ,
f(x) =e" cos(x)

Show that for all a > 0, the equation f’(z) = 0 has at least one solution on [—a, a.

By applying Rolle’s theorem on [—a, a] with the function f.
1. f is continuous on [—a, al,
2. f is differentiable on | — a, a[ with f'(z) = e* (22 cos x — sin z)
3. f(=a) = 9" cos(—a) = e cos(a) = f(a)

Consequently, there is at least ¢ €] — a, a] such that: f'(¢) =0

1. apply the Mean value Theorem for the function f : z — z — 23

compute the value ¢ €] — 2, 1[ appearing in this formula.

on the segment [—2, 1] and

2. apply the Mean value Theorem for the function f : x — 22 on the segment [a, b] and compute
the value ¢ €la, b appearing in this formula.

1. f is a polynomial function, so f is continuous on [—2,1] and differentiable on | — 2,1[, so
according to the Mean value Theorem (MVT), there exist ¢ €] — 2, 1] such that:

f) = f(=2)=f(c)(1-(=2) & f(1)—-f(=2)=3f(c)
o 0—6=3(1-32)
s 2=1

And since c €] = 2,1[= c= -1
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2. f is continuous and differentiable on ]a, b[, then from (MVT), there exist ¢ €]a, b] such that:

f®) = fla)=f'(c)(b—a) & b —a®=2c(b—a)
& (b—a)(ab+b):2c(b—a)
a+

<:> —
T

ercie 107

1 1
1. Using the Mean value Theorem, show that: T <In(l+z)—In(z) < —
T T

2. Compute lim z[In(1+ z) — In(z)]

T—r+00

1
3. Deduce that: lim (1+—)* =e
x

T—+00
) 1
4. Compute: lim (14 —)7.
T——00 €T

1. By applying the MVT theorem on the interval [z, 4 1],z > 0 with the function Inz. Hence

the existence of x < ¢ < z + 1 such that:
1
In(z+1)—In(z) = -
c

1 1 1

and sincecr<c<zxr+1 =

which implies that
1

z+1

2. From the previous question we have:

1 1 T
Vx>0.x—+1<ln(x—|—1)—ln(x)<; = x+1<x[ln(m+1)—ln(a¢)]<;-1
= nglmx+1<x1_1>1iloox[1n(x+1)—1n(x)]<l
= 1< lir+n z[ln(z+1)—In(z)] <1
T—r+00
= xll)I_}I_loo:L‘ In(z+1)—In(z)] =1
3. From the previous question we have::
1
lim z[ln(x+1)—In(x)]=1 = lim =z 2 ]:1
z—+00 T—+00 x
= lim z ln(l+l }:1
r——+00 T

1 X
= lim ln(1+—> =1
T—r—+00 x
and since the function In is continuous so
) 1" . 1\"
lim In 1+ — = In lim (14—
T——+00 €T Tr——400 €T
= 1
) 1"
as a result lim (1 + —) = ¢

T—r—+00 €T
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1
4. by settingy = — = (r > —c0 <y —07), so
x

) 1\*
lim (1 + —)
T——00 x

S| =

lim (1+y)
y—0—
lim eln(1+y)
y—0—

In (

lim e Y
y—0~

€ =c

=

—
_I_

<

~—
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Chapter

Usual functions

6.1 An overview of inverse function

Let I be an interval of R, f a function defined on I and J = f(I). Our interest lies in the existence
of the inverse function of f, i.e the existence of a function f~! from J into I such that:

Veel, [~ (f(z)) =2 and VyeJ f(f'(y) =y

Proposition 6.1: Existence of an inverse function

Let I be an interval and f a function defined on I. If f is continuous and strictly monotone
on I then f is a bijection from I to J = f(I) and admits a reciprocal function f~! from J to
I which has the following properties:

1. f~!is continuous on J.
2. f~!is strictly monotonic on J and has the same direction of monotonicity as f.

3. f~lis bijective.

Remark 6.1 The graphical representations of f and f~' are symmetrical with respect to the line
with equation y = x.
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Example 6.1

Let f be a function defined by:

f: R, — R
x +— f(z) =In(x)

We have:

f(x) /

Set I =R%, then J = f(I) =] — 00, + co[=R
From the table of variations of f we have:

1. f is continuous on [
2. f is strictly increasing on [

then f admits an inverse function f~! denoted by e” or exp(z) defined by:

7t R =0, + oo
z fTHz) ="

Proposition 6.2: (Differentiability at a point)

Let f: 1 — J be a bijective and differentiable function at xy € 1.
If we have f’(z9) # 0 then f~! is differentiable at yy = f(z0) and moreover:

1
f'(x0)

Proposition 6.3: (Differentiability on an interval)

Let f: I — J be a bijective and differentiable function on I (with I is an open interval).
If we have: Vo € I; f'(x) # 0, then f~! is differentiable on J and moreover:

(f ) (o) =

1

WS (W) = Frmgy

Example 6.2

Let f(z) = In(z) and I = R, then J = f(I) = R. From the previous example, f is bijective
from I into J and admits an inverse function f~!(x) = e®.

