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0 cos2 θ
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of curvature of M (right figure) reads :
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C`o˘u˚r¯sfi`e `o˝f P‚h‹yṡfi˚i`cṡ 1 : P̀o˘i‹n˚t M`e´c‚h`a‹n˚i`cṡ
Galileo (left portrait) writes : "Aristotle declares
that a 100-pound iron ball has already descended
100 cubits when a 1-pound ball has traveled only
one cubit. I affirm that the two balls arrive toge-
ther."

In 1687, Newton (right portrait) published the ma-
thematical principles of natural philosophy (Phi-
losophiae naturalis principia mathematica). In it,
he described his discoveries on universal gravita-
tion and the three famous laws, known as Newton’s
Laws. These laws describe the physical phenomena
of inertia and the forces exerted on objects.

Above, the blue figure (left) shows the trajectory of a small ball P launched from the top of a building (height h)
with a velocity vecv0 making an angle θ with the horizontal. The expressions to its right give the equation of the
ball’s trajectory and its velocity when it hits the ground. The figure on the far right defines the radius of curvature
at a point on the trajectory. When M ′ tends towards M (trajectory (T ) in red), the normals to the tangents at M
and M ′ meet at a point C called the center of curvature. The lengths CM and CM ′ are then equal to a quantity
ρ called radius of curvature. A circle with center C and radius ρ will necessarily pass through M and M ′. As for
the two portrait photos below, they are of Galileo (left) and Newton (right), two great scientists who left their
mark on the history of science and contributed greatly to mechanics.

P̊r`o˝f. M. A. B`e¨l‚k˛h˚i˚rffl, `a‹n‹n`é´e 2023-2024
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Chapitre 1

Vectors, SI unit system, and math
reminders

Vectors are an important part of physics, and we’ll be using them a lot in this course. That’s why this chapter
is devoted almost entirely to them. But before we really get into vectors, we’ll introduce the International
System of units (SI system), talk briefly about dimensional analysis and the homogeneity of equations in
physics. We’ll end this chapter with a few useful mathematical reminders.

1.1 SI units
To measure a physical quantity, it is necessary to use a unit of measurement (or standard). There are different
systems of units based on different choices of the fundamental set of units, but today the most widely used
system of units is the International System of Units (abbreviated to SI), in which there are seven base units
and derived units. The base units are shown in the table below.

Physical quantity DIMENSION Unit of measurement
Name of the quantity Symbol of the quantity SI unit of measurement Unit symbol

Length ℓ, x, y, . . . L meter m
Mass M,m M kilogram kg
Time t T second s

Electric Current I, i I ampere A
Thermodynamic temperature T, θ Θ Kelvin K

Luminous intensity Iv, I J Candela cd
Amount of substance (of matter) n N mole mol

Table 1.1 – Base Units of SI system

The symbols Θ and θ in the table are pronounced thêta and represent the eighth letter (upper and lower
case) of the Greek alphabet. Other Greek letters will be encountered throughout the course. Greek alphabet
is given at section 1.6.

Derived units : units formed from a combination of several base units are called derived units. For
example, meters per second (m/s) for speed or kilograms per cubic meter ( kg/m3) for density, etc.
Some derived units are given a special name ; for example, the kg · m/s2 is the unit of force derived from
Newton’s law F = ma, and is called the newton (N) : 1 N= 1 kg · m/s2.
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CHAPITRE 1. VECTORS, SI UNIT SYSTEM, AND MATH REMINDERS

Radian and steradian : Note that the radian (unit of plane angle ; symbol rad) and the steradian (unit
of solid angle ; symbol sr) are considered derived units.
They are dimensionless, as they are defined by a ratio of two lengths for the plane angle and two areas for
the solid angle. The use or non-use of these two units in other derived units is as required.
Examples
1- Use → Angular speed (the rate of change of angular displacement in radians per unit of time) of a point
M moving on a circle is expressed in rad · s−1 to distinguish it from frequency, measured in s−1, which gives
the number of revolutions (cycles) per second.
2- Non-use → On a circle of radius R, the length of the arc intercepted by the central angle α is L = αR.
The unit of L is of course m and not rad·m.

