University of Mostefa Ben Boulaïd - Batna 2 Faculty of Technology Departement of Electrotechnics

Tutorial 01

Exercise 1

We consider in N the following subsets:

$$A = \{1; 2; 3; 4; 5; 6; 7\}, B = \{1; 3; 5; 7\}, C = \{2; 4; 6\}, D = \{3; 6\}.$$

- 1. Determine $B \cap D$, $C \cap D$, Is one of these meetings disjunct?.
- 2. Determine $B \cup C$, $C \cup D$.
- 3. Determine $C \triangle D$.
- 4. Determine the complementary in A of B, C and D.

Exercise 2

Let E be a set, A, B, C and D be subsets of E. Show that:

- 1. $A \cap B = \emptyset \Leftrightarrow A \subset C_E B$.
- 2. $A \subset B \Leftrightarrow A \cap C_E B = \emptyset$.
- 3. $A \subset B \Leftrightarrow C_E B \subset C_E A$.
- 4. $(A \setminus B) \cap (A \cap B) = \emptyset$.
- 5. $(A \setminus B) \cup (A \cap B) = A$.

Exercise 3

Let $f: E \longrightarrow F$ be an application. Let A_1 and A_2 two parts of E. Show that :

- 1°) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$
- 2°) $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$
- 3°) Si $A_1 \subset A_2$ on a $f(A_1) \subset f(A_2)$
- 4°) $A \subset f^{-1}(f(A))$

Exercise 4

Let $f: E \longrightarrow F$ be an application. Let B_1 and B_2 two parts of F. Show that :

$$1^{\circ}$$
) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$

$$2^{\circ}$$
) $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$

3°) Si
$$B_1 \subset B_2$$
 on a $f^{-1}(B_1) \subset f^{-1}(B_2)$

$$4^{\circ}$$
) $f(f^{-1}(B))$ ⊂ B .

Exercise 5

I- Let f be an application defined by:

$$g: \quad \mathbb{Z} \longrightarrow \quad \mathbb{Z}$$
 $n \longmapsto g(n) = n + 2.$

Show that g is bijective and give g^{-1} .

II- Let f be an application defined by :

$$f: \quad \mathbb{R} - \{1\} \quad \longrightarrow \quad \mathbb{R} - \{2\}$$
$$x \quad \longmapsto \quad f(x) = \frac{2x+5}{x-1}.$$

- 1. Show that f is bijective.
- 2. Let f_1, f_1 and f_3 be the following applications:

$$f_1: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{0\}$$
 $f_2: \mathbb{R} - \{0\} \longrightarrow \mathbb{R} - \{0\}$ $x \longmapsto f_2(x) = \frac{7}{x}$.
$$f_3: \mathbb{R} - \{0\} \longrightarrow \mathbb{R} - \{2\}$$
 $x \longmapsto f_3(x) = x + 2$.

- (a) Show that f_1 , f_2 and f_3 are bijective.
- (b) Show that : $f = f_3 \circ f_2 \circ f_1$.
- 3. Determine the reciprocal application f^{-1} with the same way as f.

Exercise 6

Let S be the binary relationship defined on \mathbb{R} by :

$$\forall x, y \in \mathbb{R}, \quad xSy \Leftrightarrow (|x| \ge |y| \ and \ xy \ge 0)$$

- 1. Show that S is a relation of order.
- 2. Is the order total?

Exercise 7

Let $E = \mathbb{N} \times \mathbb{N}$, \mathcal{R} is defined in E as:

$$(x,y)\mathcal{R}(x^{'},y^{'}) \Leftrightarrow x+y^{'}=y+x^{'}$$

Show that \mathcal{R} is an equivalence relation on E.

Exercise 8

1. Let \mathcal{R} be a binary relation on \mathbb{R}^2 defined by :

$$(x,y)\mathcal{R}(a,b) \Leftrightarrow |x-a| \le b-y$$

- (a) Show that it is a relation of order; is it total?
- (b) Represent the majors of (1; 1).
- 2. Let \mathcal{T} be a binary relation on \mathbb{R}^2 defined by :

$$(x,y)\mathcal{T}(a,b) \Leftrightarrow ((x+y < a+b) \text{ or } (x+y=a+b \text{ and } x \leq a))$$

- (a) verify that it is a relation of order; is it total?
- (b) Represent the majors of (1; 1).