University of Batna 2-Institute

of Industrial Hygiene and Safety

L1-Math1 2023/2024

Correction n°1 Logic and Mathematical Proof

Solution 1

- 1. $\exists k \in \mathbb{N}, 102 = 3k$
- 2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^3 = y^3 \Longrightarrow x + y$
- 3. $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, n < m$
- 2/ The negation of propositions:
 - 1. (P₁) is false because $\exists x = -1 \in \mathbb{R}, (-1+1)^2 = 0$. Thus $\bar{\mathbf{P}}_1 : \exists x \in \mathbb{R}, (x+1)^2 \leq 0$
 - 2. (**P**₂) is false and $\bar{\mathbf{P}}_2$: $\forall x \in \mathbb{R}, x^2 \neq -1$
 - 3. (P₃) is false because $2x^2 + 3x = 0$ has two solutions $x_1, x_2 \in \mathbb{R}$. Hence $\bar{\mathbf{P}}_3 : \exists x \in \mathbb{R}, 2x^2 + 3x = 0$
 - 4. (**P**₄) is false and $\bar{\mathbf{P}}_4$: $\exists (x, y, z) \in \mathbb{R}^3$, $(xz = yz) \land (x \neq y)$
- 3/ The contrapositive of the propositions:
 - 1. $(n \neq 2)$ and $(n \text{ is even }) \Longrightarrow n$ is not prime
 - 2. $\forall n \ge 2$, n is odd, then $(n^2 1)$ is divisible by 8.

Solution 2

1• Simplification of propositions :

$$\bullet[P \Longrightarrow (Q \Longrightarrow R)] \Longleftrightarrow [P \Longrightarrow (\bar{Q} \lor R)] \\ \Leftrightarrow \bar{P} \lor (\bar{Q} \lor R) \qquad \bullet[(P \land Q) \Longrightarrow R] \Leftrightarrow \overline{(P \land Q)} \lor R \\ \Leftrightarrow (\bar{P} \lor \bar{Q}) \lor R$$

According to the associativity of the connective **or** (\lor) , we deduce that the two propositions are equivalent: $[P \Longrightarrow (Q \Longrightarrow R)] \iff [(P \land Q) \Longrightarrow R]$

2• The truth table of
$$\overline{(P \Longrightarrow Q)} \iff (P \land \overline{Q})$$
 is

P	Q	\bar{Q}	$P \Longrightarrow Q$	$\overline{P \Longrightarrow Q}$	$P\wedge \bar{Q}$	$\overline{(P \Longrightarrow Q)} \Longleftrightarrow (P \land \bar{Q})$
T	T	F	Т	F	F	T
F	F	T	Т	F	F	T
T	F	T	F	Т	T	T
F	T	F	Т	F	F	Т

The table show that $\overline{P \Longrightarrow Q}$ and $P \land \overline{Q}$ have the same truth table. Therefore, the two propositions are equivalent. ie $\overline{(P \Longrightarrow Q)} \iff (P \land \overline{Q})$ is true.

Solution 3

Let us show by exhaustion that:

If x is a real number, then |x+3| - x > 2

We consider two cases: $x \ge -3$ and x < -3.

- case 1: $x \ge -3$. Then |x+3| = x+3, so we have |x+3| x = x+3 x = 3 > 2, so the proposition holds.
- case 2: $\mathbf{x} < -3$. Then |x+3| = -(x+3), so we have |x+3| x = -x 3 x = -2x 3. Since x < -3, we must have -x > 3, so -2x 3 > 2(3) 3 = 3 > 2. Therefore, the proposition holds.

Since the proposition holds in all cases, it must be true. Hence if $x \in \mathbb{R}$, then |x+3| - x > 2.

Solution 4

Let us show by contradiction that:

If $n^2 + 5$ is odd, then n is even, for every integer n.

Suppose by contradiction, that $n^2 + 5$ is odd and n is also odd. By definition, there exists integers k and ℓ so that, $n^2 + 5 = 2k + 1$ and $n = 2\ell + 1$. Hence, we have

$$2k + 1 = n^{2} + 5$$

= $(2\ell + 1)^{2} + 5$
= $4\ell^{2} + 4\ell + 1 + 5$
= $2(2\ell^{2} + 2\ell + 3)$

Therefore, 2k + 1 is even. This is clearly impossible, and hence we cannot have that $n^2 + 5$ is odd and n is also odd. Thus, if $n^2 + 5$ is odd, we must have n is even

Solution 5

Let us show by induction that:

 $\forall n \in \mathbb{N}, \quad n^3 + 2n \text{ is divisible by } 3$

Let P(n) be the proposition : $n^3 + 2n$ is divisible by 3

- 1. base case: When n = 0, we have $0^3 + 2(0) = 0 + 0 = 0$ and 0 is divisible by 3. Thus, P(0) is correct.
- **2. induction hypothesis :** Let $n \in \mathbb{N}$, Assume that P(n) is correct. That means : $\exists k \in \mathbb{N}$, $n^3 + 2n = 3k$, We will now show that P(n+1) is correct :

Where,

$$(n+1)^{3} + 2(n+1) = n^{3} + 3n^{2} + 3n + 1 + 2n + 2$$
$$= n^{3} + 2n + 3(n^{2} + n + 1)$$
$$= 3k + 3(n^{2} + n + 1)$$
$$= 3(k + n^{2} + n + 1)$$

Let $m = k + n^2 + n + 1$, then $\exists m = k + n^2 + n + 1 \in \mathbb{N}$, $(n + 1)^3 + 2(n + 1) = 3m$. We deduce that $(n + 1)^3 + 2(n + 1)$ is divisible by 3. Thus, P(n + 1) is correct.

3. Conclusion : By mathematical induction, $\forall n \in \mathbb{N}$, $n^3 + 2n$ is divisible by 3.