Non-SI units : non-SI units are also widely used : °C, km/h, eV, inch, etc. You need to know how to
convert non-SI units to SI units and vice versa. For example, convert 72 km/h to m/s :

72 km
h = 72 × 1000

3600
m
s = 20 m/s

1.2 Dimensional analysis and homogeneity of equations in physics
One can’t add (or subtract) two quantities that have different dimensions : writing Length + width makes
sense, but Length + surface or 2 kg + 5 m/s make no sense ! Only quantities of same dimension can be
added or subtracted. On the other hand, it’s perfectly possible to multiply or divide two physical quantities
of the same dimension or of different dimensions : v = L/t → m/s, S = L× l → m × m = m2, P = m g →
kg · m/ s2.

notation : The dimension of a quantity X is indicated by the same letter in square brackets : [X].

The principle of homogeneity : A physical equation or relationship is homogeneous only if its two
members and each additive term making up each member have the same dimension. The equation a+ b = c
is homogeneous only and only if a, b et c ont même dimension :

a+ b = c ⇐⇒ [a] = [b] = [c]

Dimensional analysis is a powerful tool for detecting an error : an inhomogeneous equation is necessarily
false.
If A, B and C are any physical quantities and α, β and γ are numbers, the following rules apply :
1) [ABC] = [A][B][C]
2) [A/B] = [A]/[B]
3) Consider the equality A+A = 2A. According to the principle of homogeneity, A and 2A have the same
dimension : [2A] = [A] or [2][A] = [A] or [2] = [A]/[A] = 1. To say that a quantity is dimensionless is the
same as saying that its dimension is 1. Numbers are dimensionless : [2] = [1570] = [6.236] = [−2023] = 1.
4) The equation Aα +Bβ = Cγ is homogeneous ⇐⇒ [A]α = [B]β = [C]γ .
5) If AαBβ = Cγ then [A]α[B]β = [C]γ .
Take, for example, the equation x = at2/2, where x is the space traveled in time t by a particle that starts at
rest with acceleration a. To see if the equation is homogeneous, we calculate the dimension of each member.
We have :

[x] = L
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[at2/2] = [a][t2] = [a][t]2 = (L/T 2)T 2 = L

so [x] = [at2/2], we conclude that the equation is homogeneous.

1.3 Vectors
1.3.1 Scalar quantities, vector quantities
Some physical quantities are completely defined using a number, followed or not by a unit of measurement.
These are called scalars. Mass (a 2 kg block), time (a 1h30mn class session), energy (an electrical energy
consumption of 30 kwh per day), temperature (a temperature of 25 ◦C ), the density of a body (ratio of its
density to that of water (iron has a density of 7.86 (without unit)), etc. are all scalar magnitudes or simply
scalars. However, there are other physical quantities that cannot be completely defined by a simple number.
For example, if I ask you to move 5 m forwards, it’s not the same as saying backwards, right or left. To
make the desired move, it’s important to specify the direction and the sense of movement, in addition to the
magnitude (the 5 m value). Displacement is not a scalar, it’s a vector . Unlike a scalar, a vector is defined
by three characteristics : a direction, a sense, and a value called magnitude. Speed, acceleration, force,
electric field, etc., are also vectors.
Remarque : In textbooks from Anglo-Saxon countries, only two characteristics (length and direction) are
used to define a vector. The word direction includes in its meaning the orientation of the vector. For
example, a plane flying in an East-West direction, a projectile launched at 30° from the +x axis, and so on.
For our purposes, we’ll adopt the same definition when the direction of the vector is implicit, otherwise, if
the need arises, we’ll specify the direction.

1.3.2 Graphical representation and notation of a vector
A vector is represented graphically by a line segment running from one origin to one end. For example, in
the figure below, A is the tail (origin, initial point) and B is the tip (head, endpoint, terminal point) of the
vector −−→

AB.

A

B

VouABnotation B = tip=head=endpoint=terminal point

A = tail, initial point, origin
length, magnitude, modulus 

The arrow indicates that the direction is from A to B dire
ction AB

Figure 1.1 – Graphical representation and notation of a vector

- This is denoted by −−→
AB or by a simple letter (

−→
V for instance). Instead of putting an arrow above it, vectors

are sometimes denoted with letters in bold face : AB, V.
- The modulus of a

−→
V vector is written ∥

−→
V ∥, |

−→
V | or simply V .

- synonyms : modulus , length, magnitude, value,
intensity (of a force, electric field, etc.) norm of a vector (especially in mathematics)
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Notice : the vector
−→
BA (figure below) has B as origin, A as head, and BA as direction. What distinguishes

−→
BA from

−→
AB is that

−→
BA points in the opposite direction.

