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Above, in blue, we see a uniformly charged square sheet (plate). At a point P on its axis (of symmetry),
z-coordinate z, it creates the field E⃗ whose expression is written as shown on its right. Further to the right,
in green, we have a conductor at equilibrium ; its excess charges are necessarily distributed over its outer
surface. A field line emerging from the conductor cannot return to the conductor.
As for the pictures displayed below, the left shows the symbol used to represent a capacitor in an electrical
diagram, the middle picture shows different types of commercially available capacitors, and the one on the
right is a typical thunderstorm flash resulting from an electrostatic discharge between the clouds and the
ground.
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Chapitre 1

Conductors in electrostatic equilibrium

1.1 Definition of an electrostatic equilibrium
We mentioned in Chapter 1 that a conductor is a body containing free electrons that move easily. If excess
charge is brought to a conductor, it will interact with the charges (protons and electrons) in the conductor.
This electrostatic interaction results in a rapid redistribution of electrons within the conductor, leading to
a state where the charges stop moving and enter a state of equilibrium, or electrostatic equilibrium. An
electrostatic equilibrium gives rise to a number of properties that we develop below.

1) At electrostatic equilibrium, the fiel is zero (E⃗ = 0⃗) at any point inside the conductor.

Knowing that charges are in equilibrium (F⃗ = qE⃗ = 0⃗) inside the conductor, we deduce that E⃗ = 0⃗. Notice :
If the conductor is placed in an external field, to reach a state of equilibrium the charges inside rearrange
(redistribute) themselves to create a field that exactly compensates for the external field at every point inside
the conductor.

2) A conductor in electrostatic equilibrium constitutes an equipotential volume.

Since the field derives from a potential (E⃗ = −∇⃗V ), a zero field inside the conductor implies that the
associated potential is constant at all points inside the conductor : (V = constant).

3) Field lines running from or to the surface of a conductor in equilibrium are perpendicular to the
surface.

According to the above, the field inside a conductor (charged or not) is zero. But this is not necessarily the
case on the outside, especially if the conductor is charged. Since the potential is continuous across a charged
surface, the potential at the surface will have the same value as that of an interior point infinitely close to
the surface. We deduce that

4) the surface of the conductor has the same potential as the conductor, and is therefore an
equipotential surface.

It follows that

5) It is impossible for a field line that emerges from a conductor to return to the conductor.
Conversely, it is impossible for a field line that arrives at a conductor to be part of that conductor.

To demonstrate this, consider two points A and B on the surface of a conductor in electrostatic equilibrium,
and assume that a field line runs from A to B. Since the surface is equipotential, we must have :

VA = VB =⇒ VA − VB = 0. (1.1)
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

But, using the equation dV = −E⃗ · d⃗ℓ (see section ??, chapter 2), we must have at the same time :
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Figure 1.1 – The circulation of E⃗ from A to B is impossible along path 2 if A and B are two points on the surface of a
conductor in electrostatic equilibrium.

ˆ VB

VA

dV = −
ˆ B

A
E⃗ · d⃗ℓ =⇒ VA − VB =

ˆ B

A
E⃗ · d⃗ℓ. (1.2)

Since E⃗ is conservative, the integral
´ B

A E⃗ · d⃗ℓ does not depend on the path taken from A to B, especially
if d⃗ℓ is taken on a field line. But we know that at any point on a field line, E⃗ is tangent to the line, i.e.,
parallel to the element d⃗ℓ surrounding the point under consideration. Therefore, the scalar product E⃗ · d⃗ℓ is
necessarily ̸= 0 (> 0 if we choose d⃗ℓ in the same direction as E⃗), so we have :

ˆ B

A
E⃗ · d⃗ℓ ̸= 0. (1.3)

Equality (1.1) and inequality (1.3) show us that equality VA − VB =
´ B

A ·⃗d⃗ℓ cannot take place for points A
and B on the surface of a conductor in electrostatic equilibrium. In other words,

6) Excess charges carried by a conductor in equilibrium are necessarily distributed over the surface
of the conductor.
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Figure 1.2 – Excess charges are distri-
buted over the surface.