1

We have: for all z € R%, f(z) is differentiable and moreover f’(z) = — # 0. According to
x

proposition (5.3) f~! is differentiable on J = R and

Yy eR; (f71)(y) = (e") = m -

R
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Remark 6.2 In the previous formula, we can replace y by x and write:

Vo € R; (") =¢€”

6.2 Logarithmic Functions

6.2.1 The neperian logarithm function

Definition 6.1

The function that satisfies the following two conditions is called the neperian logarithm function
and is denoted by In:

1
1. Ve e R%; (In(z)) = -

2. In(1)=0

Remark 6.3 (Properties of derivatives)

1. According to the previous definition, the function In(z) is differentiable on RY and Yz € R ;

1
1 = —.
(@) = *
1
2. The function In(|x|) is differentiable on R* and Vx € R*; (In(|z])) = —
T

3. Let g be a function differentiable and non-zero on I then the function In(|g(x)| is differentiable
,_ 9
g(x)

on I and its derivative: (In(|g(z)|)

Proposition 6.4: (Limits and classical inequalities)

1. lim In(z) =400

r——+00
2. lim In(x) = -0
z—0t
|
3. 1 2@

r—+o00 I

4. lim In(z)

r—+4o00 &

5. lim xzln(z) =0

=0 (with & € R*),

z—0t
| 1
6. 1im 2D
z—0 €T

7. Vrel—1,4ooIn(z+1) <z
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Figure 6.1 — Graphical representation of the function In(x)

Proposition 6.5: (Algebraic properties of the function In(z))

For all z,y € R and o € Q, we have the following properties:

1. In(z x y) = In(z) + In(y)

6.2.2 The logarithmic function with base a

Definition 6.2

Let a €]0,1[U]1, + ool.
We call the logarithm function with base a and denote log,, the function defined by:

Vz €]0, + oof; log,(x) = EEZ;

Remark 6.4 (Properties of the function log,)

1. We have: In(z) = log,(x) i.e., the neperian logarithm function is the logarithm function with

base e.

2. The logarithm function with base a verifies relations analogous to those stated for the neperian

logarithm function.
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Figure 6.2 — Graphical representation of the logarithmic functions and logarithms with base a for

= — :2
a 2,@

6.3 Exponential Functions

6.3.1 The exponential function

Definition 6.3

The inverse function of the function In(x) is called the exponential function and is denoted by:
exp(x) or e, and satisfies the following properties:

1. Va €]0, + oof; z = @)

2. Yy € R; y =1In(e¥)

Proposition 6.6

1. The function e* is continuous and strictly increasing on R.

2. The function e” is differentiable on R and we have: Vz € R; () = e*

3. If u is differentiable on I then: the function e“®) is differentiable on I and its derivative
defined by: Vz € I; (e*®))" = u/'(z).e"®
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lim e* =0
Tr—r—0o0

1.

lim e* = +o0
Tr— 400

2.

= +o0 (with a € R)

e
=0, lim —
r—+oo ¢

th

lim
r—+o00 et

0,

lim ze™™®
T——+00

3.

1

e””—l_

4. lim

T

5. Vx e R;

z—0

e >1+zx

Figure 6.3 — Graphical representation of the function e*
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For all z,y € R and a € QQ, we have:

1. Y = e* x e¥

4. €0 = (e7)"
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6.3.2 The exponential function with base a

Definition 6.4

Let a €]0,1[U]1,00].
The inverse function of the function log, () is called the exponential function with base a and
is denoted a”:

1. Vx € R; a* = e*0(®)

1 z1n(a)
2. Vx € R, lOga(ax> = ]oga(exln(a)> — 11(1€(>) =
nia

Remark 6.5 The function a® is differentiable on R and we have:

1 T
Figure 6.4 — Graphical representation of functions 10* et <2>

Remark 6.6 The exponential function with base a verifies similar properties to those of the expo-
nential function.

6.4 Power functions

Definition 6.5

Let a € R, we name power function of exponent «, the function defined by:

vz €]0, 4 oof; 2% = e~

Remark 6.7 Ifn € N*, we have :

. E In(z) k=n | k=n
(@) _ i =[["@=][r=axax..xz=2a"
k=1 k=1

nfois
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Proposition 6.9

1. For a € R*, the power function with exponent « is a continuous function on |0, 4+ oo|
and strictly monotonic (strictly increasing if o > 0 and strictly decreasing if o < 0).

2. It is differentiable on ]0, + oo[ with derivative : (x®)" = az®~!, Va €0, + oo|

3. We have:
0, sta <0 400, sta<0
lim 2% =41, sia=0 and lim 2% =<1, sta=0
T—+00 z—0t
400, sta >0 0, st >0
***** S e S XA Sl S 7
| | | y\:x_2'5 | |
~~~~~ R
l l l l l l i
77777 vy
***** EREEEEEEEEEE S G
=
-3 -l 13
~~~~~ s S
***** e =3t
y=z l l l l l
. . . . . 1
Figure 6.5 — Graphical representation of functions x®, with a = —2.5,1,§

Proposition 6.10

For z € RY and «,8 € R we have the following relationships:

2. x7¥ = i
xOé

l.a

a—fB _ 7

3. x o

124



6.5 Circular (or trigonometric) functions

6.5.1 Recalls on the functions cos(z) and sin(zx).

Proposition 6.11

x — cos(x)

The functions and are defined on R and satisfy the following properties:

x — sin(x)
1. Vx € R; |cos(z)| < 1A [sin(z)] <1
2. cos(x) and sin(x) are 2m-periodic i.e.:
cos(z + 2m) = cos(x)

Vo € R; and

sin(x + 2m) = sin(x)
3. The function cos(z) is even and the function sin(z) is odd, i.e.:

cos(—x) = cos(x)
Vr € R; and

sin(—z) = —sin(x)

4. The functions cos(z) and sin(z) belong to C*°(R) and we have:

(cos(z)) = —sin(x)
a Vo e R; and
(sin(z))" = cos(z)
cos™(z) = cos(z + n%)
b Vx € RVn € N; and

sin™(z) = sin(z + n%)