A
dire

ction BA

B

BA

= origin

= head

Figure 1.2 – Vector
−→
BA versus

−→
AB

1.3.3 Addition, Commutativity, Associativity

V +V2 3

V
1

+
V 2

V2

V2

V1

V1 V3

V3

V1

2V

A

B

V

E

F

V

V

A

B

C

D

V

1

2

commutativity  associativity  

Figure 1.3 – Vector addition : graphical method

1. Parallelogram law of addition of two vectors : Bring the two vectors so that their tails meet at a
common point. Draw one line parallel to one vector and a second line parallel to the other vector in a
way to complete a parallelogram. Then the diagonal of the parallelogram originating from the common
point will be the resultant (sum) vector

−→
R :

−→
R =

−→
V1 +

−→
V2 .

Triangular Law of Vector Addition : Bring the head of vector
−→
V1 to the tail of vector

−→
V2 . The resultant

−→
R =

−→
V1 +

−→
V2 is obtained by joining the tail of

−→
V1 to the head of

−→
V2 . Triangular method is more

practical when adding more than two vectors.
2. In the middle figure above, it’s easy to see that

−→
V 1 +

−→
V2 =

−→
V2 +

−→
V1 ; vector addition is commutative.

3. In the right figure above, we see that (
−→
V1 +

−→
V2 ) +

−→
V3 =

−→
V1 + (

−→
V2 +

−→
V3 ) ; vector addition is associative.

4. Null vector : If we don’t move from A, or if we start from A and return to A, the displacement is null.
This corresponds to the zero vector

−→
0 (i.e.

−→
AA =

−→
0 ).

5. The vector
−→
0 is a neutral element for vector addition :

−→
V +

−→
0 =

−→
0 +

−→
V =

−→
V . Of course ∥⃗0∥ = 0.

6. Opposite of a vector : the opposite of a vector
−→
V is the vector

−→
V ′ such that the sum

−→
V +

−→
V ′ gives 0⃗,

hence
−→
V ′ = −

−→
V .
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7. Subtraction of two vectors :
−→
V1 −

−→
V2 =

−→
V1 + (−

−→
V2 ), subtracting a vector is equivalent to adding its

opposite.

8. Multiplication by a scalar, α and β two reals : α
−→
V =

−→
V ′ ,

−→
V ′ has the same direction as direction as

−→
V , in the same direction if α > 0, in the opposite direction if α < 0.

9. Length of α
−→
V is |α| ∥

−→
V ∥.

10. For α = 0 we have, of course, 0
−→
V = 0⃗.

11. (α+ β)
−→
V = α

−→
V + β

−→
V

12. α(β
−→
V ) = β(α

−→
V ) = αβ

−→
V

13. α(
−→
V1 +

−→
V2 ) = α

−→
V1 + α

−→
V2

14. Unit vector : A unit vector is a vector whose modulus is 1. A unit vector along any non-zero vector
−→
V

is given by u⃗ =
−→
V /V . Note that a unit vector has no dimension (as it is a ratio of 2 quantities of the

same dimension). The basic unit vectors of an orthonormal Oxyz axis system are often denoted : i⃗, j⃗
and k⃗. Another notation used in English-speaking countries is î, ĵ and k̂ ou x̂, ŷ and ẑ. x̂ is pronounced
’x-hat’. But we may also come across other triplets such as (x̂1, x̂2, x̂3) ou (û1, û2, û3), etc.

1.3.4 Components of a vector : expression of a vector with respect to a system of axes
Any vector V⃗ can always be written as the sum of two vectors. Obviously, there are infinitely many pairs of
vectors whose sum gives

−→
V . But if we choose any two directions 1 and 2, then there will be a single pair of

vectors
−→
V1 (along direction 1) and

−→
V2 (along direction 2) that satisfy

−→
V =

−→
V1 +

−→
V2 .

−→
V1 and

−→
V2 are called

(vector) components of V⃗ along directions 1 and 2 respectively.

V

V"

V"

2

1

V

V’
V’

1

2

1’

2’

V

V

V

1

2

1

2

1"

2"

Figure 1.4 – Any vector could be resolved into an infinite number of pairs of components. But there is only
one pair possible for each couple of directions.