Consider a closed surface inside the conductor. According to property
1, since the closed surface is inside the conductor, the field is zero at all
points on this surface. Gauss’s theorem implies that the total charge
contained in this surface is zero (there are as many + charges as −
charges). As shown in figure 1.2(see dotted lines), we can choose this
closedsurface so that it is just inside the conductor. Since vecE = vec0
at all points on this surface (property 1), we conclude that there is
no net charge inside the conductor. If a conductor in a conductor in
equilibrium carries excess charges, these are necessarily distributed
over the surface of the conductor.
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

1.1.1 Case of a hollow conductor
1- Figure 1.3 shows an empty cavity dug into a conductor. According to the above (property 2), at equilibrium
all points inside the conductor are at the same potential. For points A and B on the Figure 1.3, we then
have : VA = VB. Knowing that VA − VB =

´ B
A E⃗ · d⃗ℓ, it follows

´ B
A E⃗ · d⃗ℓ = 0. Since the integral does not

depend on the path taken to get from A to B, it must give 0 for any path, especially for a path through the
cavity (Figure 1.3). We conclude that

7) The field inside the cavity is also zero, which implies that the potential inside the cavity is
constant and equal by continuity to the potential of the conductor ; the points of the conductor
and the cavity are at the same potential.

intS
Sext

A

B

S

Figure 1.3 – Uncompensated charges
are distributed over the external surface.

2- If we consider a closed surface S as indicated by the dotted line in
figure 1.3, the flow through S is

Φ =
‹

S
E⃗ · d⃗S

where the integral is performed on the closed surface S. Since E⃗ = 0⃗,
it follows that the flux is zero and that, after Gauss’s theorem, the
surface S contains no net charge. Knowing that there are no charges
in the mass of the conductor or in the cavity, we conclude that there
are none on the cavity surface Sint either.

8) At equilibrium, excess charges in a hollow conductor can only be placed on its outer surface.

1.2 Field created by a conductor in equilibrium in its immediate vicinity :
Coulomb’s theorem

Let’s consider a point M outside and infinitely close to the surface S of a conductor and let dSext be a surface
element surrounding M and parallel to S. The field E⃗ at M is normal to S.

M
E

dS

S

S
int

Slat

ext

Figure 1.4 – Champ au voisinage d’un
conducteur.

Now let’s add a surface Sint inside the conductor and a lateral surface
Slat to form a closed surface. In Figure 1.4, we’ve constructed a cylin-
drical closed surface, but the surface doesn’t need to be cylindrical (we
can choose a non-circular cross-section). Let’s write the flow through
the closed surface. A priori, there are three contributions.

1) The flux through Sint is zero because the field there is zero.

2) The flux through Slat is zero because the field is zero in its inner part
(that is inside the conductor) and because the field is perpendicular
to it (E⃗ perpendicular to ⃗dSlat) in its outer part.

3) The flux through Sext is dϕ = E⃗ · ⃗dSext = EdSext because E⃗ ∥ ⃗dSext.
If σ is the surface charge density on the conductor surface S, the charge
inside the closed surface is σdSext and Gauss’s theorem gives :

EdSext = σdSext
ϵ0

, (1.4)
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

or, after simplifying by dSext :
E = σ

ϵ0
. (1.5)

The result (1.5) is known as Coulomb’s theorem, which states that the electric field in the immediate vicinity
of a conductor in equilibrium is perpendicular to the surface of the conductor. If vecn is a unit vector directed
outwards normally to S, we have : E⃗ = σ/ϵ0 n⃗.

