Coordinate systems

EXERCICE 1: We give the time equations of a point M in the form:
$-\left\{\begin{array}{l}x=2 t+3 \\ y=4 t+2\end{array} \quad-\left\{\begin{array}{l}x=t+1 \\ y=t^{2}+2\end{array} \quad-\left\{\begin{array}{l}x=2 \cos (t)+2 \\ y=2 \sin (t)-1\end{array}\right.\right.\right.$

- Determine for the three cases the equation of the trajectory described by the point M.
- Deduce for each case the components of the velocity and acceleration of the point M.

EXERCICE 2: We consider a particle M moving in a frame of reference $\mathfrak{R}(0, x y z)$ provided with the Cartesian base ($\vec{u}_{x}, \vec{u}_{y}, \vec{u}_{z}$). The coordinates of point M in the frame \Re are given by:

$$
x=t+1 \quad, y=t^{2}+1 \quad \text { et } \quad z=0
$$

1. Write the expression for the position vector $\overrightarrow{O M}$
2. Give the equation of the trajectory of M in \mathfrak{R}. Deduce its nature.
3. Give the expression of the velocity and acceleration of the particle M.

EXERCICE 3 : A particle M describes the plane curve whose equation in the polar basis ($\vec{u}_{\rho}, \vec{u}_{\theta}$)

We consider that the angle θ varies over time according to the time law $\theta=\omega t$ with ω a constant.

1. Give the expression of the Cartesian coordinates of the mobile.
2. Give in Cartesian coordinates the expression for the velocity of M.
3. Give the expression for the velocity and acceleration in polar coordinates.

EXERCICE 4 : A material point M identified by its Cartesian coordinates (x, y, z), has a movement described by time equations:

$$
x=R \sin \omega t, y=R(1-\cos \omega t), \quad z=k t
$$

With R, ω and k positive constants

1. Determine the time equations $(\rho(t), \theta(t), z(t))$ in cylindrical coordinates.
2. Express the velocity and acceleration in the Cartesian and cylindrical base.

We recall: $\quad \mathbf{1}-\boldsymbol{\operatorname { c o s }}(\boldsymbol{\omega} \boldsymbol{t})=2 \boldsymbol{\operatorname { s i n }}^{2}\left(\frac{\omega t}{2}\right) \quad$ et $\quad \boldsymbol{\operatorname { s i n }}(\boldsymbol{\omega} \boldsymbol{t})=\mathbf{2} \boldsymbol{\operatorname { s i n }}\left(\frac{\omega t}{2}\right) \boldsymbol{\operatorname { c o s }}\left(\frac{\omega t}{2}\right)$
EXERCICE 5: Knowing that for w and R two positive constants, the velocity of a particle M is given by: $\quad \overrightarrow{\boldsymbol{v}}=4 \boldsymbol{w} \boldsymbol{R} \cos w \boldsymbol{t} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{x}}+4 \boldsymbol{w} \boldsymbol{R} \sin w \boldsymbol{t} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{y}}+3 \boldsymbol{w} \boldsymbol{R} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{z}}$
And that at the initial instant $\mathrm{t}=0: \quad \mathrm{x}(0)=0, \mathrm{y}(0)=0$ and $\mathrm{z}(0)=0$

1. Give the expression for the position vector $\overrightarrow{O M}$.
2. Give the expression for the acceleration vector as well as its two normal and tangential components.
3. What is the radius of curvature of the trajectory at any instant t ?
