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Chapter 4 :
Vector spaces

1 Maps on vector spaces

Definition 1.1 Let V' be a vector space over a field K and let f : V xV — K be a function. Supppose that
the following two conditions hold, for a,p € K.

a. flox + Bz’ y) = af(r.y) + ff (" y), .2’y € V.
b. f(z,ay+By) = af(z.y) + Bf(x,y), z.y,y €V.
Then, f is called a bilinear map on V.
Example 1.1 Consider the function f:V xV — K where
fla,y) = zAy", (1)
with V =R" and K =R and where A is an n X n matrixz. Then , f represents a bilinear map.

Definition 1.2 Let V' be a vector space over a field K and let f be a bilinear map on V. Take that g : V — K
is a map, having

g(x) = f(z,x). (2)
Then, g is called a quadratic map on V.
Example 1.2 Consider
f(z,y) = a1z1y1 + a1221Y2 + a21T2Y1 + a20T2y2. (3)
Then, we have
g(z) = aux% + (a12 + az1)x122 + a22x§7 (4)

this map represents a quadratic map.
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Definition 1.3 Suppose that the quadratic map g : V — K satisfies, for x # 0,

g(x) = f(z,z) » 0, (5)
where f is a bilinear map. Then, g and f are positive definite.

Definition 1.4 Let V' be a vector space over K and let S be a subset of V.. Suppose that x1, 29, -+ , 2, s a finite
list of vectors with x1,x2,- - ,xn € S. Then, S spans V iff t = ayx1+aoxo+- -+ anxy, fora,as, - - ,a, € K.

Definition 1.5 Let V' be a wvector space and let S C V. Assume that S spans V and S must be linearly
independent. Then, S is called a basis of V.

Definition 1.6 Suppose that V is a vector space and that (1,9, - ,2y) is an ordered basis for V. Take that

aij = (@i, xj), (6)

where f is a bilinear map on V. Then, A = (a;;) is said to be the matriz for f with respect to (x1,x2,- -+ ,Tp).

2 Inner product spaces

Definition 2.1 Suppose thatY =R orY = C and that V is a vector space overY . Take that <,>: VXV — Y
is a function satisfies, for x,y,z € V,

1. <z,z>>0and <z,z >=0&z=0.

2. .
<z, y>=<y,x > whenY =C.
<z,y >=<vy,r> whenY =R.

. <ax+fy,z>=a<z,z>4+0<y,z>, fora,feY.

Then, the function <,>:V xV — Y is called an inner product on V.
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Definition 2.2 Suppose that V is a vector space over Y. Take that <,>:V xV — Y is an inner product on
V.

1. When V is a real or complex vector space, V is said to be a real or complex inner product space.
2. When V is a real vector space, V is said to be a Fuclidean space.

3. When V is a complex vector space, V is said to be a unitary space.

Definition 2.3 Letd: X x X — R be a function where X is a nonempty set and assume that, for x,y,z € X,

Then, d(xz,y) is said to be the distance from x to y or a metric on X.

Definition 2.4 Suppose that X is a nonempty set and that d : X x X — R is a metric on X. Then, X is said
to be a metric space.

Remark 2.1 .
For x € V, the norm of x can be represented as

|z ll=v<za>, (7)
where V' is an inner product space.

The polarization identities are presented in the following two theorems where V' is a real or complex inner
product space.

Theorem 2.1 Let V be a real inner product space and let x,y € V. Then, we have
1
<zy>= Z(IISCerIIQ*III*yIIQ)- (8)
Theorem 2.2 Let V' be a complex inner product space and let x,y € V. Then, we get
1 1. , .
<my>=g(lztyllP = le—y )+ gilllz+iy |* = |z =iy |*). (9)

Definition 2.5 Suppose that X is a metric space and that x € X. Let {x,}nen be a sequence of points in X.
Then, we can say that {x,}nen converges to x when

lim d(zp,x) =0, (10)

n—oQ

which means that for € = 0 we find an integer N > 0 with n = N = d(z,,z) < €.