Components with respect to an orthonormal axis system In one dimension, we need one direction.
In figure 1.5 (a) we have : V⃗ = −3⃗i, which means that the (scalar) component of V⃗ that goes with i⃗ is −3.
Here, the component is simply designated by the algebraic value of the vector component.
In two or three dimensions, two or three directions are needed. Of particular importance is the case in which
these directions are mutually perpendicular. It’s then more convenient to work relative to a system of axes
chosen along these directions.
Figure (b) shows : V⃗ = 5⃗i+ 1.5⃗j, which means that the component of V⃗ along x is 5 and that along y is
1.5. Figure (c) shows : V⃗ = V⃗1 + V⃗2 + V⃗3 = 2.5 i⃗ + 4 j⃗ + 3 k⃗, which means that the components of V⃗ are
+2.5 along x, +4 along y and +3 along z. Vxy and Vxz are the orthogonal projections of V⃗ on the xy and yz
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x
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z

y

1

x
2

V

3

i

j

k

V =2.5  i+ 4  j+3 k 

V = −3  i

V

V =−4  i+ 1.5  j

Figure 1.5 – 1-, 2-, 3-dimension vector

planes respectively.
Generally speaking, in an orthonormal basis (⃗i,⃗j, k⃗), a vector a⃗ is written as : a⃗ = ax i⃗+ ay j⃗ + az k⃗. It’s easy
to check (Pythagorean theorem) that the modulus of a⃗ is given by :

a2 = a2
x + a2

y + a2
z ou encore a =

√
a2

x + a2
y + a2

z (1.1)

If b⃗ = bx i⃗+ by j⃗ + bz k⃗, then the equality a⃗ = b⃗ is equivalent to ax = bx, ay = by, az = bz .

1.3.5 Addition of vectors : analytical method
Let be a⃗ = ax⃗i+ ay j⃗ + azk⃗ et b⃗ = bx⃗i+ by j⃗ + bzk⃗. In terms of the components, the sum c⃗ = a⃗+ b⃗ reads :

c⃗ = (ax + bx)⃗i+ (ay + by )⃗j + (az + bz)k⃗, (1.2)

which gives : c⃗ = cx⃗i+ cy j⃗ + czk⃗ with

cx = ax + bx, cy = ay + by, cz = az + bz . (1.3)

1.4 Multiplication of vectors
We saw previously that vectors can be added or substracted. In this section, we’ll see that two vectors can be
multiplied by dot product and cross product. Let us understand more about each of these two multiplications.

1.4.1 Scalar product or dot product

Consider two vectors −→
a and

−→
b making an angle θ between them. 1. Their scalar product, denoted −→

a ·
−→
b

and reads a scalar b or a dot b or a point b, is defined by :

1. Between −→
a and

−→
b there are two angles : angle β (called reentrant angle) greater than 180°, and angle θ (called salient

angle) less than 180°. It is the salient angle that enters the definition of the scalar product

7
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θ

c
o
s

θ

cos θ
b

=b

a

=
a b

a

b

β

π<β<2π 

a

0<θ<π

Figure 1.6 – Scalar product of two vectors

−→
a ·

−→
b = ∥−→a ∥

∥∥∥−→b ∥∥∥ cos θ (1.4)
When there is no ambiguity, simple notation is preferred :

−→
a ·

−→
b = a b cos θ (1.5)

Scalar product of two vectors = modulus of one times modulus of
the other multiplied by the cosine of the angle between them.
The scalar product, as its name suggests, is a scalar. Its sign is that
of cos θ since a and b, being moduli, are positive. Consequently,
the scalar product is positive if cos θ > 0 i.e. 0 ≤ θ < π/2 ; negative if cos θ < 0 i.e. π/2 ≤ θ < π, null if a = 0
or b = 0 or cos θ = 0 i.e. θ = π/2. This last case means that if the scalar product of two (non-zero) vectors is
zero, then they are perpendicular.

Properties :

1- ab cos θ = ba cos θ =⇒ −→
a ·

−→
b =

−→
b · −→

a → → Scalar product is commutative.
2- −→

a · −→
a = ∥−→a ∥ ∥−→a ∥ cos 0, or, since cos 0 = 1,

−→
a · −→

a = ∥−→a ∥2 ou bien −→
a

2 = a2 (1.6)

The square of the vector is equal to the square of the modulus. This is an important result to remember.

3- αa⃗ · β
−→
b = βa⃗ · α

−→
b = αβ a⃗ ·

−→
b

4- −→
a · (

−→
b + −→

c ) = −→
a ·

−→
b + −→

a · −→
c → the scalar product is distributive with respect to addition.

1.4.1.1 Equivalent definitions of the scalar product

By posing b cos θ = ba = projection of
−→
b on −→

a , equation (1.5) can be rewritten as :
2nd definition

2) −→
a ·

−→
b = a b cos θ︸ ︷︷ ︸

ba

= a ba (= modulus of −→
a times algebraic projection 2 of

−→
b on −→

a . 3rd definition

3) −→
a ·

−→
b = b a cos θ︸ ︷︷ ︸

ab

= b ab (= modulus of
−→
b times algebraic projection of −→

a on
−→
b .

