Coordinate systems

EXERCISE 1: We give the time equations of a point M in the form:

- $= \begin{cases} x = 2t + 3 \\ y = 4t + 2 \end{cases} = \begin{cases} x = t + 1 \\ y = t^2 + 2t \end{cases} = \begin{cases} x = 2\cos(t) + 2 \\ y = 2\sin(t) 1 \end{cases}$
- Determine for the three cases the equation of the trajectory described by the point M.
- Deduce for each case the components of the velocity and acceleration of the point M.

EXERCISE 2: We consider a material point M moving in a frame of reference $\Re(0, xyz)$ provided with the Cartesian base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. The coordinates of point M in the frame \Re are given by:

x = t+1, $y = t^2+1$ et z = 0

- 1. Write the expression for the position vector \overrightarrow{OM}
- 2. Give the equation of the trajectory of M in \Re . Deduce its nature.
- 3. Give the expression of the velocity and acceleration of point *M*.

EXERCISE 3: A material point M describes the plane curve whose equation in the polar basis $(\vec{u}_{\rho}, \vec{u}_{\theta})$ is $\rho = b(1 + \cos\theta)$ with b a given constant.

We consider that the angle θ varies over time according to the time law $\theta = \omega t$ with ω a constant.

- 1. Give the expression for the Cartesian coordinates of the mobile.
- 2. Give in Cartesian coordinates the expression for the velocity of M.
- 3. Give the expression for the velocity and acceleration in polar coordinates.

EXERCISE 4: A material point M identified by its Cartesian coordinates (x, y, z), has a movement of time equations:

$$x = R \sin \omega t$$
, $y = R (1 - \cos \omega t)$, $z = kt$

With R, ω and k positive constants

- 1. Determine the time equations ($\rho(t)$, $\Theta(t)$, z(t)) in cylindrical coordinates.
- 2. Express the velocity and acceleration in the Cartesian and cylindrical base.

We recall: $1 - \cos(\omega t) = 2\sin^2(\frac{\omega t}{2})$ et $\sin(\omega t) = 2\sin(\frac{\omega t}{2})\cos(\frac{\omega t}{2})$

EXERCISE 5: Knowing that for w and R two positive constants, the speed of a particle M is given

by:

$$V = 4 w R \cos wt \ \vec{u}_x + 4 w R \sin wt \ \vec{u}_y + 3 w R \ \vec{u}_z$$

And that at the initial instant t =0, x(0) = 0, y(0) = 0 and z(0) = 0

- 1. Give the expression for the position vector \overrightarrow{OM} .
- Give the expression for the acceleration vector as well as its two normal and tangential components.
- 3. What is the radius of curvature of the trajectory at any instant t?