
University of Batna 2 –
Mostefa Ben Boulaïd
Faculty de Mathematics
and Informatics
Department of Mathematics
and Informatics - Common Base
53, Road of Constantine, Fesdis,
Batna 05078, Algeria.

θ

h

P

g

0P

x

y
0

v

ground
O

The equation of the trajectory of P is :
y = − g

2v2
0 cos2 θ

x2 +tan θ x+h. The speed
of the ball as it hits the ground is v =√

v2
0 + 2gh.

In terms of ẋ, ẏ, ẍ, and ÿ, the radius
of curvature of M (right figure) reads :
ρ = (ẋ2+ẏ2)3/2

|ẋÿ−ẋÿ| .
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C`o˘u˚r¯sfi`e `o˝f P‚h‹yṡfi˚i`cṡ 1 : P̀o˘i‹n˚t M`e´c‚h`a‹n˚i`cṡ
Galileo (left portrait) writes : "Aristotle declares
that a 100-pound iron ball has already descended
100 cubits when a 1-pound ball has traveled only
one cubit. I affirm that the two balls arrive toge-
ther."

In 1687, Newton (right portrait) published the ma-
thematical principles of natural philosophy (Phi-
losophiae naturalis principia mathematica). In it,
he described his discoveries on universal gravita-
tion and the three famous laws, known as Newton’s
Laws. These laws describe the physical phenomena
of inertia and the forces exerted on objects.

Above, the blue figure (left) shows the trajectory of a small ball P launched from the top of a building (height h)
with a velocity vecv0 making an angle θ with the horizontal. The expressions to its right give the equation of the
ball’s trajectory and its velocity when it hits the ground. The figure on the far right defines the radius of curvature
at a point on the trajectory. When M ′ tends towards M (trajectory (T ) in red), the normals to the tangents at M

and M ′ meet at a point C called the center of curvature. The lengths CM and CM ′ are then equal to a quantity
ρ called radius of curvature. A circle with center C and radius ρ will necessarily pass through M and M ′. As for
the two portrait photos below, they are of Galileo (left) and Newton (right), two great scientists who left their
mark on the history of science and contributed greatly to mechanics.

P̊r`o˝f. M. A. B`e¨l‚k˛h˚i˚rffl, `a‹n‹n`é´e 2023-2024
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Chapitre 2

Kinematics of the point

2.1 Physics, mechanics and kinematics
The word physics comes from ancient Greek (η φυσικη : pronounced ê physikê) and literally means knowledge
of nature. The word ’nature’ refers to the natural world around us. Physics is therefore the science that
studies matter and its properties, from the most fundamental particles to the largest systems and the entire
universe. To do this, physics relies on experiments, measurements and analyses ; it uses postulates, principles,
concepts, models and mathematical theories to identify the laws that govern the phenomena we see around
us. This is how Kepler’s laws, Newton’s laws, Coulomb’s laws, etc. came into being.
Mechanics is the part of physics concerned with the study of the motion and equilibrium of bodies. It
comprises three parts : kinematics, dynamics and statics.

Kinematics, to which we devote this chapter, studies the motion of objects in space and time, disregarding
the causes (forces) that cause this motion.

2.2 Some notions
What is meant by the word "point" in point mechanics ? When you look at a moving object from
a fairly long distance, a car for instance, the motion is the same for the front, the rear, the wheels, the
passengers, etc. You can’t see details such as the vibrations of the bodywork or the rotation of the wheels.
Here, all such information is disregarded, with the result that the motion is the same for all points of the car.
Therefore, to study the motion of the car, we simply need to track the motion of one of its points. The car as
a whole can therefore be considered a single point. For the purposes of this course, this is how we picture a
material object in motion.
We also use the words particle or mobile to designate a material point.
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Terre

