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Above, in blue, we see a uniformly charged square sheet (plate). At a pointP on its axis (of symmetry),
z-coordinate z, it creates the �eld ~E whose expression is written as shown on its right. Further to the right,
in green, we have a conductor at equilibrium ; its excess charges are necessarily distributed over its outer
surface. A �eld line emerging from the conductor cannot return to the conductor.
As for the pictures displayed below, the left shows the symbol used to represent a capacitor in an electrical
diagram, the middle picture shows di�erent types of commercially available capacitors, and the one on the
right is a typical thunderstorm �ash resulting from an electrostatic discharge between the clouds and the
ground.
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Chapitre 1

Conductors in electrostatic equilibrium

1.1 De�nition of an electrostatic equilibrium

We mentioned in Chapter 1 that a conductor is a body containing free electrons that move easily. If excess
charge is brought to a conductor, it will interact with the charges (protons and electrons) in the conductor.
This electrostatic interaction results in a rapid redistribution of electrons within the conductor, leading to
a state where the charges stop moving and enter a state of equilibrium, orelectrostatic equilibrium. An
electrostatic equilibrium gives rise to a number of properties that we develop below.

1) At electrostatic equilibrium, the �el is zero ( ~E = ~0) at any point inside the conductor.

Knowing that charges are in equilibrium ( ~F = q~E = ~0) inside the conductor, we deduce that ~E = ~0. Notice :
If the conductor is placed in an external �eld, to reach a state of equilibrium the charges inside rearrange
(redistribute) themselves to create a �eld that exactly compensates for the external �eld at every point inside
the conductor.

2) A conductor in electrostatic equilibrium constitutes an equipotential volume.

Since the �eld derives from a potential (~E = � ~r V ), a zero �eld inside the conductor implies that the
associated potential is constant at all points inside the conductor : (V = constant ).

3) Field lines running from or to the surface of a conductor in equilibrium are perpendicular to the
surface.

According to the above, the �eld inside a conductor (charged or not) is zero. But this is not necessarily the
case on the outside, especially if the conductor is charged. Since the potential is continuous across a charged
surface, the potential at the surface will have the same value as that of an interior point in�nitely close to
the surface. We deduce that

4) the surface of the conductor has the same potential as the conductor, and is therefore an
equipotential surface.

It follows that

5) It is impossible for a �eld line that emerges from a conductor to return to the conductor.
Conversely, it is impossible for a �eld line that arrives at a conductor to be part of that conductor.

To demonstrate this, consider two pointsA and B on the surface of a conductor in electrostatic equilibrium,
and assume that a �eld line runs from A to B . Since the surface is equipotential, we must have :

VA = VB =) VA � VB = 0 : (1.1)
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

But, using the equation dV = � ~E � ~d` (see section??, chapter 2), we must have at the same time :
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Figure 1.1 � The circulation of ~E from A to B is impossible along path 2 if A and B are two points on the surface of a
conductor in electrostatic equilibrium.

� VB

VA

dV = �
� B

A

~E � ~d` =) VA � VB =
� B

A

~E � ~d`: (1.2)

Since ~E is conservative, the integral
� B

A
~E � ~d` does not depend on the path taken fromA to B , especially

if ~d` is taken on a �eld line. But we know that at any point on a �eld line, ~E is tangent to the line, i.e.,
parallel to the element ~d` surrounding the point under consideration. Therefore, the scalar product~E � ~d` is
necessarily6= 0 (> 0 if we choose~d` in the same direction as ~E), so we have :

� B

A

~E � ~d` 6= 0 : (1.3)

Equality (1.1) and inequality (1.3) show us that equality VA � VB =
� B

A ~� ~d` cannot take place for pointsA
and B on the surface of a conductor in electrostatic equilibrium. In other words,

6) Excess charges carried by a conductor in equilibrium are necessarily distributed over the surface
of the conductor.
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Figure 1.2 � Excess charges are distri-
buted over the surface.