Figure 6.6 — Graphical representation of functions sin(z) and cos(x)

125



Proposition 6.12: (Formules d’addition)

For all (z,y) € R?, we have the following formulas:
* cos(z +y) = cos(z) cos(y) — sin(z) sin(y)
* cos(z — y) = cos(x) cos(y) + sin(z) sin(y)
« sin(z +y) = sin(z) cos(y) + cos(z) sin(y)
 sinx — y) = sin(z) cos(y) — cos(x) sin(y)
. cos(27) = cos?(z) — sin?(z) = 2 cos?(x) — 1 = 1 — 2sin?(x)

o sin(2x) = 2sin(x) cos(x)

o sin(x) + sin(y) = 2sin (%) Ccos (m )
o sin(z) — sin(y) = 2cos (%) sin (x )

o cos(x) + cos(y) = 2 cos (%) cos (%)

o cos(x) — cos(y) = —2sin (’”—;y) sin (%)

6.5.2 Recall about the function tan(z)

Definition 6.6

tan: R\{5 +hin/ke€Z} — R
sin(x)

r — tan(x) = cos(@)

The tangent function is one of the main trigonometric functions and defined by:

Proposition 6.13

The function tan(z) is differentiable on R\{7 + k7 /k € Z} and we have:

1
cos?(x)

Vi € R\{g +kr/k € Z}; (tan(z)) = = 1+ tan®(z)
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Figure 6.7 — Graphical representation of the function tan(x)

Proposition 6.14

The function tan(x) checks the following properties:

1. The function tan(x) is m-periodic i.e :

Vo € R\{g + krn/k € Z}; tan(z + 7) = tan(x)

+ kr/k € Z} we have:

s
2

2. For any z,y € R\{

= =
=22 32
5|2 2|Z
= ==
+E &
= =
B2 E|E
= =
< | |+
Rl =
I I
—~ ~
yd =
+ =
& ® &
~— ~—
= g
oy oy
+ +
[ ——

2tan(x)
1 — tan?(x)

+ kr/k € Z}; tan(2z) =

3. Va € R\{Z
sin(z)
T

1. lim
x—0

Proposition 6.15: (Some usual limits)
1
)

cos(xz) — 1

3. lim

z—0

x) = —00

~—

lim tan
T——

4.

jus
2

lim tan(x) = +o0
T—=+75

D.

tan(z)

6. lim

X

z—0
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6.6 Hyperbolic Functions

6.6.1 Hyperbolic cosine, sine and tangent functions

Any function f defined on R can be uniquely decomposed into a sum of two functions f., and f.q
where f., is an even function and f,q4 is an odd function. This means for every x € R we can write

f@) + f(=x) | fz) - f(=x)
2 2

fz) =

and we choose

Remark 6.8 We can easily check that this decomposition is unique, and f., is an even function and
fod s an odd function.

Definition 6.7: (Hyperbolic cosine)

We call the hyperbolic cosine function and denoted (ch or cosh), the even part of the exponential

function defined by:
¢ch: R — R
61‘ + 6—2?

r — ch(z)= 5

Definition 6.8: (Hyperbolic sine)

The hyperbolic sine function, denoted by (sh or sinh), is the odd part of the exponential

function defined by:
sh: R — R

x —x

(&

x +—— sh(x) = —°

2

Definition 6.9: (Hyperbolic tangent)

The hyperbolic tangent function, denoted by (th or tanh), is the quotient of the hyperbolic
sine function with the hyperbolic cosine function and defined by:

th: R — R

r — th(z) = =
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Proposition 6.16

« The function ch(z) is a function defined on R, continuous and even.
 The function sh(z) is a function defined on R, continuous and odd.
« The function th(z) is a function defined on R, continuous and odd.

o The functions ch(z), sh(z) and th(z) are differentiable on R and their derivatives are
defined by:

(ch(z))" = sh(x)

Vo € R; (sh(z))" = ch(x)

(th(z)) = ch(lx)Q 1= th(z)?

These properties can be verified using the properties of the e* function. In our proof, we're
interested with the function th(zx).
We have:

et —e "t

er 4 e %

Vo € R; th(z) =

o The continuity: The functions (e — e ®) and (e” + e ®) are continuous on R, with

et —e™®
e’ + e* # 0 then the quotient function prp— is continuous on R = th(z) is
et + e~
continuous on R
e The parity: We have:
e?r —e* et —e™”
Vo € R; th(—z) = =— = —th(z)
e * +e* et +e "

So th(x) is odd.

o The differentiability: The functions (e” —e™™) et (e* +e~*) are differentiable on R, with
e’ + e * # 0 then the quotient function % is differentiable on R = th(x) is
et +e "
differentiable on R and we have:

Vo € R; (th(z)) = (6’” - ”) (e (e tet) — (¢F —e ) (e —e)

er + e % (ecc + e—:c)Z

et —e "t

— th(z) =1— (
et 4 e %

>2::1—th@ﬂ2

4 1
Iso th(xz) = = .
also thz) (e*4+e=*)2  ch(z)?

Remark 6.9 The functions ch(x),sh(z) and th(x) have the following properties:
1. ch(0) = 1, sh(0) = 0 and th(0) = 0.

2. lim sh(z) = —o0, lim ch(x) =400 and lim th(x) = —1

T—r—00 T—r—00 T—r—00
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(r) =1

lim sh(xz) =400, lim ch(z) =400 and lim th
z—+00 T—+00 r—+00

3.