Reference frame : a reference frame is a solid relative to which the position
or motion of an object can be located. An object cannot be referenced to the
"void". Various coordinate systems can be attached to this solid. That’s why a
reference frame is, by extension, an arbitrary set of axes with reference to which
the position or motion of a body is described or physical laws are formulated.
When studying the motion of objects on or near the Earth’s surface, the Earth
is the most appropriate solid of reference. Various reference systems can be
attached to it : R1, R2, R3, . . .Such reference frame can be designated by the
set of axes and the origin, for instance, Oxyz (i.e. R = O§†‡). The origin O is,
of course, a point of the solid of refecrence.
Assuming a direct Oxyz coordinate system, with a base vector set {⃗i, j⃗, k⃗}, the position of a particule P
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CHAPITRE 2. KINEMATICS OF THE POINT

relative to Oxyz is :−−→
OP = xp⃗i + ypj⃗ + zpk⃗.
Finally, some motions are described in other frames of reference : the geocentric frame of reference for the
motion of a satellite around the Earth, Kepler’s heliocentric frame of reference for the motion of the planets
around the Sun.

2.3 Position vector, velocity and acceleration
2.3.1 Time
Any phenomenon that recurs at fixed time intervals can be used as a clock. For example, the day corresponds to
a complete rotation of the Earth around its axis, and the year corresponds to a complete rotation of the Earth
around the sun. When an object moves, its position (x,y,z) changes over time, denoted by a real t. At each
instant t, the position is (x(t), y(t), z(t)). Instant or date, are two synonyms often used in place of the word time.

y
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i

O

z

r

x
x

z

y

trajectoire

M
M’

v

Figure 2.1 – Position, vitesse et ac-
célération

2.3.2 Position vector
Relative to Oxyz, the (vector) position of M is

−→
OM =

x⃗i + yj⃗ + zk⃗. Sometimes we write
−→

OM = x(t)⃗i + y(t)⃗j +
z(t)k⃗ to recall that x, y and z are generally functions of
time.

Trajectory : The trajectory is the set of positions occupied by
M over time. The relations giving x = x(t), y = y(t) and z = z(t)
constitute the parametric equation of the trajectory. The Cartesian
equation is obtained by eliminating t between x, y, and z.

2.3.3 Velocity
Average velocity :
Consider the motion of a particle. Let M be the particle’s position
at date t and M ′ its position at date t′, (t′ > t). The average velocity
between M and M ′ is given by :

v⃗aver =
−−−→
OM ′ −

−−→
OM

t′ − t
=

−−−→
MM ′

t′ − t
= ∆−−→

OM

∆t
(2.1)

The vector
−−−→
MM ′ (Figure 2.1) is the displacement vector of the particle from M to M ′. The direction of

v⃗aver is that of
−−−→
MM ′. Velocity is a vector quantity. A mobile that is in M at time t, moves and then returns

to M at time t′ has an average velocity of zero (because the displacement vector between t and t′ is zero :
−−−→
MM ′ = −−−→

MM = 0⃗). Velocity is a vector quantity that gives the rate at which an object covers a displacement.

A plane flies from Algiers to Paris and then returns to Algiers. The distance Algiers to Paris is 1400 km. The
total duration of the round trip is 4 hours. In physics, its average velocity is zero because it has returned to
the starting point (final position = starting position). However, the average speed is given by the total distance
covered, divided by the total duration of the journey. That is (1400 km + 1400 km)/(4 hours) = 700 km/hour.
Speed is a scalar quantity that gives the rate at which an object covers a distance.

16



CHAPITRE 2. KINEMATICS OF THE POINT

Instantaneous velocity :

t t’

M’M

tangent

M’
v

Figure 2.2 – Velocity is tangent to the
trajectory and oriented in the direction of
motion

Average velocity is easy to conceive, and is given by the displa-
cement vector from M to M ′ divided by the time t′ − t taken to
cover the displacement.

Instantaneous velocity is the velocity at an instant t. It is obtained
from v⃗aver by taking a time t′ that is infinitely close to t :

−→v = lim
t′→t

−−−→
OM ′ −

−−→
OM

t′ − t
= d

−−→
OM

dt
, (2.2)

The velocity −→
v is given by the derivative of the position −−→

OM
with respect to time t. 1

Direction and sense of −→
v :

Equation (2.2) shows that v⃗ has the same direction and sense as
the vector

−−−→
OM ′ −

−−→
OM =

−−−→
MM ′. As M ′ approaches M (see figure

2.2), the straight line (MM ′) becomes closer and closer to the
tangent at M to the trajectory, (the dotted magenta line on the figure) until it is superimposed on it when
M ′ is infinitely close to M . The velocity is therefore tangent to the trajectory at every instant, and is oriented
in the direction of

−−−→
MM ′, i.e. in the direction of motion.