Consider a closed surface inside the conductor. According to property
1, since the closed surface is inside the conductor, the �eld is zero at all
points on this surface. Gauss's theorem implies that the total charge
contained in this surface is zero (there are as many+ charges as�
charges). As shown in �gure 1.2(see dotted lines), we can choose this
closedsurface so that it is just inside the conductor. SincevecE = vec0
at all points on this surface (property 1), we conclude that there is
no net charge inside the conductor. If a conductor in a conductor in
equilibrium carries excess charges, these are necessarily distributed
over the surface of the conductor.
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

1.1.1 Case of a hollow conductor

1- Figure 1.3 shows an empty cavity dug into a conductor. According to the above (property 2), at equilibrium
all points inside the conductor are at the same potential. For pointsA and B on the Figure 1.3, we then
have : VA = VB : Knowing that VA � VB =

� B
A

~E � ~d`; it follows
� B

A
~E � ~d` = 0 . Since the integral does not

depend on the path taken to get fromA to B , it must give 0 for any path, especially for a path through the
cavity (Figure 1.3). We conclude that

7) The �eld inside the cavity is also zero, which implies that the potential inside the cavity is
constant and equal by continuity to the potential of the conductor ; the points of the conductor
and the cavity are at the same potential.

intS
Sext

A

B

S

Figure 1.3 � Uncompensated charges
are distributed over the external surface.

2- If we consider a closed surfaceS as indicated by the dotted line in
�gure 1.3, the �ow through S is

Φ =
�

S

~E � ~dS

where the integral is performed on the closed surfaceS. Since ~E = ~0,
it follows that the �ux is zero and that, after Gauss's theorem, the
surfaceS contains no net charge. Knowing that there are no charges
in the mass of the conductor or in the cavity, we conclude that there
are none on the cavity surfaceSint either.

8) At equilibrium, excess charges in a hollow conductor can only be placed on its outer surface.

1.2 Field created by a conductor in equilibrium in its immediate vicinity :
Coulomb's theorem

Let's consider a point M outside and in�nitely close to the surface S of a conductor and let dSext be a surface
element surroundingM and parallel to S. The �eld ~E at M is normal to S.

M
E

dS

S

S
int

Slat

ext

Figure 1.4 � Champ au voisinage d'un
conducteur.

Now let's add a surfaceSint inside the conductor and a lateral surface
Slat to form a closed surface. In Figure 1.4, we've constructed a cylin-
drical closed surface, but the surface doesn't need to be cylindrical (we
can choose a non-circular cross-section). Let's write the �ow through
the closed surface. A priori, there are three contributions.

1) The �ux through Sint is zero because the �eld there is zero.

2) The �ux through Slat is zero because the �eld is zero in its inner part
(that is inside the conductor) and because the �eld is perpendicular
to it ( ~E perpendicular to ~dSlat ) in its outer part.

3) The �ux through Sext is d� = ~E � ~dSext = EdSext because~E k ~dSext .
If � is the surface charge density on the conductor surfaceS, the charge
inside the closed surface is�dS ext and Gauss's theorem gives :

EdSext =
�dS ext

� 0
; (1.4)
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

or, after simplifying by dSext :
E =

�
� 0

: (1.5)

The result (1.5) is known as Coulomb's theorem, which states thatthe electric �eld in the immediate vicinity
of a conductor in equilibrium is perpendicular to the surface of the conductor. If vecn is a unit vector directed
outwards normally to S, we have : ~E = �=� 0 ~n.

