Series of 6th supervised exercises Matrices : two-dimensional arrays

Exercise 1

Let Mat be a real matrix of N rows and M columns ($N \le 50$ and $M \le 200$). Write an algorithm that determines:

- 1. The minimum and its position (assumed to exist only once) in the matrix Mat.
- 2. Count and display the number of zeros in each row of the matrix Mat.
- 3. Count and display the number of zeros in each column of the matrix Mat.
- 4. Check for the existence of a given value "X" in the matrix Mat.

Exercise 2

Let M be a square matrix of N \times N real numbers (N \leq 100). Write an algorithm that fills the matrix M as follows:

0	1	1	1
-1	0	1	1
-1	-1	0	1
-1	-1	-1	0

Exercise3

Write an algorithm that reads a square matrix of integers of order N ($N \le 100$), then sets its secondary diagonal to 1. (Propose two solutions)

Exercise 4 (optional, if there is time)

Let A be an integer matrix with N Rows and M Columns.

Write an algorithm to :

- 1. Find the minimum and maximum and their indices in the matrix A.
- 2. Calculate and display the sum of the elements of the column containing the minimum of matrix A.
- 3. Calculate and display the product of row elements containing the maximum of matrix A.
- 4. Calculate and display the average of the row elements containing the positive minimum of matrix A.
- 5. Calculate and display the average of the elements in the column containing the negative maximum of matrix A.

We consider A as an integer matrix with N rows and M columns ($N \le 90$ and $M \le 120$).

Home exercises

Write an algorithm to display the following triangle of stars:

Х	Х	Х	Х	Х	Х	Х	Х	Х
	Х	Х	Х	Х	Х	Х	Х	
		Х	Х	Х	Х	Х		
			Х	Х	Х			
				Х				

Exercise 6

Let A be a square matrix of integers of order N ($N \leq 90$).

- **1.** Write an algorithm to :
- 2. Check whether the matrix A is an identity matrix or not.
- 3. Check whether the matrix A is symmetrical or not.
- 4. Check whether matrix A is upper triangular or not.
- 5. Check whether matrix A is lower triangular or not.
- 6. Check whether the matrix A is a magic square or not..

A magic square of order N is a square matrix of order N such that: the sum of the integers of each row, each column, the diagonal and the anti-diagonal are identical (equal).

Exercise 7

Write an algorithm to construct Pascal's triangle. Example: For a matrix (6,6)

,,,,,						
1						
1	1					
1	2	1				
1	3	3	1			
1	4	6	4	1		ĺ
1	5	10	10	5	1	

Exercise 8

Let A be an integer matrix with N, Write an algorithm to :

- 1. Determine and display the sum of each row of matrix A.
- 2. Determine and display the sum of each column of matrix A.
- 3. Determine and display the index of the row of matrix A whose sum of its elements is minimal.
- 4. Determine and display the index of the column of matrix A whose sum of elements is maximal.

In Exercises 8, we consider A as an integer matrix with N rows and M columns ($N \le 100$ and $M \le 80$).