EXERCISE 1:

To determine the mass of an object M1, we throw it at a speed of $4 \mathrm{~m} / \mathrm{s}$ against a stationary object M 2 whose mass is known and is equal to 0.5 kg . We observe that the object M 1 is thrown back at a speed of $2.48 \mathrm{~m} / \mathrm{s}$, while the struck object M 2 acquires a speed of $0.54 \mathrm{~m} / \mathrm{s}$.

- Calculate the unknown mass M1.

EXERCISE 2:

A skater of mass $M=70 \mathrm{~kg}$ is immobile in the center of a circular ice rink of radius $r=20 \mathrm{~m}$. We throw a ball at him of a mass $m=2 \mathrm{~kg}$. The ball has horizontal speed $v=10 \mathrm{~m} / \mathrm{s}$ when the skater catches it. The skater-ball assembly begins to move, it is assumed to be frictionless.

- How long will it take to reach the edge of the rink?

EXERCISE 3:

Two unequal masses are connected to each other by a rope (of negligible mass) passing over a pulley (negligible friction and mass) hung from the ceiling of a room. The masses are $\mathrm{m} 1=1 \mathrm{~kg}$ and $\mathrm{m} 2=2 \mathrm{~kg}$.

- Calculate the tension of the rope and the acceleration of the two masses.

EXERCISE 4:

A point mass $m=200$ grams is suspended from a massless wire whose length is 1 meter. The mass m rotates at a constant speed around a vertical axis with an angle θ that is equal to 30°.

1 - What is the angular speed of the mass m ?

2- If we double the mass m, by how much must we multiply the angular speed to keep the same angle θ ?
3- What is the magnitude of the angular (kinetic) momentum of the system while the mass is rotating.

EXERCISE 5:

Two bodies A and B of mass $m A=2 \mathrm{~kg}$ and $\mathrm{mB}=3 \mathrm{~kg}$ are connected by a rope of a negligible mass sliding without friction on a pulley of a negligible mass. Body A slides on a plane inclined at 30°. Friction is
 neglected. Both bodies are initially at rest.

- If we let go of body B, what distance will body A have traveled after 2 seconds?

EXERCISE 6:

Two blocks A (10 kg) and B (20 kg), initially at rest, are connected by a rope of a negligible mass which passes over a pulley (without sliding and of a negligible mass).

- Draw the force diagram on each block and calculate the acceleration of the blocks.

EXERCISE 7:

On a horizontal plane AB, we placed a mass M1 $=5 \mathrm{~kg} . \mathrm{M} 1$ is connected to a mass M 2 by a rope of a negligible mass passing at A over a frictionless pulley. In case of horizontal stress on M1, a friction force appears between M1 and the plane $A B$, which takes a maximum value of 5 N .

1- Give the maximum value of M 2 so that M1 remains immobile.

We take M2 = 3 kg . We complete the system with a mass M3 connected to M1 by a rope of negligible mass and passing through the pulley B without friction.

2 - Give the minimum and maximum values that M3 can take so that the system remains immobile.

NB: We take $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$. For exercises 5 and 6 , the friction forces are neglected.

