University of BATNA 2
Faculty: Mathematics and Computer
Department: Common Core in Mathematics and Computer Science
1st Year CC-MCS 2023-2024 academic year

Series of 5th supervised exercises

Exercise 1

To calculate a student's average, write an algorithm using the following steps:
a. Read and save 8 marks from 8 modules in a vector whose coefficients are ($2,3,1,2,4,2,1,3$).
b. Calculate and display the student's average without taking module coefficients into account.
c. Calculate and display of the student's average taking module coefficients into account.

Exercise 2

Rewrite the algorithm for Exercise 6 of Series 4 (Fibonacci sequence) using an array T.

Exercise 3

Let TAB be an array of N real numbers (N does not exceed 120).
1- Write an algorithm that finds the minimum and maximum values and their positions in the TAB array.

2- Write an algorithm that adds the value 15 to all even-numbered values and subtracts the value 20 from all odd-numbered values.

3- Write an algorithm that calculates the frequency (number of repetitions) of the first number in the array, as well as all its positions.
Example :

1.2	8.3	0	1.2	1.2	4.5	8	0	9	1.2	0.5	10	3	1.2	1.8

First element " 1.2 ", its frequency $=5$ (it exists 5 times in the table)
Its positions are : 1, 4, 5, 10, 14 .
4- Write an algorithm that allows to copy TAB array into another array TAB2 with deletion duplicated elements.

Example

5- Write an algorithm that splits TAB into two arrays, TAB_POS and TAB_NEG, containing positive and negative numbers respectively.

Exercise 4

Let V1 and V2 be two vectors (one-dimensional arrays) of N integers for each ($\mathrm{N} \leq 150$).
Write the algorithm that determines the sum and scalar product of V1 and V2.

```
The sum of V1 and V2 is V3 such that :V3[i]=V1[i]+V2[i]
The scalar product of V1 and V2= 㖃 (V1[i]*V2[i]).
```

Algorithm Algo_1;
Vari, N : integer ;
Nb : array of [1..50] ofinteger;

Begin

Repeat
Read(N);
Until ($(\mathbf{N}>0)$ et ($\mathbf{N} \leq 50)$);
For (ifrom 1 to N) do $\mathrm{Nb}[\mathrm{i}] \leftarrow \mathrm{i}$ * i ;
Endfor
For (ifrom 1 to N) do Write($\mathrm{Nb}[\mathrm{i}]$) ;
Endfor
End.

AlgorithmAlgo_4;
 Vari,N : integer;

T : array of [1..150] of integer,

Begin

Repeat
Read (N);
Until ($\mathbf{N}>0$) et ($\mathrm{N} \leq 150$));
$\mathrm{T}[1] \leftarrow 8$;
For (if from 2 to N) do $\mathrm{T}[\mathrm{i}] \leftarrow \mathrm{T}[\mathrm{i}-1] * 3$;
Endfor
For (ifrom 1 to N) do Write(T[i]) ;
Endfor
End.

```
AlgorithmAlgo_2;
    Vari,N,S : integer;
    Nb : array of [1..50] ofinteger;
Begin
    Repeat
        Read (N);
    Until ((N>0) et (N\leq50));
```

 \(\mathrm{S} \leftarrow 0\);
 For (ifrom 1 to N) do
 \(\mathrm{Nb}[\mathrm{i}] \leftarrow \mathrm{i}\) * i ;
 \(\mathrm{S} \leftarrow \mathrm{S}+\mathrm{Nb}[\mathrm{i}]\);
 Endfor
 Write(S) ;
 End.
AlgorithmAlgo_5;
Vari,N,S,P : integer;
T : array of [1..70] ofinteger;
Begin
Repeat
Read (N);
Until ($(\mathrm{N}>0)$ et $(\mathbf{N} \leq 70)$);
For (ifrom 1 to N) do
Read (T[i]);
Endfor
$\mathrm{S} \leftarrow 0$;
$\mathrm{P} \leftarrow 1$;
For (ifrom 1 to N) do
If(T[i] mod $2=0)$ Then
$\mathrm{S} \leftarrow \mathrm{S}+\mathrm{T}[\mathrm{i}]$;
Else
$\mathrm{P} \leftarrow \mathrm{P} * \mathrm{~T}[\mathrm{i}] ;$
Endif
Endfor
Write(S,P) ;
End.

```
AlgorithmAlgo_3;
    Vari,N : integer;
    T : array of [1..80] ofinteger;
Begin
    Repeat
        Read (N);
    Until ((N>0) et (N\leq80));
    T[1]\leftarrow100;
    For (i from 2 to N)do
        T[i]}\leftarrowT[i-1]+2
    Endfor
    For(i from 1 to N) do
        Write(T[i]);
    Endfor
End.
```