Therefore, the above results can be grouped together in tabular form.

8 8
+ +
+ /
(@) fax)
| \
8 8
_ +
S
=
" 5
& /_ _ M\
—~ (&)
=
=
)
8 8
+ +
o + /0
8
_
5
=
” 5
& /_ | N\
—~ wn
B
=
wn

(b) Function ch(z)

(a) Function sh(z)

Figure 6.8 — Functions sh(x) and ch(x)

IT
o + o
_
Pl
— | =
=
© 5
= =
- +
S
=
+=

Figure 6.9 — Function th(z)

Figure 6.10 — Graphical representation of functions sh(z) et ch(x)
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Figure 6.11 — Graphical representation of the function th(z)

Proposition 6.17

For every real z, we have:

o ch(z) 4 sh(z) =e*

o ch(z) —sh(z) =e"

o ch(z)?* —sh(z)*=1

—~
w0
Lo
=)
=
=
L
=
=
&=
=
"9
<
~
%
=
©
=
.=
=
0
o
Q
o
=
A

For all (z,y) € R?, we have the following formulas:

o ch(z + y) = ch(z)ch(y) + sh(z)sh(y)

ch(z)ch(y) — sh(z)sh(y)

* ch(z —y)

o sh(z +y) = sh(z)ch(y) + ch(z)sh(y)

sh(z)ch(y) — ch(x)sh(y)

th(z) + th(y)
1 + th(z)th(y)

* sh(z —y)

o th(z +v)

th(z) — th(y)
1 — th(z)th(y)

« th(z —y)
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We prove these formulas by using the expressions of hyperbolic functions with the exponential
function. We have:

ch(z)ch(y) + sh(z)sh(y) = 5 (" + e ")(e" +e7) + (" — e ") (e — 7))

6.7 Inverse Trigonometric Functions

6.7.1 The function arc-sinus

According to the variation table below, we have:

The function sin(x) is continuous and strictly increasing on [—7,7], then the function sin(x) represents

a bijection from [—7,7] to [—1,1].

NSRS
(e}
+

ol

T —

sin(x)" = cos(x) +

o

1

sin(x) —

—1

Figure 6.12 — Function sin(x)
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Definition 6.10

The inverse function of the restriction of sin(x) on [~7,7] is called the arcsine function and is
denoted by arcsin(x) or sin™*(z):

arcsin : [—1,1

Proposition 6.20

The function arcsin(z) has the following properties:

1. The function arcsin(z) is continuous and strictly increasing on [—1,1]. (According to the
inverse function theorem)

2. Vo € [-3,5]; arcsin(sin(x) = .
3. Yy € [—1,1]; sin(arcsin(y) = .
4. Vx € [-3,5],Yy € [-1,1]; (sin(z) = y <= z = arcsin(y)).

5. The function arcsin(z) is odd.

Let’s prove property (5).

1. The function arcsin(z) is defined on [—1,1], so in this case the domain of definition is
symmetric about 0.

2. Let z € [-1,1] and:

arcsin(—zx) =y (6.1)
& —x =sin(y) & x = —sin(y) & = = sin(—y) (Since sin(x) is odd)
We have: y € [-3,5] = —y€[-5,5]
So we obtain: arcsin(z) = —y < —arcsin(z) =y
From equation (6.1) we get: arcsin(—xz) = — arcsin(x)

= The function arcsin(z) is odd.

Remark 6.10 The following table contains some usual values for the function arcsin(z)

sin(0) =0 arcsin(0) =0
sin(f) =3 || arcsin(3) =%
sin(T) = *2 || arcsin(¥2) = T

1) T 3 2/) " 4
sin(g) = ? arcsin(?) =3
sin(3) =1 || arcsin(l) =3

133



Proposition 6.21

The arcsine function is differentiable on | — 1,1[ and verifies:

1
V1—a?

Vo €] — 1,1[; (arcsin(z)) =

The function sin(x) has the following two properties:
1. sin(z) is differentiable on | — 7,7
2. Vo €] = 5,5[; (sin(x)) = cos(xz) #0
— (from proposition (5.3)), the function arcsin(x) is differentiable on | — 1,1[ and

we have:
1

Vo €] = L1 (aresin(a))’ =

Let x €] — 1,1[, and y = arcsin(x)

= ye]—g, [A cos(y) >0

b

Based on the relationship cos?(y) + sin?(y) = 1, we deduce that: cos(y) = /1 — sin*(y).
Since for all €] — 1,1] we have: sin(arcsin(z)) =

— cos(arcsin(x)) = V1 — 22
From equation (6.2) we obtain:

1
V1— 2?2

Vo €] — 1,1[; (arcsin(x)) =

(6.2)

1
[ ] ]
: : |
- |
Pt = e & S ‘r 77777777777
y = sin(x) i !
| TR |

Figure 6.13 — Graphical representation of the function arcsin(z)
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6.7.2

The Arccosine Function

In the variation table below, we have:
The function cos(z) is continuous and strictly decreasing on [0,7], so the function cos(x) makes a
bijection from [0,7] into [—1,1].

Definition 6.11

The inverse function of the restriction of cos(x) on [0,7] is called the arccosine function and is
denoted by arccos(x) or cos ! (z) :

X 0 T

(cos(z)) = —sin(x) -

cos(z)

Figure 6.14 — The function cos(x)

[—1.1

— [0777-]
Tr =

arccos ()

arccos :

Proposition 6.22

The function arccos(x) has the following properties:

1.

ot

The function arccos(z) is continuous and strictly decreasing on [—1,1]. ( From the inverse
function theorem)

Va € [0,7]; arccos(cos(z) = x.
Yy € [—1,1]; cos(arccos(y) = y.
Va € [0,7],Vy € [—1,1]; (cos(z) = y <= x = arccos(y)).