Depending on whether the density is positive or negative, E⃗ is directed respectively to the outside or the
inside of the conductor. When the field strength in the vicinity of a conductor exceeds a certain value, a spark
is observed : the medium surrounding the conductor becomes electrically conductive. This limiting field, of
the order of 3 × 106 V/ m, is called disruptive field. If the conductor is in air, air molecules ionize when the
field reaches or exceeds the disruptive field. In other words, air becomes conductive and a spark is observed.
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

1.3 Capacitor and capacitance
A capacitor is a device used to store electrical charge and electrical energy. A capacitor is any set of two
conductors, one of which carries the positive charge Q, known as the capacitor charge, and the other the
charge −Q, and where the facing surfaces of the two conductors are close to each other and separated by an
insulator (vacuum, air, paper, etc.). The two conductors are called capacitor plates.
If V+ and V− are their respective potentials, we define the capacitance of the capacitor as :

C = Q

V+ − V−
. (1.6)

Capacitance is a positive quantity. It gives the amount of charge that a capacitor can store per unit of
potential difference between its plates. In practice, we calculate the difference in potential between plates A
and B without worrying about their sign. Then we take the absolute value V = |VB − VA| ; the equation
(1.6) then becomes :

C = Q

V
. (1.7)

To give equal and opposite charges to the two plates of a capacitor, we connect them for a short time to
the terminals of a battery, Figure 1.5 a. A battery is a device with the property of maintaining a constant
potential difference between its terminals. At equilibrium, the potential of each armature is the same as that
of the terminal to which it is connected. The potential difference between the plates is therefore the same as
that between the battery terminals. When the battery is disconnected, the charges remain on the plates due
to their mutual attraction. Figure 1.5 b shows the electrical circuit diagram associated with Figure 1.5 a.
Cells and batteries 1 (called generators) are symbolized by a large bar representing the positive terminal
and a smaller, thicker bar representing the negative terminal. Figures 1.6 and 1.7 represent respectively the
symbol of a capacitor in an electric circuit and an example of a capacitor sold on the market.

+

(b)

Q+Q

+

(a) 

Batterie

+Q Q

générateur (secteur, pile ou

batterie)

circuit électrique associé

Figure 1.5 – Charging the plates with a battery.

1.4 Calculating the capacitance of typical capacitors
1.4.0.1 Parallel-plate capacitor
First, let’s recall that the field created by an infinite plane charged with a uniform charge density σ is written
as E⃗ = (σ/2ϵ0) n⃗ where n⃗ is, by definition, a unit vector normal to the plane and directed away from the

1. A cell is a single device that converts chemical energy into electrical energy, while a battery is a collection of cells that
provide a steady source of electrical energy.
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Figure 1.6 – Capacitor symbol in a stan-
dard electrical circuit diagram.

Figure 1.7 – Example of a capacitor sold
on the market.

plane, see Chapter 2.
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vecteur unitaire normal aux plans et orienté de     vers        i=
iÀ ne pas confondre    avec le vecteur n introduit dans le texte qui 

σ εE=   / 0 i

est par définition orienté vers l’extérieur du plan.

Figure 1.8 – Capacitance of a parallel-plate capacitor.

Let’s consider two parallel infinite planes separated by a distance e, one charged with a positive density σ,
the other with −σ, σ = constant. In Figure 1.8, the fields are expressed as a function of i⃗, where i⃗ is a unit
vector normal to the plane and oriented from σ to −σ. Note that i⃗ does not have the same definition as n⃗
(recall that n⃗ comes from the expression of the fielf created by a plane E⃗ = (σ/ϵ0) n⃗ where n⃗ is a unit vector
normal to the plane and directed outwards).
The principle of superposition (sum of the fields created separately by the two planes) gives E⃗ = 0⃗ in the
region outside the two planes and E⃗ = (σ/ϵ0) i⃗ between the two planes. To calculate the potential difference
between the two planes (the two armatures), we use the relation dV = −E⃗ · d⃗r = −(σ/ϵ0)⃗i · d⃗r. Since
i⃗ · d⃗r = i⃗ · (dx⃗i + dyj⃗ + dzk⃗) = dx, it comes :

ˆ V−σ

Vσ

= −
ˆ e

0
(σ/ϵ0) dx, soit Vσ − V−σ = σe

ϵ0
. (1.8)

In reality, a planar capacitor is made up of two parallel plates of finite dimensions. They therefore have a
finite area A and respectively carry the charges σA = Q and −σA = −Q.