1.4.1.2 Scalar product as a function of components

In an orthonormal axis system Oxyz with the base (⃗i,⃗j, k⃗) : −→
a = ax⃗i+ ay j⃗ + azk⃗ et

−→
b = bx⃗i+ by j⃗ + bzk⃗.

−→
a ·

−→
b = (ax⃗i+ ay j⃗ + azk⃗) · (bx⃗i+ by j⃗ + bzk⃗) (1.7)

= axbx⃗i · i⃗+ axby⃗i · j⃗ + axbz⃗i · k⃗ + aybxj⃗ · i⃗+ ayby j⃗ · j⃗ + aybz j⃗ · k⃗ (1.8)
+ azbxk⃗ · i⃗+ azbyk⃗ · y⃗ + azbzk⃗ · k⃗ (1.9)

2. The word algebraic here means that the projection can take on negative values. This is what happens when the angle θ is
between π/2 and π .
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From the definition (1.5) and the fact that i⃗,⃗j, k⃗ are unitary, we have : i⃗ · i⃗ = j⃗ · j⃗ = k⃗ · k⃗ = 1, and
i⃗ · j⃗ = j⃗ · i⃗ = i⃗ · k⃗ = k⃗ · i⃗ = j⃗ · k⃗ = k⃗ · j⃗ = 0. It follows :

−→
a ·

−→
b = axbx + ayby + azbz (1.10)

Applying (1.6) and (??) we get : a2 = a2
x + a2

y + a2
z, we find, of course, the result (1.1).

1.4.2 Vector product or cross product

The vector product of two vectors −→
a and

−→
b is a vector

- of modulus ab sin θ, θ being the salient angle (the smallest, 0 < θ < π) between the two vectors,

- of bluedirection perpendicular to the plane of the two vectors, and
- its underline is such that it forms a direct trihedron with veCa and veCb (see below).
The vector product
- is written as veCa×

−→
b .

- reads a vector b or a cross b.

Defining the unit vector n⃗ carried by −→
a ×

−→
b and of the same direction, the vector product takes the

expression :
−→
a ×

−→
b = ab sin θ n⃗. (1.11)

There are several rules for determining the direction of −→
a ×

−→
b . The figure below shows the two most

commonly used rules.
1) Right hand thumb rule : The fingers of the right hand (except the thumb) are curved in the direction
from the first vector to the second. The raised thumb indicates the direction of their vector product.
2) The screw-cap rule (for a bottle of water, for example) : Imagine that the two vectors rest on the cap as
shown in figure 1.7. If −→

a towards
−→
b goes in the sense the opening, then the cap comes out and −→

a ×
−→
b

is directed towards the outside of the bottle. If −→
a towards

−→
b goes in the closing direction, then the cap

moves inwards and −→
a ×

−→
b is directed towards the inside of the bottle.

Properties
i) −→

a ×
−→
b = −

−→
b × −→

a because the direction of n⃗ is reversed when we turn from
−→
b to −→

a . The vector
product is anticommutative.
ii) The modulus ab sin θ of the vector product can be interpreted geometrically as the surface of the paralle-
logram formed by the two vectors.
iii) The vector product of two collinear vectors (parallel or antiparallel) is zero because the sine cancels out
for θ = 0 or π. In particular, −→

a × −→
a = 0⃗.

iv) α−→
a × β

−→
b = αβ (−→

a ×
−→
b )

v) −→
a × (

−→
b + −→

c ) = −→
a ×

−→
b + −→

a × −→
c

vi) (−→
a +

−→
b ) × −→

c = −→
a × −→

c +
−→
b × −→

c

9
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a b

a b

a b

a b

b

a

b

screw cap 

Closing

a

b

a

a

b

right hand

thumb

Opening

Figure 1.7 – Sense of the vector product : right hand and screw cap rules

1.4.2.1 Analytical expression of the vector product

We have : −→
a = ax⃗i+ ay j⃗ + azk⃗, and

−→
b = bx⃗i+ by j⃗ + bzk⃗.