AlgorithmAlgo_6;
Vari,N,j,k,X : integer;
T 1 : array of [1..40] ofinteger;
T2 : array of [1..40] ofinteger;

Begin

Repeat Read (N);
Until ($(\mathrm{N}>0)$ et $(\mathbf{N} \leq 40)$) ;
$\mathrm{j} \leftarrow 0 ; \mathrm{k} \leftarrow 0$;
For (ifrom 1 to N) do Read (X) ;
$\operatorname{If}(\mathrm{X} \bmod 5=0)$ Then
$\mathrm{j} \leftarrow \mathrm{j}+1$;
$\mathrm{T} 1[\mathrm{j}] \leftarrow \mathrm{X}$;
Else
$\mathrm{k} \leftarrow \mathrm{k}+1$;
$\mathrm{T} 2[\mathrm{k}] \leftarrow \mathrm{X}$;
Endif
Endfor
For (ifrom 1 to j) do Write(T1[i]) ;
Endfor
For (ifrom 1 to k) do Write(T2[i]) ;
Endfor
End.

Consider the preceding algorithms:

1. Trace and say what each of the above algorithms does.
2. Choose one of the previous algorithms and rewrite its Repeat loop with the while loop.
3. Choose one of the above algorithms and rewrite its For loops as while loops.

Exercise 6

Let TAB be an array of N real numbers (N does not exceed 120).
1- Write an algorithm to check whether the array TAB is sorted or not.
2- Write an algorithm to sort the array TAB in descending order.
3- Write an algorithm to invert the elements of an array. Example

TAB | 5 | 1 | 8 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Its inverse is: | 3 | 2 | 2 | 8 | 1 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

4- Write an algorithm to insert a VAL value at the $\mathrm{k}^{\text {th }}$ position in the TAB array. Note: in this question ($\mathrm{N}<120$).

5- Assume that the array TAB is sorted in ascending order and ($\mathrm{N}<120$). Write an algorithm that inserts a real number X into this array while maintaining the sorted array.

Exercise 7

Let V1 and V2 be two vectors (one-dimensional arrays) of N integers for each ($\mathrm{N} \leq 150$).
1- Write an algorithm that constructs, from the previous vectors, two vectors MAX and MIN defined as follows:

- $\operatorname{MAX}[i]=$ maximum between V1[i] and V2[i].
- MIN[i] = minimum between V1[i] and V2[i].

2- Assume that V1 and V2 are sorted in ascending order:

- Write an algorithm that fuses these two vectors into a vector V3 sorted in descending order.
- Modify the previous algorithm to remove any duplicates.

Exercise 8

Let T be an array of characters containing a sentence ending in a point. Write a C program that determines:

- The number of words in the sentence
- The longest word in the sentence

Exercise 9

Let Tab be an array of N characters containing a single word.
1- Write a C program that determines the mirror word of a given word in the Tab array.
The "mirror" word of a given word is obtained by reading the word from the end to the beginning.
Example :
Tab

\boldsymbol{B}	\boldsymbol{a}	\boldsymbol{T}	\boldsymbol{n}	\boldsymbol{A}

Its mirror is:

2- Write a C program that checks whether the word given in the Tab array is a palindrome.
A word is said to be palindrome if it is identical to its mirror word.

