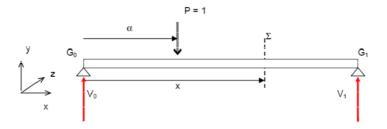
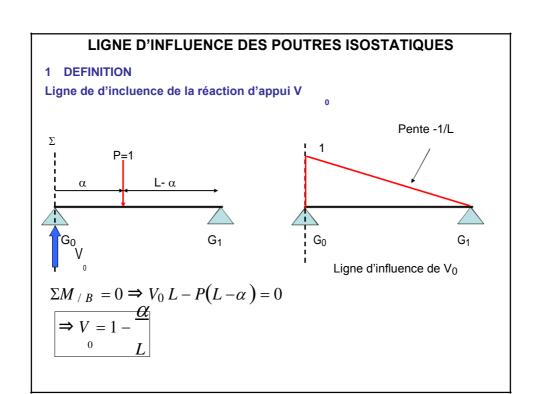
LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES

1 DEFINITION

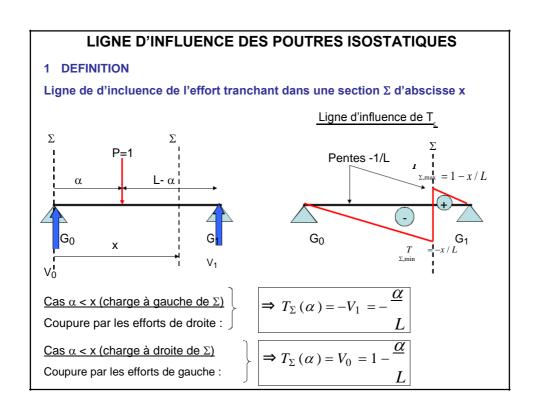
On considère, dans un repère orthonormé ($\vec{x}, \vec{y}, \vec{z}$), une poutre G_0G_1 plane sur deux appuis simples soumise à une charge ponctuelle unitaire mobile d'abscisse α . On cherche à mesurer dans une section Σ quelconque d'abscisse x l'effet de cette charge mobile.

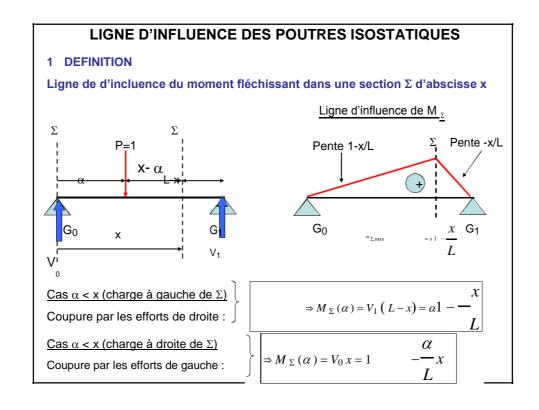


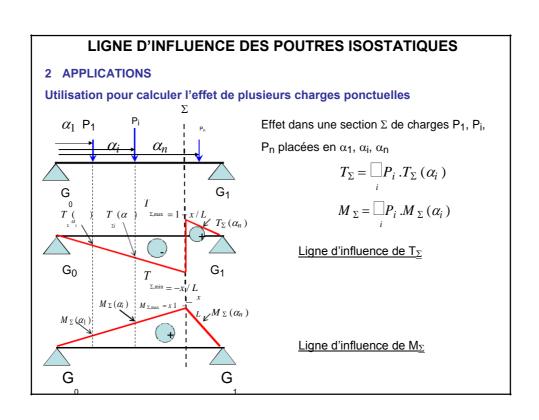
Cet effet $\mathscr F$ pourra être l'effort tranchant, le moment fléchissant, ou le déplacement (flèche, rotation) de la section Σ . La courbe représentative de $\mathscr F(\alpha)$, lorsque la charge mobile se déplace sur la poutre, est appelée courbe d'influence. Cette courbe d'influence est relative à une section x donnée. Il y a donc autant de courbes d'influences que de sections Σ que l'on considère.



LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES 1 DEFINITION Ligne de d'incluence de la réaction d'appui V $G_0 \qquad G_1 \qquad G_$



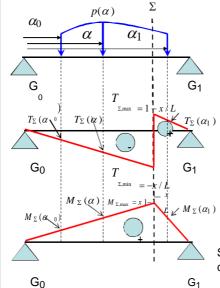




LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES

2 APPLICATIONS

Utilisation pour calculer l'effet d'une charge répartie quelconque



Effet dans une section Σ d'une charge répartie quelconque p(α) entre les abscisses α_0 et α_1

$$T_{\Sigma} = + p(\alpha) . T_{\Sigma}(\alpha) d\alpha$$

Si p est constant, T_{Σ} correspond à p x l'aire délimitée par la courbe T_{Σ} (α) entre α_0 et α_1

$$M_{\Sigma} = + p(\alpha) . M_{\Sigma}(\alpha) d\alpha$$

Si p est constant, M_Σ correspond à p x l'aire délimitée par la courbe M_Σ (a) α_0 et α_1

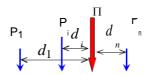
LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES

3 EFFET D'UN CONVOI - THEOREME DE BARRE

Définition

Un convoi est un ensemble de charges P_i dont les distances entre elles restent fixes (exemples : camions, trains).

Le convoi peut être caractérisé par sa résultante $\Pi = \Box P_i$



La position de chaque charge P_i peut être caractérisée par sa distance d_i à la résultante Π

Objectif

L'objectif est de déterminer la position du convoi qui donne le moment fléchissant maximal dans la poutre sur 2 appuis simples que parcourt le convoi et la valeur de ce moment maximal.

LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES

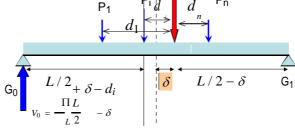
3 EFFET D'UN CONVOI – THEOREME DE BARRE

Démonstration

On note δ la distance de la résultante à l'axe la poutre.

On calcule la réaction d'appui à gauche en écrivant l'équilibre en

$$V_0 = \frac{\Pi L}{L} - c$$



On calcule le moment dans la section Σ au droit de la charge P_i

$$M_{\Sigma} = V_0 \left(L/2 + \delta - d_i \right) - \square P_g \left(d_g - d_i \right) = \frac{\Pi}{L} \left(L/2 - \delta \right) \left(L/2 + \delta - d_i \right) - \square P_g \left(d_g - d_i \right)$$

Moment des provoqué par les charges à gauche de Pi =

Constante M_{Σ} pour une position du convoi telle que : $\frac{dM_{\Sigma}}{d\delta} = 0$

LIGNE D'INFLUENCE DES POUTRES ISOSTATIQUES

3 EFFET D'UN CONVOI – THEOREME DE BARRE

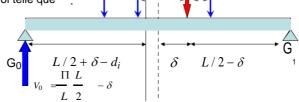
Démonstration

 $M_{\,\Sigma}\,$ pour une position du convoi telle que

$$\frac{dM_{\Sigma}}{d\delta} = 0 \Rightarrow -2\delta + d_i = 0$$

$$\frac{dM_{\Sigma}}{d\delta} = 0 \Rightarrow \delta = \frac{d}{2}$$

Le moment est maximum en Σ lorsque la charge P_i et la résultante Π sont placées de manière symétrique par rapport à l'axe de la poutre .



$$M_{\Sigma} = \frac{\prod}{L} (L/2 - \delta) (L/2 + \delta - d_i) - \Box P_g (d_g - d_i)$$

Alors, le moment maxi vaut :

$$= \frac{\prod}{L} \qquad (L/2 - d_i/2)^{-\frac{r}{g}} \qquad (d_g - d_i) = \frac{\prod L}{4} - \frac{d_i}{L} - \frac{2}{P_g(d_g - d_i)}$$