−→
a ×

−→
b = (ax⃗i+ ay j⃗ + azk⃗) × (bx⃗i+ by j⃗ + bzk⃗) (1.12)

= axbx i⃗× i⃗+ axby i⃗× j⃗ + axbz i⃗× k⃗ (1.13)
+ aybx j⃗ × i⃗+ ayby j⃗ × j⃗ + aybz j⃗ × k⃗ (1.14)
+ azbx k⃗ × i⃗+ azby k⃗ × j⃗ + azbz k⃗ × k⃗ (1.15)

But, according to the definition of the vector product, we have : 3.

i⃗× i⃗ = j⃗ × j⃗ = k⃗ × k⃗ = 0⃗ (1.16)

i⃗× j⃗ = k⃗, i⃗× k⃗ = −j⃗, j⃗ × i⃗ = −k⃗, j⃗ × k⃗ = i⃗, k⃗ × i⃗ = j⃗, k⃗ × j⃗ = −⃗i. (1.17)

It follows :
−→
a ×

−→
b = 0⃗ + axby k⃗ − axbz j⃗ − aybx k⃗ + 0⃗ + aybz i⃗+ azbx j⃗ − azby i⃗+ 0⃗ (1.18)

= (aybz − azby) i⃗+ (azbx − axbz) j⃗ + (axby − aybx)k⃗ (1.19)

Using determinants, we can rewrite this expression in a more concise and practical way :

3. To find the relationships (1.17) without calculation, we can use this mnemonic : we write the list i⃗,⃗j, k⃗, i⃗,⃗j, k⃗ in this order
and the vector product of two consecutive vectors is then given by the next vector on the list with a + sign if we go from left to
right and − if we go from right to left. For example i⃗ × j⃗ = k⃗ but k⃗ × j⃗ = −⃗i.
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−→
a ×

−→
b = +

∣∣∣∣∣ay az

by bz

∣∣∣∣∣ i⃗−
∣∣∣∣∣ax az

bx bz

∣∣∣∣∣ j⃗+
∣∣∣∣∣ax ay

bx by

∣∣∣∣∣ k⃗, (1.20)

The equation (1.20) can be put in the form of a 3×3 determinant : + − +

−→
a ×

−→
b =

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗
ax ay az

bx by bz

∣∣∣∣∣∣∣ (1.21)

Note the alternating signs +,−,+ in the equation (1.20), which we shouldn’t forget to apply when using the
equation (1.21).

1.4.3 Scalar triple product or mixed product

The mixed product of any three vectors −→
a ,

−→
b and −→

c is the scalar defined by :

veCacdot(
−→
b × veCc).

The mixed product, also called scalar triple product, can be positive, negative or zero. It cancels out if :
- at least one of the three vectors is zero,
- two of the three vectors are proportional (parallel). In fact (we won’t demonstrate this here), the mixed
product is invariant to circular permutation of the three vectors, i.e. :

−→
a · (

−→
b × −→

c ) =
−→
b · (−→

c × −→
a ) = −→

c · (−→
a ×

−→
b ).

One of the above vector products gives 0 if two of the three vectors are parallel (or antiparallel),
- the three vectors are coplanar. Indeed, if the three vectors lie in the same plane, then (

−→
b × −→

c ) is a vector
perpendicular to the plane, and therefore to −→

a (since −→
a lies in the same plane), and consequently the scalar

product −→
a · (

−→
b × −→

c ) is zero.
This property is very useful for demonstrating that three vectors with common origin lie in the same plane.

Note that by virtue of the commutativity of the scalar product, the previous equality −→
a · (

−→
b × −→

c ) =
−→
c · (−→

a ×
−→
b ) can be rewritten as :

−→
a · (

−→
b × −→

c ) = (−→
a ×

−→
b ) · −→

c ,

a result which shows that the mixed product does not change if we exchange the symbols · and ×. For this
reason, it is sometimes referred to as (−→

a ,
−→
b ,

−→
c ) without having to specify where to place the · and ×.

In an orthonormal basis (⃗i,⃗j, k⃗)), the mixed product can be written (using (1.20)) :

(−→
a ×

−→
b ) · −→

c =
(

+
∣∣∣∣∣ay az

by bz

∣∣∣∣∣ i⃗−
∣∣∣∣∣ax az

bx bz

∣∣∣∣∣ j⃗ +
∣∣∣∣∣ax ay

bx by

∣∣∣∣∣ k⃗
)

·
(
cx⃗i + cy j⃗ + czk⃗

)
(1.22)

= +
∣∣∣∣∣ay az

by bz

∣∣∣∣∣ cx −
∣∣∣∣∣ax az

bx bz

∣∣∣∣∣ cy +
∣∣∣∣∣ax ay

bx by

∣∣∣∣∣ cz (1.23)

The latter expression is also that of a 3 × 3 determinant :

−→
a · (

−→
b × −→

c ) =

∣∣∣∣∣∣∣
ax ay az

bx by bz

cx cy cz

∣∣∣∣∣∣∣ (1.24)
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With respect to an orthonormal direct basis (⃗i,⃗j, k⃗)), a positive mixed product −→
a · (

−→
b × −→

c ) means that the
three vectors form a direct trihedron. If, on the other hand, −→

a · (
−→
b × −→

c ) is negative, then the trihedron
(−→
a ,

−→
b ,

−→
c ) is indirect.