The function arccos(z) is neither even nor odd.

Remark 6.11 The table below shows some usual values for the function arccos(z).

cos(0) =1 arccos(1) =0
cos(§) = § arccos(S}) =%
cos(§) = % arccos(@) =2
cos(§) =3 || arccos(3) =%
cos(5) =0 | arccos(0) = 7§
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Proposition 6.23

The arccosine function is differentiable on | — 1,1[ and verifies:

1
V1—a?

Vo €] — 1,1[; (arccos(z)) = —

We have the function cos(x) satisfying the following two properties:
1. cos(x) is differentiable on |0,7[.
2. Yz €]0,71[; (cos(z)) = —sin(x) #0

— (from proposition (6.3)), the function arccos(z) is differentiable on | — 1,1] and

we have:
Va €] — L1[; (arccos(z)) = — sin(arlccos(a:)) (6.3)

Let x €] — 1,1[, and y = arccos(x)

= y €|0,7[ A sin(y) > 0

Using the relationship cos?(y) + sin?(y) = 1, we deduce that sin(y) = /1 — cos2(y).
Since for any = €] — 1,1] we have: cos(arccos(z)) = x, then we get:

sin(arccos(x)) = V1 — 22
From equation (6.3) we obtain:

1
V1—a2

Vo €] — 1,1]; (arccos(x)) = —

,,,‘L 77777 i‘ 777777 \y,,,,‘ 777777 e 1
| |
| |
|
|
|

= arccos(x)

Figure 6.15 — Graphical representation of the function arccos(x)
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6.7.3 The Arctangent function

The function tan(z) = sm((a;)) is defined on D = R\{J + km : k € Z}. It is continuous and
cos(x
differentiable on its domain of definition and for all x € D we have:
1 2
(tan(z))" = o2 (2) =1+ tan“(z)
Consider the restriction of the function tan(x) on the interval | — 7, 7|, from the table of variation

below we have: the function tan(x) is continuous and strictly increasing on | -7, 7, then the function
tan(z) makes a bijection from | — 7, 7[ into R.
(tan(x)) = % +
Ccos
+00
tan(z) /
—00

Figure 6.16 — The function tan(x)

Definition 6.12

We call the arctangent function arctan(x) or tan '(z) the inverse of the tangent function on

| — %, %[ defined by:

27 2

arctan : | — oo, +oo[ — ]_%’g[
r —— arctan(z)

Proposition 6.24

The function arctan(x) has the following properties:
1. The function arctan(z) is continuous and strictly increasing on R, with values in | — 7, 7|

2. Vo €] = §, §[; arctan(tan(z)) =

3
3. Yy € R; tan(arctan(y)) = .
4. Vo €] = 5, 51 Vy € R; tan(z) = y <= z = arctan(y)

5. The function arctan(x) is odd.

Remark 6.12 The table below shows some usual values for the function arctan(zx).
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tan(0) =0 arctan(0) =0
tan(g) = % arctan(%) =%
tan(7) =1 | arctan(l) = g
tan(%) = v/3 || arctan(v/3) = 2
Proposition 6.25
The function arctan(x) is differentiable on R and verifies:
Vz € R; (arctan(z))’ = !
1+ 22

The function tan(x) has the following two properties:

1. The function tan(z) is differentiable on | — 7,7 [.

From proposition (6.3), the function arctan(z) is differentiable on | — 7,7 and we have:

1 1
1+ tan®(arctan(z)) 1+ a2

Vo € R; (arctan(z))’

,,,,, L I R [
| | | +Y | | | e
| | | | | | A
| | | | | | 7’ |
| | | | | 1,7 |
77777 A4+ ————F - |y=tan@) -+ - — - -+
| | | | | <)>’\ |
e
| | | | | A |
| | | | L, | |
| | | | I, | |
***** [t E e e At Al Rt S o
| | | - | ‘7 | |
£ 7’

| I I 3 271y =arctan(x) |

| | | (4 | ]
,,,,, L g -
| | | 7z | | |
| | | v | | |
| | | | | | |
| | | | | | |
L L L L L L N
| o | T | ?L.

| | 2 | | 2 | |
| | Iy | | | |

7,
| | 7 | | | |
77777 = = = — < 2 = — 7 R e e i
| ,/\ | | | |
| | . | = | | | |
| [ 2 | | | |
7’
| , | | | | |
***** e M el et el A
| L | | | | |
| , | | | | | |
. | | | | | |
7
,,,,, L
.l | | | | | I
‘0 | | | | | |
7’

’ | | | | | | |
. | | | | | | |
4 | | | | | | |

Figure 6.17 — Graphical representation of the function arctan(zx)
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Proposition 6.26: (Some properties)

1. For any = € [—1,1] we have:

arccos(z) + arcsin(z) = T
2. For all x € R* we have:

tan(z) + arct (1> T
arctan{x arctan | — = ——
T 2

3. For every z € RY we have:

tan(z) + arct <1> T
arctan\x arctan { — = —
x 2

We’ll show properties (2) and (3).
Set f(x) = arctan(x) 4 arctan <%)

