Coordinate systems

EXERCICE 1: We give the time equations of a point M in the form:

$$\begin{cases} x = 2t + 3 \\ y = 4t + 2 \end{cases}$$

$$\begin{cases} x = t + 1 \\ y = t^2 + 2 \end{cases}$$

$$\begin{cases} x = 2t + 3 \\ y = 4t + 2 \end{cases} \begin{cases} x = t + 1 \\ y = t^2 + 2 \end{cases} \begin{cases} x = 2\cos(t) + 2 \\ y = 2\sin(t) - 1 \end{cases}$$

- Determine for the three cases the equation of the trajectory described by the point M.
- Deduce for each case the components of the velocity and acceleration of the point M.

EXERCICE 2: We consider a particle M moving in a frame of reference $\Re (O, xyz)$ provided with the Cartesian base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$. The coordinates of point M in the frame \Re are given by:

$$x = t+1$$
, $y = t^2+1$ et $z = 0$

- 1. Write the expression for the position vector \overrightarrow{OM}
- 2. Give the equation of the trajectory of M in \Re . Deduce its nature.
- 3. Give the expression of the velocity and acceleration of the particle M.

EXERCICE 3: A particle M describes the plane curve whose equation in the polar basis $(\vec{u}_p, \vec{u}_\theta)$

is :
$$\rho = b (1 + \cos \theta)$$
 , b is a given constant

We consider that the angle θ varies over time according to the time law $\theta = \omega t$ with ω a constant.

- 1. Give the expression of the Cartesian coordinates of the mobile.
- 2. Give in Cartesian coordinates the expression for the velocity of M.
- 3. Give the expression for the velocity and acceleration in polar coordinates.

EXERCICE 4: A material point M identified by its Cartesian coordinates (x, y, z), has a movement described by time equations: $x = R \sin \omega t$, $y = R (1 - \cos \omega t)$, z = kt

With R, ω and k positive constants

- 1. Determine the time equations ($\rho(t)$, $\theta(t)$, z(t)) in cylindrical coordinates.
- 2. Express the velocity and acceleration in the Cartesian and cylindrical base.

We recall:
$$1-cos(\omega t)=2 sin^2(\frac{\omega t}{2})$$
 et $sin(\omega t)=2 sin(\frac{\omega t}{2})cos(\frac{\omega t}{2})$

EXERCICE 5: Knowing that for w and R two positive constants, the velocity of a particle M is

given by:
$$\vec{V} = 4 w R \cos wt \vec{u}_x + 4 w R \sin wt \vec{u}_y + 3 w R \vec{u}_z$$

And that at the initial instant t = 0: x(0) = 0, y(0) = 0 and z(0) = 0

- 1. Give the expression for the position vector \overrightarrow{OM} .
- 2. Give the expression for the acceleration vector as well as its two normal and tangential components.
- 3. What is the radius of curvature of the trajectory at any instant t?