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Chapter 4 :
Vector spaces

1 Maps on vector spaces

Definition 1.1 Let V be a vector space over a field K and let f : V × V −→ K be a function. Supppose that
the following two conditions hold, for α, β ∈ K.

a. f(αx+ βx
′
, y) = αf(x, y) + βf(x

′
, y), x, x

′
, y ∈ V.

b. f(x, αy + βy
′
) = αf(x, y) + βf(x, y

′
), x, y, y

′ ∈ V.

Then, f is called a bilinear map on V.

Example 1.1 Consider the function f : V × V −→ K where

f(x, y) = xAyT , (1)

with V = Rn and K = R and where A is an n× n matrix. Then , f represents a bilinear map.

Definition 1.2 Let V be a vector space over a field K and let f be a bilinear map on V. Take that g : V −→ K
is a map, having

g(x) = f(x, x). (2)

Then, g is called a quadratic map on V.

Example 1.2 Consider
f(x, y) = a11x1y1 + a12x1y2 + a21x2y1 + a22x2y2. (3)

Then, we have
g(x) = a11x

2
1 + (a12 + a21)x1x2 + a22x

2
2, (4)

this map represents a quadratic map.
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Definition 1.3 Suppose that the quadratic map g : V −→ K satisfies, for x 6= 0,

g(x) = f(x, x) � 0, (5)

where f is a bilinear map. Then, g and f are positive definite.

Definition 1.4 Let V be a vector space over K and let S be a subset of V . Suppose that x1, x2, · · · , xn is a finite
list of vectors with x1, x2, · · · , xn ∈ S. Then, S spans V iff x = α1x1+α2x2+· · ·+αnxn, for α1, α2, · · · , αn ∈ K.

Definition 1.5 Let V be a vector space and let S ⊆ V . Assume that S spans V and S must be linearly
independent. Then, S is called a basis of V .

Definition 1.6 Suppose that V is a vector space and that (x1, x2, · · · , xn) is an ordered basis for V . Take that

aij = f(xi, xj), (6)

where f is a bilinear map on V . Then, A = (aij) is said to be the matrix for f with respect to (x1, x2, · · · , xn).

2 Inner product spaces

Definition 2.1 Suppose that Y = R or Y = C and that V is a vector space over Y . Take that <,>: V ×V −→ Y
is a function satisfies, for x, y, z ∈ V,

1. < x, x >< 0 and < x, x >= 0⇔ x = 0.

2. .

< x, y >= < y, x > when Y = C.
< x, y >=< y, x > when Y = R.

3. < αx+ βy, z >= α < x, z > +β < y, z >, for α, β ∈ Y.

Then, the function <,>: V × V −→ Y is called an inner product on V.
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Definition 2.2 Suppose that V is a vector space over Y . Take that <,>: V × V −→ Y is an inner product on
V.

1. When V is a real or complex vector space, V is said to be a real or complex inner product space.

2. When V is a real vector space, V is said to be a Euclidean space.

3. When V is a complex vector space, V is said to be a unitary space.

Definition 2.3 Let d : X ×X −→ R be a function where X is a nonempty set and assume that, for x, y, z ∈ X,

1. d(x, y) = 0 if and only if x = y.

2. 0 4 d(x, y) ≺ ∞.

3. d(x, y) = d(y, x).

4. d(x, z) 4 d(x, y) + d(y, z).

Then, d(x, y) is said to be the distance from x to y or a metric on X.

Definition 2.4 Suppose that X is a nonempty set and that d : X×X −→ R is a metric on X. Then, X is said
to be a metric space.

Remark 2.1 .
For x ∈ V , the norm of x can be represented as

‖ x ‖=
√
< x, x >, (7)

where V is an inner product space.

The polarization identities are presented in the following two theorems where V is a real or complex inner
product space.

Theorem 2.1 Let V be a real inner product space and let x, y ∈ V. Then, we have

< x, y >=
1

4
(‖ x+ y ‖2 − ‖ x− y ‖2). (8)

Theorem 2.2 Let V be a complex inner product space and let x, y ∈ V. Then, we get

< x, y >=
1

4
(‖ x+ y ‖2 − ‖ x− y ‖2) +

1

4
i(‖ x+ iy ‖2 − ‖ x− iy ‖2). (9)

Definition 2.5 Suppose that X is a metric space and that x ∈ X. Let {xn}n∈N be a sequence of points in X.
Then, we can say that {xn}n∈N converges to x when

lim
n−→∞

d(xn, x) = 0, (10)

which means that for ε � 0 we find an integer N � 0 with n < N =⇒ d(xn, x) ≺ ε.