Since the functions — and arctan(z) are differentiable on R*), the function f is differentiable
x

on R* and we have:
1 1\’ 1 1 1 x?
r@= e () e e (i) -
T T 1+(;) T T T

From this we deduce that f is a constant function on each of the intervals | —oo,0[ and |0, + oo|.
On the other hand, we have:

. . Ny 7
mlg%l_ f(z) = xli%l— (arctan(x) + arctan (x)) =3
and )
. . T
xli)r(% flx) = xl;r& (arctan(x) + arctan (x>) =5

so f can’t be extended by continuity at 0. So we deduce that:

Ch if z €]0, 4 o]

Since f(1) = 2arctan(l) = 2 (W> =T 4

4 2
and f(—1) =2arctan(—1) =2 (—Z) = —g =y
) 5 ifz€]0,+ o0
— Jl)= {—g if €] — 00,0

1 1
So Yz € R*; arctan(z) + arctan () = —g and Vr € RY; arctan(z) + arctan <) =
T
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6.8 The inverse hyperbolic functions

6.8.1 The inverse of hyperbolic Sine function

From the above table of variation of sh(z) we have: sh(z) is continuous and strictly increasing on R.
Hence, it realizes a bijection from R into R.

Definition 6.13

The inverse function of the hyperbolic sine function on R is denoted argsh(z) or sh™'(z).

argsh: R — R
xr +—— argsh(x)

Proposition 6.27

The function argsh(x) has the following properties:

1. The function argsh(x) is defined on R, it is continuous and strictly increasing on R.
2. Vx € R; argsh(sh(z))=z.

3. Yy € R; sh(argsh(y))=y.

4. V(z,y) € R? y = sh(z) <= x = argsh(y).

5. argsh(x) is odd function.

We'll show that argsh(z) is odd.
Let x € R, and

y = argsh(—x) (6.4)

(6.4)<= sh(y) = —x <= sh(—y) = = (Since sh(z) is odd)
— —y = argsh(z) <= y = —argsh(x).

From (6.4), we get: argsh(—x) = —argsh(x).

So, Vx € R; argsh(—z) = —argsh(z) = argsh(z) is odd.

Proposition 6.28

The function argsh(z) is differentiable on R and verifies:

1
it

Vo € R; (argsh(x)) =

140



| Proof

The sh(z) function verifies the following two properties:
1. sh(z) is differentiable on R.

et +e”

2. Vz € R; (sh(x)) = ch(z) = 5

#0
From proposition (6.3), the function argsh(z) is differentiable on R :

/ 1 1
v € B e = G argsh(a)) ~ ehargsh(a)

On the other hand, we have: ch(z)? —sh(z)? =1 = ch(z) = /1 + sh®(z) because ch(x) is

positive function.

= Vx € R; ch(argsh(x \/1 (sh(argsh(z))? = V1 + 22

1

= Vx € R; (argsh(z)) = ﬁ

Proposition 6.29

Vo € R; argsh(z) = In (Jc +V1+ 1:2)

,,,,, - __ - ___1____L | [ -
| | | 1Y | | | 4
| | | L | P
| | | y = sh(z) | [ |
| | | | | 1,7 |
77777 [ e B e £ I
| | | | | ,’\ |
| | | | | 200 |
| | | | I, | |
| | | | 1,7y =nargsh(z) |
***** [ E e N i Rl AP e St
| | | | R |
I I I I P | I I
| | | /,’ | | |
,,,,, A < L
I i T 1 2 i T i
| | | 7 | | |
I I I I I I I
| | | | | | |
L L . . L L N
L4

] ] 11 1 ] ]
| | I I | | '1:
| | | | | | |
I I | I I I I
————— |l — — — A4 — — — ;,———}—————\————4————+————\—
| | | | | |
I L/ I I I I
| [ | | | | |
L’ | | | | |
i i A El R [ Bl il
| | | | | | |
o, | | | | | |
. I | | | | |
,,,,, S I
Al | I | | I I
,’\ | | | | | |
, | | | | | |
. I I I I I I
4 | | | | | |

Figure 6.18 — Graphical representation of the function argsh(z)
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6.8.2 The inverse hyperbolic cosine function

From the table of variation of the function ch(z) above we have:
ch(z) is continuous and strictly increasing on [0, + oo[. So it forms a bijection from [0, 4+ oo[ into
[1, 4 ool.

Definition 6.14

The inverse function of the restriction of ch(z) on [0, + o[ is denoted by argch(z) or ch™'(x)

argch: [1,+00] — [0, + o0
r +—— argch(x)

Proposition 6.30

The argch(z) function has the following properties:

1. The function argch(z) is defined on [1, + oo, it is continuous and strictly increasing on
[1, + oo.

2. Va € [0, + oof; argch(ch(x))=z.
3. Yy € [1, + ool; ch(argch(y))=y.

4. Yz € [0, + oo[,Vy € [1, + oo[; y = ch(x) <= = = argch(y).

Proposition 6.31

The inverse hyperbolic cosine function is differentiable on |1, 4+ oo[ and verifies:

1

YV €]1, 4+ oo[; (argch(z)) = W
x J—

Remark 6.13 The proof of proposition (6.31) is similar to the proof of proposition (6.28).

Proposition 6.32

Vo €]1, 4+ oof; argch(z) = In (.2: + Va2 — 1)
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Figure 6.19 — Graphical representation of the function argch(x)

6.8.3 The inverse hyperbolic tangent function

From the table of variation of the function th(x) above we have: th(x) is continuous and strictly
increasing on R. So it makes is a bijection from R into | — 1,1].