Edge effects mean that the field created by these two plates is not strictly constant between them, and is
not strictly zero on the outside. But when the distance e between the plates is small compared to their
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

dimensions, we can, with a good approximation, calculate the field as if the plates were of infinite dimensions.
The previous results can then be applied. As a function of Q, the equation (1.8) is written as :

Vσ − V−σ = Q
e

A ϵ0
. (1.9)

The capacitance C of a parallel-plate capacitor is then

C = Q

Vσ − V−σ
= A ϵ0

e
. (1.10)

1.4.1 Spherical capacitor
Let’s consider a capacitor made up of two concentric spherical plates 1 and 2, with radii R1 and R2 respectively
and separated by a vacuum (R1 < R2). The armatures carry the charges Q1 = +Q and Q2 = −Q. The
electric field is radial due to symmetry.

+
1

Q

Q

2

1

R

R2

Figure 1.9 – Capacitance of a spherical
capacitor

According to Gauss’s theorem, the field at a point between the plates
at distance r (R1 < r < R2) from the center is as follows :

E⃗ = +Q

4πϵ0r2 u⃗r, (1.11)

where u⃗r is a unit vector directed radially outwards. The potential
difference between the plates is given by the flow of −E⃗ between the
two pltes.
If we choose a path running from plate 1 (potential V+) to plate 2
(potential V−), we have :ˆ V−

V+

dV =
ˆ R2

R1

−E⃗ · d⃗ℓ, (1.12)

or,

V− − V+ = −
ˆ R2

R1

+Q

4πϵ0r2 u⃗r · d⃗ℓ. (1.13)

Vector u⃗r being unitary, u⃗r · d⃗ℓ gives the projection of d⃗ℓ on u⃗r. Since u⃗r is directed along the radius vector
r⃗, it’s natural to write u⃗r · d⃗ℓ = dr. Equation (1.13) then becomes :

V− − V+ = −
ˆ R2

R1

+Q

4πϵ0r2 dr = − Q

4πϵ0

[−1
r

]R2

R1

= Q

4πϵ0

( 1
R1

− 1
R2

)
. (1.14)

We take out the capacity (see definition of equation (??)),

C = Q

V+ − V−
= 4πϵ0

R1R2
R2 − R1

. (1.15)

Remark 1 : If e denotes the separation between the two spheres, we have : R2 − R1 = e. If this separation
is small, the radii of the spheres are practically equal and then :

C = 4πϵ0
R2

1
e

= ϵ0 S

e
, (1.16)

where S is the surface area of the spheres. The result is the same as for the planar (parallel-plate) capacitor.
When the spheres are only slightly separated, the spherical capacitor has the same capacitance as a planar
capacitor whose plate area is equal to that of the spheres.

Remark 2 : As R2 → ∞, we get from equation (1.15), C = 4πϵ0R1 A single isolated sphere is therefore
equivalent to a spherical capacitor whose outer shell has an infinitely large radius.

1.4.1.1 Cylindrical capacitor

8
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R

R

Q
Q

1

2
1

2

Figure 1.10 – Capacitance of a cylin-
drical capacitor.

A cylindrical capacitor consists of two concentric, conducting cylinders
of length ℓ very large compared to the radii. The inner cylinder of
radius R1 carries the charge Q1 = +Q. The outer cylinder is a shell
of inner radius R2 and carries the charge Q2 = −Q. Let’s calculate its
capacitance. The electric field is radial here also. At a point between
the plates located at distance r from the axis, Gauss’s theorem gives :

E = Q

2πϵ0 rℓ
. (1.17)

As in the case of the spherical capacitor, the potential difference
between the plates is as follows :

V2 − V1 = −
ˆ R2

R1

+Q

2πϵ0rℓ
dr = − Q

2πϵ0ℓ
lnR2

R1
. (1.18)

We get
C = Q

V1 − V2
= 2πϵ0ℓ

ln (R2/R1) . (1.19)