Definition 2.6 Assume that X is a metric space and that {xn}n∈N is a sequence of points in X. Then, {xn}n∈N
is called a Cauchy sequence when we have that for ε � 0 we find an integer N � 0 with m,n < N =⇒ d(xm, xn) ≺
ε.
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Theorem 2.3 Let x, y, z ∈ V . Then, we have

1. ‖ x+ y ‖4‖ x ‖ + ‖ y ‖, (The triangle inequality).

2. ‖ x+ y ‖2 + ‖ x− y ‖2= 2 ‖ x ‖2 +2 ‖ y ‖2, (The parallelogram law).

3. ‖ x− y ‖4‖ x− z ‖ + ‖ z − y ‖ .

4. | < x, y > | 4‖ x ‖‖ y ‖, (The Cauchy-Schwarz inequality).

5. ‖ x ‖< 0 and ‖ x ‖= 0 if and only if x = 0.

Lemma 2.1 Let X be a metric space and let {xn}n∈N be a convergent sequence in X. Then, {xn}n∈N is said to
be a Cauchy sequence.

Definition 2.7 Suppose that X is a metric space and that x is an element of X. Take that each Cauchy sequence
in X converges to x. Then, X is said to be complete.

Remark 2.2 .
Let V be a real or complex vector space and let

‖ x ‖=
√
< x, x >. (11)

Then, a complete metric space (V, ‖ x− y ‖) is said to be a Hilbert space.

3 Orthogonal sets

Definition 3.1 Suppose that V is an inner product space and that x and y are vectors. Let < x, y >= 0 for
x, y ∈ V. Then, the vectors x and y are called orthogonal and denoted by x ⊥ y.

Definition 3.2 Suppose that V is an inner product space and that A1 and A2 are subsets with A1, A2 ⊆ V. Let
x ⊥ y for every x ∈ A1 and y ∈ A2. Then, A1 and A2 are said to be orthogonal.

Definition 3.3 Let V be an inner product space and let A be a nonempty set of vectors where

A = {xi \ i ∈ K}. (12)

1. When we have xi ⊥ xj for i 6= j, A is called orthogonal.

2. When we have
< xi, xj >= δi,j , (13)

A is called orthonormal such that δi,j represents the Kronecker delta function with

δi,j :=

{
1 when i = j,
0 when i 6= j.
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Theorem 3.1 (Pythagoras) Let V be a real or complex inner product space and let x ⊥ y. Then, we have

‖ x+ y ‖2=‖ x ‖2 + ‖ y ‖2 . (14)

Theorem 3.2 (Gram-Schmidt) Suppose that V is a real or complex inner product space and that {v1, v2, · · · , vn}
is a basis for V . Then, we say that {u1, u2, · · · , un} represents an orthogonal basis for V where

u1 = v1, (15)

and

uj = vj −
j−1∑
i=1

< vj , ui >

< ui, ui >
ui, j = 2, · · · , n. (16)

An orthonormal basis for V is given by

{ u1
‖ u1 ‖

,
u2
‖ u2 ‖

, · · · , un
‖ un ‖

}. (17)

4 Orthogonal matrices and their properties

Definition 4.1 Let A be an n× n matrix over R and let

ATA = AAT = In. (18)

Then, we say that A is an orthogonal matrix.

Theorem 4.1 Let A be an orthogonal matrix. Then, we have

a. A−1 is an orthogonal matrix.

b. AT is an orthogonal matrix.

Theorem 4.2 Let A and B be two matrices of order n such that A and B are orthogonal matrices. Then, the
product AB represents an orthogonal matrix, on the other hand, the product BA is also orthogonal.

Theorem 4.3 Let A be an orthogonal matrix. Then, the determinant of A is equal to ±1.

Remark 4.1 .
The group which is denoted by GLn(R) is said to be the general linear group of degree n over R if GLn(R)
is the group of n × n matrices that are real and nonsingular such that this group is the group under matrix
multiplication. On he other hand, the general linear group of degree n over C is denoted by GLn(C).
The group which id denoted by On(R) is said to be the orthogonal group if On(R) is the group of n×n orthogonal
matrices over R such that this group is the group under multiplication.
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5 Unitary matrices and their properties

Definition 5.1 Let A be an n× n matrix over C and let

A∗A = AA∗ = In. (19)

Then, we say that A is a unitary matrix such that A∗ is the conjugate transpose of A.

Theorem 5.1 Let A be a unitary matrix. Then, we have that A−1 is a unitary matrix.

Theorem 5.2 Suppose that A and B are two matrices of the same order such that A and B are unitary. Then,
AB is a unitary matrix.

Remark 5.1 .
The multiplicative group of n×n unitary matrices over C is the so-called unitary group and is denoted by Un(C).
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