Note : The absolute value of a mixed product gives the volume of the parallelepiped formed by the three
vectors.

1.4.4 Vector product of three vectors or double vector product

With three vectors −→
a ,

−→
b et −→

c we can form two double vector products : −→
a ×(

−→
b ×−→

c ) and (−→
a ×

−→
b )×−→

c .
We admit that (but it can be demonstrated) :

−→
a × (

−→
b × −→

c ) =
−→
b (−→

a · −→
c ) − −→

c (−→
a ·

−→
b ) (1.25)

(−→
a ×

−→
b ) × −→

c =
−→
b (−→

a · −→
c ) − −→

a (
−→
b · −→

c ) (1.26)

It’s easy to see that with the change −→
c =

−→
a′ , −→

a =
−→
b′ and

−→
b =

−→
c′ , the formula (1.26) becomes,

thanks to the anticommutativity of the vector product and the commutativity of the scalar product :
−→
a′ × (

−→
b′ ×

−→
c′ ) =

−→
b′ (

−→
a′ ·

−→
c′ ) −

−→
c′ (

−→
a′ ·

−→
b′ ). We recover the form (1.25).

You can quickly find these formulas using this mnemonic way : we take out the middle vector, put a − sign
in front of the other vector in the parenthesis and add the scalar products of the other two vectors. Practise
using this method to find the relationships (1.25) (1.26).

1.5 A few mathematical reminders
1.5.1 Trigonometry
The trigonometric circle is a circle with radius equal to 1, centered at the origin O of the x-axis and y-axis.
The coordinates x and y of a point P on the circle simply correspond to the cosine and sine of the angle
θ made by the vector −−→

OP with the x-axis : x = cos θ and y = sin θ. This circle can help you locate the
remarkable values below on [0,2π].
cos 0 = cos 2π = 1, cos ±π/2 = 0, cos ±π/3 = 1/2, cos ±π/6 =

√
3/2, cos ±π = −1.

sin 0 = sin ±π = sin 2π = 0,
sin ±π/2 = ±1 → arcsin 1 = π/2,
sin ±π/3 = ±

√
3/2 → arcsin

√
3/2 = π/3,

sin ±π/6 = ±1/2 → arcsin 1/2 = π/6.

arcsin 0 = 0 arcsin 1/2 = π/6 arcsin
√

2/2 = π/4
arcsin

√
3/2 = π/3 arcsin 1 = π/2

arccos 0 = 1 arcsin 1/2 = π/3 arcsin
√

2/2 = π/4
arcsin

√
3/2 = π/6 arccos 1 = 0

arctan 0 = 0 arctan
√

3/3 = π/6 arctan 1 = π/4
arctan

√
3 = π/3 arctan ∞ = π/2

∀α and β real, one has :
sin(α+β) = sinα cosβ+ cosα sin β,
sin(α−β) = sinα cosβ− cosα sin β,
cos(α+β) = cosα cosβ− sinα sin β,
cos(α−β) = cosα cosβ+ sinα sin β.
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Figure 1.8 – Trigonometric circle

From previous relations, one deduces that :
cos2 α+ sin2 α = 1
cos(2α) = cos2 α− sin2 α

= 2 cos2 α− 1
= 1 − 2 sin2 α

sin(2α) = 2 sinα cosα

∀k integer and ∀θ real, we have :
cos(−θ) = cos θ
sin(−θ) = − sin θ
tan θ = sin θ/ cos θ → tan(−θ) = − tan θ
tan θ = sin θ/ cos θ → tan(−θ) = − tan θ
tan(2x) = 2 tan x/(1 − tan2 x)

sin(π/2 − θ) = cos θ ; cos(π/2 − θ) = sin θ ;
sin(π/2 + θ) = cos θ ; cos(π/2 + θ) = − sin θ ;
sin(π − θ) = sin θ ; cos(π − θ) = − cos θ ;
sin(π + θ) = − sin θ ; cos(π + θ) = − cos θ.