Remark : If e denotes the separation between the two cylinders, we have R2 = R1 + e = R1(1 + e/R1),
R2/R1 = 1 + e/R1 et ln (R2/R1) = ln(1 + e/R1). When e ≪ R1 (cylinders slightly separated), we get :
e/R1 ≪ 1 and therefore ln(1 + e/R1) ≈ e/R1. The capacitance of a cylindrical capacitor takes then the
form :

C = 2πϵ0ℓ

e/R1
= ϵ02πR1ℓ

e
= ϵ0 S

e
, (1.20)

where S is the lateral surface area of the cylinders. Here again, we find the result of the parallel-plate
capacitor. When the cylinders are slightly separated, the cylindrical capacitor has the same capacity as a
parallel-plate capacitor whose plate area is equal to that of the lateral surface of the cylinders.

1.5 Combination of capacitors
A capacitor is characterized not only by its capacitance, but also by the maximum potential difference that
can be applied to it without damaging it, i.e. without causing the insulation breakdown between the plates,
in which case the capacitor is no longer usable.
We can combine a set of several capacitors in various ways and determine the equivalent capacitance of
the combination, i.e. the capacitance of the single capacitor equivalent to the set. The two most common
combinations are described below : parallel combination and series combination.

1.5.1 The parallel combination of capacitors
Consider n capacitors of capacitance Ci, (i = 1,...,n). A parallel combination is obtained by grouping them
as shown in Figure a. The left-hand ends of all the capacitors are connected to point the + terminal of a
battery (point A) and the right-hand ends are connected to the − terminal (point B). As you can see, all
capacitors are subject to the same potential difference V = VA − VB.
As a result of this potential difference, capacitor C1 carries the charge Q1, capacitor C2 carries the charge
Q2, capacitor C3 carries the charge Q3, and so on ...
These charges are given by : Q1 = C1V, Q2 = C2V, Q3 = C3V, ..., Qn = CnV. The total electric charge of
the combination is : Q =

∑
i Qi = (C1 + C2 + ... + Cn)V. We deduce the capacitance of the combination :

C = Q

V
→ C = C1 + C2 + ... + Cn. (1.21)

9
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+

V

1 Q1Q Q2

b)

Q
2

QnQn

A0 A2A1 AAn−1 n

nC2CC1

C1

2C
Q

1

Cn

2Q2Q

1Q

BA

+

V a)

Figure 1.11 – Combination of capacitors a) parallel, (b) series.

A parallel combination of capacitors with capacitances C1, C2, C3, . . .is equivalent to a single capacitor with
capacitance C equal to the sum of the individual capacitances. We deduce that the capacitance C of the
group is always greater than the largest individual capacitance.
If you need a higher capacitance than those available, you need to combine them in parallel.
Example : Find the equivalent capacitance of the combination below :

1.5.2 The series combination of capacitors
The combination of n capacitors in series is shown in Figure b. The right end of one capacitor is connected
to the left end of the next one. The whole system is put under the potential difference V . This potential
difference will generate on each capacitor the charge Q1 = C1 V1, Q2 = C2 V2, . . .
If the capacitors are initially neutral, the framed piece (the piece around A1) will remain globally neutral
even after the potential difference has been applied. It follows that

Q2 + (−Q1) = 0 =⇒ Q1 = Q2. (1.22)

This result is obviously valid between capacitors 2 and 3, between 3 and 4, and so on, leading to :

Q1 = Q2 = Q3 = . . . = Qn. (1.23)

When initially neutral capacitors are combined in a series, they all acquire the same charge. Calling this
charge Q and using the relation Qi = CiVi, i = 1,2, . . ., the potential difference at the ends of each capacitor
is :

V1 = Q/C1, V2 = Q/C2, . . . , Vn = Q/Cn.

The total potential difference is :

V = V1 + V2 + . . . + Vn = Q

( 1
C1

+ 1
C2

+ ... + 1
Cn

)
.