Definition 2.6 Assume that X is a metric space and that {x, }nen s a sequence of points in X. Then, {x, }nen
is called a Cauchy sequence when we have that for e = 0 we find an integer N = 0 withm,n = N = d(x,, xp) <
€.
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Theorem 2.3 Let x,y,z € V. Then, we have

1. lz+y =gz ||+ ||y, (The triangle inequality).

2. lz4+ylP+lz—yl*>=2 |z |*>+2 ||y |? (The parallelogram law).
3. a—ylsla—zl+lz—yl.

4. | <z,y> | =z lyl, (The Cauchy-Schwarz inequality).

5. ||z ||=0 and || x ||=0 if and only if x = 0.

Lemma 2.1 Let X be a metric space and let {x, }nen be a convergent sequence in X. Then, {x, }nen is said to
be a Cauchy sequence.

Definition 2.7 Suppose that X is a metric space and that x is an element of X. Take that each Cauchy sequence
in X converges to x. Then, X is said to be complete.

Remark 2.2 .
Let V' be a real or complex vector space and let

|2 )= vz, (11)

Then, a complete metric space (V| x —y ||) is said to be a Hilbert space.

3 Orthogonal sets

Definition 3.1 Suppose that V is an inner product space and that x and y are vectors. Let < z,y >= 0 for
x,y € V. Then, the vectors x and y are called orthogonal and denoted by x 1 y.

Definition 3.2 Suppose that V is an inner product space and that A; and As are subsets with Ay, Ay C V. Let
x Ly for everyx € Ay and y € As. Then, A1 and As are said to be orthogonal.

Definition 3.3 Let V' be an inner product space and let A be a nonempty set of vectors where
A={z;\i € K}. (12)
1. When we have x; L x; fori # j, A is called orthogonal.

2. When we have
< Ti,Tj; >= (Si,j, (13)

A is called orthonormal such that 6; ; represents the Kronecker delta function with

PR 1 wheni=j,
Y1 0 when i # 5.
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Theorem 3.1 (Pythagoras) Let V be a real or complex inner product space and let x L y. Then, we have

la+ylP=lz I+ 1y l* (14)
Theorem 3.2 (Gram-Schmidt) Suppose that V is a real or complex inner product space and that {vy,va, - ,vn}
is a basis for V. Then, we say that {u1,ug,- - ,un} represents an orthogonal basis for V where
U] = v1, (15)
and
Eh < Vj,U; > .
uj:vj—;mui,j=2,~-,n. (16)
An orthonormal basis for V is given by
uy Uz Unp
Tl Twa ™ Tua "

4 Orthogonal matrices and their properties

Definition 4.1 Let A be an n X n matriz over R and let
ATA = AAT = 1,. (18)
Then, we say that A is an orthogonal matriz.

Theorem 4.1 Let A be an orthogonal matriz. Then, we have
a. A= is an orthogonal matriz.

b. AT is an orthogonal matriz.

Theorem 4.2 Let A and B be two matrices of order n such that A and B are orthogonal matrices. Then, the
product AB represents an orthogonal matriz, on the other hand, the product BA is also orthogonal.

Theorem 4.3 Let A be an orthogonal matrixz. Then, the determinant of A is equal to £1.

Remark 4.1 .

The group which is denoted by GL,(R) is said to be the general linear group of degree n over R if GL,(R)
is the group of n X n matrices that are real and nonsingular such that this group is the group under matric
multiplication. On he other hand, the general linear group of degree n over C is denoted by GL,(C).

The group which id denoted by O, (R) is said to be the orthogonal group if O, (R) is the group of n x n orthogonal
matrices over R such that this group is the group under multiplication.
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5 Unitary matrices and their properties

Definition 5.1 Let A be an n x n matriz over C and let

A*A = AA* =1, (19)

Then, we say that A is a unitary matriz such that A* is the conjugate transpose of A.

Theorem 5.1 Let A be a unitary matriz. Then, we have that A~ is a unitary matriz.

Theorem 5.2 Suppose that A and B are two matrices of the same order such that A and B are unitary. Then,
AB is a unitary matriz.

Remark 5.1 .
The multiplicative group of n X n unitary matrices over C is the so-called unitary group and is denoted by U, (C).
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