Definition 6.15

The inverse function of the function th(z) on R is denoted by argth(z) or th™'(z)

argth: |—11] — R
x +—— argth(x)

Proposition 6.33

The function argth(z) has the following properties:

1. The function argth(x) is defined on | — 1,1[, it is continuous and strictly increasing on
|- 11

2. Vx € R; argth(th(x))=x.
3. Yy €] — 1,1[; th(argth(y))=v.
4. Vx € RVy €] — 1,1]; y = th(z) <= x = argth(y).

The argth(x) function is odd.

Proposition 6.34

The function argth(z) is differentiable on | — 1,1] and verifies:

ot

1

T2

Vz €] — L1[; (argth(z))’
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Proposition 6.35

)

<1+x
In
11—z

1
2

Vo €] — 1;1]; argth(x) =

Proof

e —1
e?v +1

ey — e_y
ey +eY

th(z) =

Let x €] — 1; 1], and y = argth(x).

We have:

ISHIRS
+ 11

— | —

I

O
S— | —
= |=
- | =
o0| @0
o =
< | <
S— | ~—
= |=
- |+
+ | |

— |

I

|
D D
S— | ~—
= |4
~ |+
+ 1 |

— | —

e e2y:

)

1 1+x
:1n<

2 1—=x
1+z

ey

1+
1l—=x

<:>2y:ln<

1+
1—=z

— e =

)

ln(
11—z

1
2

— Vz €] — 1,1]; argth(z) =

[0 I

Figure 6.20 — Graphical representation of the function argth(x)
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@P\a/ptm’b encencives with amamsers

Show that for all real numbers x and vy :
T+y
T ey
e 2 < e’ +e
2

Let z,y € R, we have:
z z\ 2 x
(65—65) >0 = e“”—i—ey—Qe%ZO
= 2e 5" <e*+ev
= e7 <<t

Simplify the following expressions :

1. cos(arcsin x) 2. sin(arccos z) 3. tan(arcsinx) 4. cos(2arctan x)

1

We know that :
L. arcsin : [—1,1] — [F, §] 2. arccos : [—1,1] — [0, 7] 3. arctan : R =5, 7|
1. For the first expression we have:

cos® (arcsinz) = 1 — a2

cos (arcsinz) = /1 — a2
and since arcsinx € [_7“, g] hence: cosx > 0 so

cos (arcsinz) = 1 —a?

Va € [-1,1] : cos? (arcsin x) + sin? (arcsinz) = 1

4

2. For the second expression we have:

= sin® (arccosw) = 1 — 12
= sin (arccosx) = £v/1 — 22
and since arccosz € [0, 7] hence: sinxz > 0 so

sin (arccosz) = 1 —a?

Va € [-1,1] : cos? (arccos ) + sin? (arccos ) = 1

3. Let x €] — 1,1
sin(arcsin x)

tan (arcsinz) = cos(arcsina)

From the previous question:

tan (arcsinz) = L=
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1
4. Tt is known that V0 € R : cos?§ =

1+ tan?6
For 6 t btain Vz € R 2 arct ! = t !
or — arctanx, we obtain vxr . COSs™ arctanx = cosarctanr = ——.
14 2 14+ 22

Since arctan z E]i E[

5 and Vz E]%ﬂ,g[: cosz > 0.

Now we use the formula V0 € R : cos 260 = 2cos? § — 1 which gives the required result.

cos20 =2cos?0 —1 = For § = arctan () : cos2 (arctan x) = 2 cos? (arctan x) — 1

= cos2 (arctanz) = 1
cos 2 (arctan x) % s
-z
—  cos2 (arctan z) =
cos 2 (arctan z) 2

According to the values of x, find the limits of 2" when n — +oo

S

For z €0, +oo[, 2" = €"* and since

> i >
{ nz >0 s z2>1 This gives us three cases to look

Inr <0 si O<a<l1
at:

1. Case where: z = 1.
r=1 = z"=1

= lim 2"=1
n—-+4o0o

2. Case where: 0 < z < 1.
O<z<l = Inx<0
lim erhe =
n—-+o0o
= lim 2"=0
n—-+4o0o

3. Case where: z > 1.
z>1 = Inz>0

= lim "™ = +c0
n—r—+oo

= lim 2" =400
n——+00
For x €] — 00, 0] which gives the existence of y €]0, +00[ tq: = —y hence 2™ = (—1)"y". According
to the previous results we can say that:

1. Case: z = —1.
r=-1 = v,=2"=(-1)"
= v, diverges
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2. Case: —1 <z <0.

—l<z<0 = z"=(-1)"(y)" withy €]0,1]
And since lim y" =0 = lim 2" =
n—+00 n——+00
as
1< (=-D)"<l = "< (=D)<Y
. _ n < _ n n < n
< i —D" (y™) <
= 0% lm (1) (") <0
n—-+00

3. Case where r < —1 = v, = 2" = (—1)"(y)" with y > 1 = |v,| = (y)". Based on previous
results |v,| — 400 = v, diverges

_ Conclusion
Let x € R, then if:

1. z < —1 = 2" diverges
2. —l<ax<l=2"—0
3. r=1=2a2"—>1

4. x > 1 = x™ diverges

rerciced”

1. Show that for all z €]0, g[:

, B tan(x)
a) sin(e) = 1 + tan?®(z)
1
b) COS(Q?) = m

1 3
c) 0< arctan(ﬁ) + arctan(ﬁ) <

bo |

1 3
2. Solve arcsin(z) = arctan(§) + arctan(ﬁ)