We deduce the capacitance

C = Q

V
→ C =

( 1
C1

+ 1
C2

+ . . . + 1
Cn

)−1
, ou bien 1

C
= 1

C1
+ 1

C2
+ . . . + 1

Cn
. (1.24)

The reciprocal of the capacitance C of a set of capacitors combined in series is equal to the sum of the
reciprocals of the individual capacitances. Such a set is equivalent to a single capacitor of capacitance C. The
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

capacitance C of the series combination is always smaller than to the smallest of the individual capacitances.

The same circuit may have a mixed combination, i.e. series and parallel. To obtain the equivalent capacitance
of the mixed arrangement, we first process the single identifiable arrangements within the mixed arrangement,
then replace each arrangement with its equivalent capacitance, and finally calculate the total equivalent
capacitance of the initial combination.

But more complex set-ups may be encountered where the capacitor combination is neither in parallel nor in
series. In this case, to find the equivalent capacitance, we need to look for the relationship Q = CacuteequivV
linking the voltage V across the grouping to the total charge Q of the grouping.

1.6 Electrostatic potential energy stored in a capacitor
Charging a capacitor involves transferring charges from the plate with the lower potential to the plate with
the higher potential. More concretely, when a neutral capacitor is connected to the terminals of a battery, the
battery transfers electrons from the plate connected to the + terminal of the battery to the plate connected
to the − terminal. The plate connected to the + terminal becomes positively charged because it lacks
electrons, and the plate connected to the − terminal, which has an excess of electrons, becomes negatively
charged.The charging process therefore requires the expenditure of energy. At a certain point in the process,
the charge transferred is q, (+q on the + plate and −q on the − plate) and so the potential difference across
the capacitor is : v = q/C, C being the capacitance of the capacitor. The transfer of an additional charge dq
requires work :

dW = dq v = q

C
dq. (1.25)

The total work required to increase the charge transferred from 0 to Q 2 is :

W =
ˆ Q

0

q

C
dq = 1

2

[
q2

C

]Q

0
= Q2

2C
. (1.26)

This work is stored as electrical potential energy Uel in the capacitor, so :

Uel = Q2

2C
. (1.27)

At the end of the process, the potential difference between the plates is V = Q/C and the previous result
can also be written as :

Uel = Q2

2C
= 1

2CV 2 = 1
2QV. (1.28)

Energy density Sometimes, energy is considered to be stored in the electric field between the plates of
the capacitor. In the particular case of the parallel-plate capacitor, the volume between the plates is A e.
The electrical potential energy per unit volume, called the energy density and denoted u, is written as :

u = Uel/(unité de volume) = 1
2CV 2/(A e). (1.29)

Since the field between the plates is constant, we have : V = Ee, and hence

u = 1
2CE2 e2/(A e) = 1

2CE2 e/A. (1.30)

2. The maximum charge that can be transferred is determined by the product of the battery’s electromotive force Eem and
the capacitor’s capacitance C : Qmax = CE.
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Knowing that for a parallel-plate capacitor (see equation (1.10)) C = ϵ0A/e, it follows :

u = 1
2

ϵ0A

e

E2e

A
= 1

2ϵ0 E2. (1.31)

The energy density is finally written as :
u = 1

2ϵ0 E2. (1.32)

The expression (1.32) does not refer to the capacitor, it only depends on the field E. Although it has been
established for the particular case of the parallel-plate capacitor, it is valid at any point in space where there
is an electric field E⃗.

1.7 Questions
A conducting sphere of radius 0.5 m is charged with billions of billions of electrons, and electrostatic
equilibrium is established. The electric field at the surface of the sphere is 550 V/ m.

1) How are the excess electrons distributed on the sphere ? 2) Consider a test charge moving between two
points inside the sphere. What is the work done on the charge by the electric field ?

Choose one answer :
□ A- 1) The charge is uniformly distributed over the surface of the sphere.

2) The work done by the electric field is 0 J.
□ B- 1) The charge resides nowhere on the surface of the sphere.

2) The work done by the electric field is 1 J.
□ C- 1) The charge resides inside the sphere.

2) The work done by the electric field is 8 J.
□ D- 1) The charge resides somewhere on the surface of the sphere.

2) The work done by the electric field is 5 J.
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