1.5.2 Derivatives and integrals with respect to
x

The derivative at x of a scalar function f(x) is by definition :
f ′(x) = lim∆x→0

∆f
∆x where ∆x is an increase in x and ∆f

is the corresponding increase of f . The derivative function
f ′ is also given by df

dx .
Some properties :
d(f ± g)/dx = df/dx± dg/dx
d(αf)/dx = αdf/dx
d(fg)/dx = df/dx+ dg/dx
d(f/g)/dx = (gdf/dx+ fdg/dx)/g2

(uα)′ = αu′uα−1 →
´
xαdx = xα+1/(α+ 1) + constant

(
√
u)′ = u′/(2

√
u)

(sin x)′ = cosx →
´

cosxdx = sin x+ constant
(cosx)′ = − sin x

´
sin xdx = − cosx+ constant

(tan x)′ = 1 + tan2 x = 1/ cos2 x →
´

(1/ cos2 x)dx = tan x+ constant

(arcsin x)′ = 1/
√

1 − x2 →
´

1/
√

1 − x2dx = arcsin x + constant
(arccosx)′ = −1/

√
1 − x2 →

´
1/

√
1 − x2dx = − arccosx + constant

(arctan x)′ = 1/(1 + x2) →
´

1/(1 + x2)dx = arctan x + constant

(ln(x))′ = 1/x →
´

1/xdx = ln(x)+ constant
(exp(x))′ = exp(x) →

´
exp(x)dx = exp(x)+ constant

1.5.3 Multi-variable scalar function
Example : f(x, y, z) = x3 + 2z/y + zx
Partial derivative with respect to x (notation ∂f/∂x) : during derivation, y and z are treated as constants,
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∂f/∂x = 3x2 + z, ∂f/∂y = −2z/y2 et ∂f/∂z = 2/y + x.

Total differential : df = ∂f

∂x
dx+ ∂f

∂y
dy + ∂f

∂z
dz = (3x2 + 2/y + z) dx+ (−2x/y2) dy + xdz.

1.5.4 Derivation, differentiation and vector integration
V⃗ depends on a single variable t : the derivative is written as dV⃗

dt and is calculated as for a scalar function. If
in a reference frame (Oxyz) V⃗ = Vx⃗i+ Vy j⃗ + Vzk⃗ then in this frame
1) dV⃗

dt = dVx/dt i⃗+ dVy/dt j⃗ + dVz/dt k⃗, and 2)
´
V⃗ dt = i⃗

´
Vx dt+ j⃗

´
Vy dt+ k⃗

´
Vz dt.

Other properties :

3) d(αV⃗ )
dt = dα

dt V⃗ + αdV⃗
dt 4) d(V⃗1+V⃗2)

dt = dV⃗1
dt + dV⃗2

dt 5) d(V⃗1·V⃗2)
dt = dV⃗1

dt · V⃗2 + V⃗1 · dV⃗2
dt 6) d(V⃗1×V⃗2)

dt = dV⃗1
dt × V⃗2 +

V⃗1 × dV⃗2
dt

If V⃗ depends on several variables x,y,z, the differential is written as 7) dV⃗ = ∂V⃗
∂x dx+ ∂V⃗

∂y dy + ∂V⃗
∂z dz

1.6 Greek alphabet letters
A number of Greek letters are widely used in mathematics and physics to name numbers, variables or
functions. Some examples : Σ to denote a sum of multiple terms, the number π (or Archimedes’ constant
π = 3.14159265...), ∆ for the Laplacian operator, ω for the speed of rotation, Ω for the electrical resistance
unit, θ and ϕ for spherical coordinates, etc.
So it’s important to know what they look like, and how to read and write them. They are summarized in the
table below.

Uppercase Lowercase Letter name Uppercase Lowercase Letter name

A α alpha N ν nu
B β bêta Ξ ξ ksi/xi
Γ γ gamma O o omicron
∆ δ delta Π π et ϖ pi
E ϵ et ε epsilon P ρ et ϱ rhô
Z ζ zêta Σ σ et ς sigma
H η êta T τ tau
Θ θ et ϑ thêta Υ υ upsilon
I ι iota Φ ϕ et φ phi
K κ et κ kappa X χ khi/chi
Λ λ lambda Ψ ψ psi
M µ mu Ω ω omega

Table 1.2 – The letters of the Greek alphabet with their names and pronunciation in English. You’ll notice
that some of them (colored letters Magenta) have the same spelling as Latin letters and will be considered
as such.
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