University of Mostefa Ben Boulaïd - Batna 2 Faculty of Mathematics and computer science Departement of Mathematics

<u>Tutorial 01</u>

Exercise 1 : $E = \mathbb{R}^3$ and $\mathbb{K} = \mathbb{R}$.

1. Determine the linear forms f, g and h on $\mathbb{R}^3 \longrightarrow \mathbb{R}$ such as :

- $\triangleright \quad f(1,1,1) = 0; \qquad f(2,0,1) = 1; \qquad f(1,2,3) = 4$
- $\triangleright \quad g(-1,0,1) = 1; \quad g(2,0,1) = 0; \qquad g(2,2,3) = 2$
- \triangleright h(1,3,0) = 0; h(2,0,-1) = -1; h(1,0,2) = -2

2. Provide the basis for the ker of f, g and h.

Exercise 2 : $E = \mathbb{R}^4$.

Let $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$ be the canonical basis of E. Consider application :

$$\begin{array}{rccc} f: & E & \longrightarrow & \mathbb{R} \\ & X & \longmapsto & f(X) = x_1 + x_2 - x_3 - x_4 \end{array}$$

- 1. Show that f is a linear form.
- 2. Let F be a subset of E such that : $F = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 x_3 x_4 = 0\}$. Justify that F is a hyperplane of E, deduce its dimension, then give it a base, all its equations and all its supplementary in E.
- 3. Let $m \in \mathbb{R}$ and v = (m, m + 1, 2m, m 2): for which values of m are the subspaces F and $\triangle = vect(v)$ supplementary in E?

Exercise 3 : Let f_1, f_2 be the two elements of $\mathcal{L}(\mathbb{R}^2, \mathbb{R})$ defined by :

$$f_1(x,y) = x + y$$
 and $f_2(x,y) = x - y$.

- 1. Show that (f_1, f_2) forms a base of $(\mathbb{R}^2)^*$.
- 2. Express the following linear forms g, h and k in the base (f_1, f_2) :

$$g(x,y) = x,$$
 $h(x,y) = 2x - 6y$ and $k(x,y) = -y.$

Exercise 4 : Let $E = \mathbb{R}^5$ with the canonical basis $\mathcal{B} = \{e_1, e_2, e_3, e_4, e_5\}$.

We consider the set F of vectors (x, y, z, s, t) of E such as

$$\begin{cases} x + 2y + 3z + 4s + 5t = 0\\ x + y + z + s + t = 0\\ 5x + 4y + 3z + 2s + t = 0 \end{cases}$$

- 1. Justify that F is a E e.v and $2 \leq \dim(F) \leq 4$.
- 2. Does the vectors u = (6, -9, 1, 1, 1) and v = (2, -1, 1, -2, 1) belong to F?
- 3. Determine a base of F, deduce its dimension.
- 4. Determine a suplementary G of F in E, give a system of equations.
- 5. We put $H = Vect(e_1, e_2)$. Detrmine $F \cap H$.

Exercise 5 : Let $E = \mathbb{R}^4$ with the canonical basis $\mathcal{B} = \{e_1, e_2, e_3, e_4\}$

We set $F = \{(x, y, z, t)E | x + y - z - t = 0\}.$

- 1. Justify that F is a hyperplane.
- 2. Deduce its dimension.
- 3. Give all equations of F.
- 4. Give a base of F.
- 5. Give all his supplementary.

Exercise 6 : Let $E = \mathbb{R}_2[X]$ with the canonical base $\mathcal{B} = \{1, X, X^2\}$.

We pose $F = \{P \in E | P(1) + P'(0) = 0\}.$

- 1. Justify that F is a hyperplane.
- 2. Deduce its dimension.
- 3. Give all equations of F.
- 4. Give a base of F.
- 5. Give all his supplementary.