Depending on whether the density is positive or negative,~E is directed respectively to the outside or the
inside of the conductor. When the �eld strength in the vicinity of a conductor exceeds a certain value, a spark
is observed : the medium surrounding the conductor becomes electrically conductive. This limiting �eld, of
the order of 3 � 106 V=m, is called disruptive �eld . If the conductor is in air, air molecules ionize when the
�eld reaches or exceeds the disruptive �eld. In other words, air becomes conductive and a spark is observed.
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

1.3 Capacitor and capacitance

A capacitor is a device used to store electrical charge and electrical energy. A capacitor is any set of two
conductors, one of which carries the positive chargeQ, known as the capacitor charge, and the other the
charge� Q, and where the facing surfaces of the two conductors are close to each other and separated by an
insulator (vacuum, air, paper, etc.). The two conductors are called capacitor plates.
If V+ and V− are their respective potentials, we de�ne the capacitance of the capacitor as :

C =
Q

V+ � V−
: (1.6)

Capacitance is apositive quantity. It gives the amount of charge that a capacitor can store per unit of
potential di�erence between its plates. In practice, we calculate the di�erence in potential between platesA
and B without worrying about their sign. Then we take the absolute value V = jVB � VA j ; the equation
(1.6) then becomes :

C =
Q
V

: (1.7)

To give equal and opposite charges to the two plates of a capacitor, we connect them for a short time to
the terminals of a battery, Figure 1.5 a. A battery is a device with the property of maintaining a constant
potential di�erence between its terminals. At equilibrium, the potential of each armature is the same as that
of the terminal to which it is connected. The potential di�erence between the plates is therefore the same as
that between the battery terminals. When the battery is disconnected, the charges remain on the plates due
to their mutual attraction. Figure 1.5 b shows the electrical circuit diagram associated with Figure 1.5 a.
Cells and batteries1 (called generators) are symbolized by a large bar representing the positive terminal
and a smaller, thicker bar representing the negative terminal. Figures 1.6 and 1.7 represent respectively the
symbol of a capacitor in an electric circuit and an example of a capacitor sold on the market.

+

(b)

Q+Q

+

(a) 

Batterie

+Q Q

générateur (secteur, pile ou

batterie)

circuit électrique associé

Figure 1.5 � Charging the plates with a battery.

1.4 Calculating the capacitance of typical capacitors

1.4.0.1 Parallel-plate capacitor

First, let's recall that the �eld created by an in�nite plane charged with a uniform charge density � is written
as ~E = ( �= 2� 0) ~n where ~n is, by de�nition, a unit vector normal to the plane and directed away from the

1. A cell is a single device that converts chemical energy into electrical energy, while a battery is a collection of cells that
provide a steady source of electrical energy.
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

Figure 1.6 � Capacitor symbol in a stan-
dard electrical circuit diagram.

Figure 1.7 � Example of a capacitor sold
on the market.

plane, see Chapter 2.
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Figure 1.8 � Capacitance of a parallel-plate capacitor.

Let's consider two parallel in�nite planes separated by a distancee, one charged with a positive density� ,
the other with � � , � = constant. In Figure 1.8, the �elds are expressed as a function of~i , where~i is a unit
vector normal to the plane and oriented from � to � � . Note that ~i does not have the same de�nition as~n
(recall that ~n comes from the expression of the �elf created by a plane~E = ( �=� 0) ~n where ~n is a unit vector
normal to the plane and directed outwards).
The principle of superposition (sum of the �elds created separately by the two planes) gives~E = ~0 in the
region outside the two planes and~E = ( �=� 0)~i between the two planes. To calculate the potential di�erence
between the two planes (the two armatures), we use the relationdV = � ~E � ~dr = � (�=� 0)~i � ~dr . Since
~i � ~dr = ~i � (dx~i + dy~j + dz~k) = dx, it comes :

� V� �

V�

= �
� e

0
(�=� 0) dx; soit V� � V− � =

�e
� 0

: (1.8)

In reality, a planar capacitor is made up of two parallel plates of �nite dimensions. They therefore have a
�nite area A and respectively carry the charges�A = Q and � �A = � Q.