Let = €]0, g[, then:
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sin(:)s) sin(a:) sin(z)
tan(z) B cos(z) cos(z Cos(x)
1 + tan?(z) sin?(z) 1
cos2 (x) C052 cos(z)
= sin(x
) 1 1
1+ tan?(x) sm (z) 1
cos.2 (x) 0032 cos(z)
= cos(z
c) Let’s put arctan (%) Yo % — tana According to the previous question
p arctan(%) =0 % =tanf g p q
, tan(«) . 1 1
Si(@) = —F/————m—— = Si(a) = —= < 7= =s1n(—
(0) = T = sinla) = < g = sin()
= arcsin(sin(a)) < arcsin(sin(%))
= a< %
t 3 3
sin(f) = __tan(d) = sin(f) = —=< £ = Sin(E)
1+ tan?(B) VvVh o2 3
= arcsin(sin(f)) < rcsm(sm(w))
T
= B<§
On the other hand
() ! = cos(a) = —, as sin(@) > 0= a >0
cos(a) = ——— cos(a) = —, as sin(« «
1+ tan?(a) V5
1 2
cos(ff) = ——————= = cos = ——, and since sin >0=08>0
6)= = 3 == (8)>0= 5
As a result

I<a<
0<pB<

|

w| X 3

1 3
=0<a+p< g =0< arctan(§) + arctan(E) <

N[

2 We know that: sin (o + ) = sina cos § + cos asin 3, hence:

arcsin(x) = arctan(!/2) + arctan(3/2) <

+
=
+
=

i3

3

sin[arcsin(z)] = sin[arctan(!/2)+
arctan(3/2)]

z = sin(arctan(3)) cos(arctan(3/2))

Sin(arctan(3/2)) Cos(arctan(1/2))

\/1 \/1+9 \/1 \/1+9

\/1_

Sl
] E
o +
Sl

B
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Show the following assertions:

1. Vo € R:argsh(z) = In(z + Va2 + 1)

2. Vo € [1,400[: argch(z) = In(x + V22 — 1)
1+x

1
3.V — 1,1[: argth(z) = =1
v €] = 1.1f argth(z) = In(i )
1.
. e _ 1 ) . E211'1(33—|—\/1—&—5172) -1
Vo € R :sinh(x) = oo = sinh (In(z 4+ V1 + 22)) = ST
‘ . eln(:(:+\/1+1:2)2 -1
= sinh (In(z +v1+e%) = — ey
, r+V1+a2)? -1
= sinh (In(z + v1+2?)) = (
(In( ) 2(x + V14 2?)
2% + 221 + 22
= sinh (In(z + v1+2?)) =
(In( ) 2(x +V1+2?)
= sinh(In(z+V1+2?) =2z
= argsinh(sinh (In(z + v/1 + 22))) = argsinh(z)
= In(z +v1+ 2?) = argsinh(z)
2.
2z +1 621n(m+\/12—1) +1
Vx € [1,4o0[: cosh(x) = 5o cosh (In(z + Va2 — 1)) = ST
. eln(m+\/x2—1)2 +1
= cosh (In(z + Va2 — 1)) = SV
(x+ Vo2 —1)2+1
= cosh (In(z + Va2 —1)) =
(In( ) 2+ Va2 —-1)
2% + 2zv/2? — 1
= cosh (In(z + V2?2 -1)) =
(In( ) 2z + Va2 —1)
= cosh (In(z + V22— 1)) ==
= argcosh(sinh (In(z + V22 — 1))) = argcosh(z)
= In(x + V22 — 1) = argsinh(x)
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Vo €] — 1,1[: tanh(z) =

e?r — 1

e2r 4+ 1

1+
2[%1n1 :L'] ]
1+ay _ € B —
tanh(- In +2) T——
—In
62[2 ]_—Z']_i_l
1 I+x
1. 1+z e -2z -1
= tanh(—lnl_sg): | T2
e l—z 41
I+x 1
1. 1 —r
= tanh(=1In +x):1 L
1—x I+x
+1
I ltae, 2"
h(=1 _
= tan (2 nll_ljflf) 5
1 Ty _
= tanh(ilnl_xl)—x
= argtanh(tanh(§ In 1££)) = argtanh(x)
1
= Eln}i’—zzargtanh(x)

rerdice s

1. Compute: cosh(

2

L In(3)) et sinh(% In(3))

2. Show that: cosh(a + b) = cosh(a) cosh(b) + sinh(a) sinh(b)

3. Deduce the solutions of the equation: 2 cosh(z) 4 sinh(z) = v/3 cosh(5x)

g

cosh(% In(3))

sinh(% In(3))

2Inv3 1

cosh(In/3) = S
2eln V3

341 2
2v3 V3

e?ln\/g_l
Slnh(lnﬁ) - W
3-1 1
2v/3 V3
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2. Let a,b € R, then we have:

62a+1 €2b+ 1 e2a_ 1 62b_ 1
)t () (=5
2e 2e 2e 2e

cosh a cosh b + sinh asinh b = (

)

Aela+b)

262(a+b) 192
Aela+d)

e2(a+b) +1
2e(a+b)

= cosh(a + b)

2 cosh(x) + sinh(z) = v/3 cosh(5x) 2 cosh(zr) + \/Lg sinh(z) = cosh(5z)

& cosh(§ In(3)) cosh(x)
+ sinh(% In(3)) sinh(z) = cosh(5z)
& cosh(Inv/3 + z) = cosh(5x)

Inv3+z =5x
& ou bien
InV3+z =5z
4z =In/3
& ou bien

6x =—Inv3
Inv3

& ou bien
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