Correction $\mathbf{n}^{\circ} 1$

Logic and Mathematical Proof

Solution 1I

1/ Using quantifiers, we write the propositions as follows:

1. $\exists k \in \mathbb{N}, 102=3 k$
2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x^{3}=y^{3} \Longrightarrow x+y$
3. $\forall n \in \mathbb{N}, \exists m \in \mathbb{N}, n<m$

2/ The negation of propositions:

1. $\left(\mathbf{P}_{\mathbf{1}}\right)$ is false because $\exists x=-1 \in \mathbb{R},(-1+1)^{2}=0$. Thus $\overline{\mathbf{P}}_{\mathbf{1}}: \exists x \in \mathbb{R},(x+1)^{2} \leqslant 0$
2. $\left(\mathbf{P}_{\mathbf{2}}\right)$ is false and $\overline{\mathbf{P}}_{\mathbf{2}}: \forall x \in \mathbb{R}, x^{2} \neq-1$
3. $\left(\mathbf{P}_{\mathbf{3}}\right)$ is false because $2 x^{2}+3 x=0$ has two solutions $x_{1}, x_{2} \in \mathbb{R}$. Hence $\overline{\mathbf{P}}_{\mathbf{3}}: \exists x \in \mathbb{R}, 2 x^{2}+3 x=0$
4. $\left(\mathbf{P}_{4}\right)$ is false and $\overline{\mathbf{P}}_{4}: \exists(x, y, z) \in \mathbb{R}^{3},(x z=y z) \wedge(x \neq y)$

3/ The contrapositive of the propositions:

1. $(n \neq 2)$ and $(n$ is even $) \Longrightarrow n$ is not prime
2. $\forall n \geqslant 2, n$ is odd, then $\left(n^{2}-1\right)$ is divisible by 8 .

Solution 2I

1• Simplification of propositions :

$$
\begin{array}{rlrl}
\bullet[P \Longrightarrow(Q \Longrightarrow R)] & \Longleftrightarrow[P \Longrightarrow(\bar{Q} \vee R)] & \Longleftrightarrow[(P \wedge Q) \Longrightarrow R] & \Longleftrightarrow \overline{(P \wedge Q)} \vee R \\
& \Longleftrightarrow \bar{P} \vee(\bar{Q} \vee R) & \Longleftrightarrow(\bar{P} \vee \bar{Q}) \vee R
\end{array}
$$

According to the associativity of the connective or (\checkmark), we deduce that the two propositions are equivalent: $[P \Longrightarrow(Q \Longrightarrow R)] \Longleftrightarrow[(P \wedge Q) \Longrightarrow R]$

2• The truth table of $\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$ is

P	Q	\bar{Q}	$P \Longrightarrow Q$	$\overline{P \Longrightarrow Q}$	$P \wedge \bar{Q}$	$\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$
T	T	F	T	F	F	T
F	F	T	T	F	F	T
T	F	T	F	T	T	T
F	T	F	T	F	F	T

The table show that $\overline{P \Longrightarrow Q}$ and $P \wedge \bar{Q}$ have the same truth table. Therefore, the two propositions are equivalent. ie $\overline{(P \Longrightarrow Q)} \Longleftrightarrow(P \wedge \bar{Q})$ is true.

Solution 31

Let us show by exhaustion that:

$$
\text { If } x \text { is a real number, then }|x+3|-x>2
$$

We consider two cases: $x \geqslant-3$ and $x<-3$.
case 1: $\mathbf{x} \geqslant-\mathbf{3}$. Then $|x+3|=x+3$, so we have $|x+3|-x=x+3-x=3>2$, so the proposition holds.
case 2: $\mathbf{x}<-\mathbf{3}$. Then $|x+3|=-(x+3)$, so we have $|x+3|-x=-x-3-x=-2 x-3$. Since $x<-3$, we must have $-x>3$, so $-2 x-3>2(3)-3=3>2$. Therefore, the proposition holds.

Since the proposition holds in all cases, it must be true. Hence if $x \in \mathbb{R}$, then $|x+3|-x>2$.

Solution 4

Let us show by contradiction that:

$$
\text { If } n^{2}+5 \text { is odd, then } n \text { is even, for every integer } n \text {. }
$$

Suppose by contradiction, that $n^{2}+5$ is odd and n is also odd. By definition, there exists integers k and ℓ so that, $n^{2}+5=2 k+1$ and $n=2 \ell+1$. Hence, we have

$$
\begin{aligned}
2 k+1 & =n^{2}+5 \\
& =(2 \ell+1)^{2}+5 \\
& =4 \ell^{2}+4 \ell+1+5 \\
& =2\left(2 \ell^{2}+2 \ell+3\right)
\end{aligned}
$$

Therefore, $2 k+1$ is even. This is clearly impossible, and hence we cannot have that $n^{2}+5$ is odd and n is also odd. Thus, if $n^{2}+5$ is odd, we must have n is even

Solution 51

Let us show by induction that:

$$
\forall n \in \mathbb{N}, \quad n^{3}+2 n \text { is divisible by } 3
$$

Let $P(n)$ be the proposition : $n^{3}+2 n$ is divisible by 3

1. base case: When $n=0$, we have $0^{3}+2(0)=0+0=0$ and 0 is divisible by 3 .

Thus, $P(0)$ is correct.
2. induction hypothesis : Let $n \in \mathbb{N}$, Assume that $P(n)$ is correct. That means : $\exists k \in \mathbb{N}, n^{3}+$ $2 n=3 k$, We will now show that $P(n+1)$ is correct:
Where,

$$
\begin{aligned}
(n+1)^{3}+2(n+1) & =n^{3}+3 n^{2}+3 n+1+2 n+2 \\
& =n^{3}+2 n+3\left(n^{2}+n+1\right) \\
& =3 k+3\left(n^{2}+n+1\right) \\
& =3\left(k+n^{2}+n+1\right)
\end{aligned}
$$

Let $m=k+n^{2}+n+1$, then $\exists m=k+n^{2}+n+1 \in \mathbb{N},(n+1)^{3}+2(n+1)=3 m$.
We deduce that $(n+1)^{3}+2(n+1)$ is divisible by 3 . Thus, $P(n+1)$ is correct.
3. Conclusion : By mathematical induction, $\forall n \in \mathbb{N}, \quad n^{3}+2 n$ is divisible by 3 .