Edge e�ects mean that the �eld created by these two plates is not strictly constant between them, and is
not strictly zero on the outside. But when the distance e between the plates is small compared to their
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

dimensions, we can, with a good approximation, calculate the �eld as if the plates were of in�nite dimensions.
The previous results can then be applied. As a function ofQ, the equation (1.8) is written as :

V� � V− � = Q
e

A � 0
: (1.9)

The capacitanceC of a parallel-plate capacitor is then

C =
Q

V� � V− �
=

A � 0

e
: (1.10)

1.4.1 Spherical capacitor

Let's consider a capacitor made up of two concentric spherical plates 1 and 2, with radiiR1 and R2 respectively
and separated by a vacuum (R1 < R 2). The armatures carry the chargesQ1 = + Q and Q2 = � Q. The
electric �eld is radial due to symmetry.

+
1

Q

Q

2

1

R

R2

Figure 1.9 � Capacitance of a spherical
capacitor

According to Gauss's theorem, the �eld at a point between the plates
at distance r (R1 < r < R 2) from the center is as follows :

~E =
+ Q

4�� 0r 2 ~ur ; (1.11)

where ~ur is a unit vector directed radially outwards. The potential
di�erence between the plates is given by the �ow of � ~E between the
two pltes.
If we choose a path running from plate 1 (potential V+ ) to plate 2
(potential V− ), we have :

� V�

V+

dV =
� R2

R1

� ~E � ~d`; (1.12)

or,

V− � V+ = �
� R2

R1

+ Q
4�� 0r 2 ~ur � ~d`: (1.13)

Vector ~ur being unitary, ~ur � ~d` gives the projection of ~d` on ~ur . Since~ur is directed along the radius vector
~r, it's natural to write ~ur � ~d` = dr . Equation (1.13) then becomes :

V− � V+ = �
� R2

R1

+ Q
4�� 0r 2 dr = �

Q
4�� 0

�
� 1
r

� R2

R1

=
Q

4�� 0

� 1
R1

�
1

R2

�
: (1.14)

We take out the capacity (see de�nition of equation (??)),

C =
Q

V+ � V−
= 4 �� 0

R1R2

R2 � R1
: (1.15)

Remark 1 : If e denotes the separation between the two spheres, we have :R2 � R1 = e. If this separation
is small, the radii of the spheres are practically equal and then :

C = 4 �� 0
R2

1
e

=
� 0 S

e
; (1.16)

where S is the surface area of the spheres. The result is the same as for the planar (parallel-plate) capacitor.
When the spheres are only slightly separated, the spherical capacitor has the same capacitance as a planar
capacitor whose plate area is equal to that of the spheres.

Remark 2 : As R2 ! 1 , we get from equation (1.15), C = 4 �� 0R1 A single isolated sphere is therefore
equivalent to a spherical capacitor whose outer shell has an in�nitely large radius.

1.4.1.1 Cylindrical capacitor
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R

R

Q
Q

1

2
1

2

Figure 1.10 � Capacitance of a cylin-
drical capacitor.

A cylindrical capacitor consists of two concentric, conducting cylinders
of length ` very large compared to the radii. The inner cylinder of
radius R1 carries the chargeQ1 = + Q. The outer cylinder is a shell
of inner radius R2 and carries the chargeQ2 = � Q. Let's calculate its
capacitance. The electric �eld is radial here also. At a point between
the plates located at distancer from the axis, Gauss's theorem gives :

E =
Q

2�� 0 r`
: (1.17)

As in the case of the spherical capacitor, the potential di�erence
between the plates is as follows :

V2 � V1 = �
� R2

R1

+ Q
2�� 0r`

dr = �
Q

2�� 0`
ln

R2

R1
: (1.18)

We get

C =
Q

V1 � V2
=

2�� 0`
ln (R2=R1)

: (1.19)

Remark : If e denotes the separation between the two cylinders, we haveR2 = R1 + e = R1(1 + e=R1),
R2=R1 = 1 + e=R1 et ln (R2=R1) = ln(1 + e=R1). When e � R1 (cylinders slightly separated), we get :
e=R1 � 1 and therefore ln(1 + e=R1) � e=R1. The capacitance of a cylindrical capacitor takes then the
form :

C =
2�� 0`
e=R1

=
� 02�R 1`

e
=

� 0 S
e

; (1.20)

where S is the lateral surface area of the cylinders. Here again, we �nd the result of the parallel-plate
capacitor. When the cylinders are slightly separated, the cylindrical capacitor has the same capacity as a
parallel-plate capacitor whose plate area is equal to that of the lateral surface of the cylinders.

