University of BATNA 2 Faculty: Mathematics and Computer Department: Common Core in Mathematics and Computer Science Ist Year CC-MCS 2023-2024 academic year

Series of 4th supervised exercises

Exercise 1

Consider the following algorithms:

Algorithm Algo_1;	Algorithm Algo_2 ;	Algorithm Algo_3 ;	Algorithm Algo_4;
Var i : integer ;	Var i : integer;	Var i,n : integer;	Var i,n : integer;
Begin	Begin	Begin	Begin
i←1;	i← 1;	Read (n);	Read (n);
while (i≤10) do	while (i≤10) do	i← 1;	i← 1;
write (i);	i←i+1 ;	while $(i \le n)$ do	while (i≤n) do
i←i+1 ;	write (i) ;	write (i) ;	i←i+2 ;
Endwhile	Endwhile	i←i+2 ;	write (i) ;
End.	End.	Endwhile	Endwhile
		End.	End.
Algorithm Algo_5;	Algorithm Algo_6;	Algorithm Algo_7;	Algorithm Algo_8;
Var i,n, S : integer;	Var i,n,S,x : integer;	Var i,n,Nbre,x : integer	Var i,n,Nbre,x : integer
Begin	Begin	Begin	Begin
Read (n);	Read (n);	Read (n);	Read (n);
$S \leftarrow 0;$	$S \leftarrow 0;$	Nbre $\leftarrow 0$;	Nbre $\leftarrow 0$;
i←1;	i← 1;	i← 1;	i← 1;
while (i≤n) do	while (i ≤n) do	while (i≤n) do	while (i ≤n) do
$S \leftarrow S+i;$	Read (x);	Read (x);	Read (x);
i←i+1 ;	$S \leftarrow S+x;$	If (x mod 2=0) Then	If (x≥0) Then
Endwhile	i←i+1;	Nbre \leftarrow Nbre +1;	Nbre \leftarrow Nbre +1;
write (S);	Endwhile	Endif;	Endif;
End.	write (S) ;	i←i+1;	i ← i+1 ;
	End.	Endwhile	Endwhile
		write (Nbre);	write (Nbre);
		End.	End.

1- Make the trace and say what each of the above algorithms does.

2- Choose one of the previous algorithms and rewrite its while loop using the Repeat loop.

3- Choose one of the previous algorithms and rewrite its while loop using the For loop.

Exercise 2 (use while loop)

Write the algorithm that asks for a starting number n, and calculates the sum of the integers up to this number. For example, if you enter n=5, the program should calculate: 1 + 2 + 3 + 4 + 5 = 15

Exercise 3 (use while loop)

Write an algorithm to calculate the average of N given real numbers (n1, n2, ...n20).

Exercise 4 (use repeat loop)

Write an algorithm that asks the user for a number n between 0 and 20 until the answer is correct.

Exercise 5 (use for loop)

Write the algorithms to calculate the following sums:

1) $\sum_{i=1}^{n} \sum_{j=1}^{i} i + j$ 2) $\prod_{i=1}^{n} x^{i}$ (n and x are integers)

Exercise 6

Write the algorithm that calculates the Nth term UN of the FIBONACCI sequence given by the recurrence relation :

- U₁=1
- U₂=1
- UN=UN-1 + UN-2 (for N>2).

Exercise 7 (use repeat loop)

Write the algorithm that successively asks the user for N (N>=1) numbers, and then tells the user which of these N numbers is the greatest.