1.5 Combination of capacitors

A capacitor is characterized not only by its capacitance, but also by the maximum potential di�erence that
can be applied to it without damaging it, i.e. without causing the insulation breakdown between the plates,
in which case the capacitor is no longer usable.
We can combine a set of several capacitors in various ways and determine theequivalent capacitanceof
the combination, i.e. the capacitance of the single capacitor equivalent to the set. The two most common
combinations are described below : parallel combination and series combination.

1.5.1 The parallel combination of capacitors

Consider n capacitors of capacitanceCi , (i = 1 ;:::;n). A parallel combination is obtained by grouping them
as shown in Figure a. The left-hand ends of all the capacitors are connected to point the+ terminal of a
battery (point A) and the right-hand ends are connected to the� terminal (point B). As you can see, all
capacitors are subject to the same potential di�erenceV = VA � VB .
As a result of this potential di�erence, capacitor C1 carries the chargeQ1, capacitor C2 carries the charge
Q2, capacitor C3 carries the chargeQ3, and so on ...
These charges are given by :Q1 = C1V; Q2 = C2V; Q3 = C3V; :::; Qn = CnV: The total electric charge of
the combination is : Q =

P
i Qi = ( C1 + C2 + ::: + Cn )V: We deduce the capacitance of the combination :

C =
Q
V

! C = C1 + C2 + ::: + Cn : (1.21)
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CHAPITRE 1. CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

Figure 1.11 � Combination of capacitors a) parallel, (b) series.

A parallel combination of capacitors with capacitancesC1, C2, C3, . . .is equivalent to a single capacitor with
capacitanceC equal to the sum of the individual capacitances. We deduce that the capacitanceC of the
group is always greater thanthe largest individual capacitance.
If you need a higher capacitance than those available, you need to combine them in parallel.
Example : Find the equivalent capacitance of the combination below :

1.5.2 The series combination of capacitors

The combination of n capacitors in series is shown in Figure b. The right end of one capacitor is connected
to the left end of the next one. The whole system is put under the potential di�erenceV . This potential
di�erence will generate on each capacitor the chargeQ1 = C1 V1, Q2 = C2 V2, . . .
If the capacitors are initially neutral, the framed piece (the piece aroundA1) will remain globally neutral
even after the potential di�erence has been applied. It follows that

Q2 + ( � Q1) = 0 = ) Q1 = Q2: (1.22)

This result is obviously valid between capacitors 2 and 3, between 3 and 4, and so on, leading to :

Q1 = Q2 = Q3 = : : : = Qn : (1.23)

When initially neutral capacitors are combined in a series, they all acquire the same charge. Calling this
chargeQ and using the relation Qi = Ci Vi , i = 1 ;2; : : :, the potential di�erence at the ends of each capacitor
is :

V1 = Q=C1; V2 = Q=C2; : : : ; Vn = Q=Cn :

The total potential di�erence is :

V = V1 + V2 + : : : + Vn = Q
�

1
C1

+
1

C2
+ ::: +

1
Cn

�
:

We deduce the capacitance

C =
Q
V

! C =
�

1
C1

+
1

C2
+ : : : +

1
Cn

� � 1

; ou bien
1
C

=
1

C1
+

1
C2

+ : : : +
1

Cn
: (1.24)

The reciprocal of the capacitanceC of a set of capacitors combined in series is equal to the sum of the
reciprocals of the individual capacitances. Such a set is equivalent to a single capacitor of capacitanceC. The
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