Velocity components in Cartesian coordinates :
−→
v = d

−−→
OM/dt = d(x i⃗ + y j⃗ + z k⃗)/dt. Therefore,

−→v = dx

dt
i⃗ + dy

dt
j⃗ + dz

dt
k⃗ (2.3)

dx/dt is sometimes written more concisely ẋ, pronounced ’x-dot’. With this notation, the equation (2.3) is
written :

−→v = ẋ i⃗ + ẏ j⃗ + ż k⃗ (2.4)

The modulus of velocity is then :
∥−→v ∥ =

√
ẋ2 + ẏ2 + ż2 (2.5)

Velocity measures the rate of change of position with respect to time. If position is measured in meters (m),
velocity will be in meters per second m/s (also noted m·s−1 or m s−1).

2.3.4 The acceleration vector
A body undergoes acceleration when, in the course of time, its velocity changes modulus (e.g. a car moving
in straight road and braking) or direction (e.g. a car taking a bend).

Acceleration gives the rate of change of velocity with respect to time. Average acceleration :

−→a moy =
−→
v′ − −→v
t′ − t

= ∆v⃗

∆t
(2.6)

1. If −−→
OM is denoted by r⃗, then we can write v⃗aver = ∆r⃗/∆t, and v⃗ = dr⃗/dt, etc.
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v∆   =v’−v

M
v’

M’

v

v

a

v’

Figure 2.3 – Acceleration is always orien-
ted towards the inside of the concavity of
the trajectory

Instantaneous acceleration :

−→a = lim
∆t→0

∆v⃗

∆t
= dv⃗

dt
(2.7)

and since v⃗ = d−→r /dt, we also :

−→a = d2−→r
dt2 (2.8)

Orientation of a⃗ with respect to the trajectory : As
shown in equation (2.6) or (2.7), the acceleration vector a⃗ has
the direction and sense of ∆v⃗. As ∆v⃗, it is always oriented
towards the inside of the concavity of the trajectory. Acceleration is measured in m/s2, also denoted m·s−2

or ms−2.

In Cartesian coordinates, the equation (2.8) can be broken down into :

ax = d2x

dt2 ≡ ẍ (2.9)

ay = d2y

dt2 ≡ ÿ (2.10)

ay = d2z

dt2 ≡ z̈, (2.11)

the notation ẍ, meaning second derivative with respect to time, reads "x two-dots".

Note : If we have the data for a motion at time t0 (position r⃗0, velocity v⃗0), we can go back to the velocity
v⃗ and then to the position r⃗ at time t using :

a⃗ = dv⃗

dt
=⇒ dv⃗ = a⃗dt =⇒

ˆ v⃗

v⃗0

dv⃗ =
ˆ t

t0

a⃗dt

and then,

v⃗ = dr⃗

dt
=⇒ dr⃗ = v⃗dt =⇒

ˆ r⃗

r⃗0

dr⃗ =
ˆ t

t0

v⃗dt

.

2.4 Other coordinate systems
To describe certain types of motion, other coordinate systems are more convenient than Cartesian coordinates.
Polar coordinates, cylindrical coordinates and spherical coordinates are widely used in physics. We’ll introduce
them in the following pages.

2.4.1 Polar coordinates
y

j

i
x

y

ρ

x

e
eθ

ρ

θ

O

M

Figure 2.4 – Polar coordinates

When the motion of a material point M takes place in a plane, we
can locate M as a function of the distance ρ = OM and the angle
θ = (−→i ,

−−→
OM). ρ and θ define the polar coordinates, which are related

to the Cartesian coordinates by (see figure 2.4) :

x = ρ cos θ (2.12)
y = ρ sin θ (2.13)
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CHAPITRE 2. KINEMATICS OF THE POINT

The equation of the circle in Cartesian coordinates is x2 + y2 = R2.
In polar coordinates, it is simplified to ρ = R.

To write vectors in the polar coordinate system, we need to define a basis. The polar basis (e⃗ρ, e⃗θ) is defined
as follows :

e⃗ρ = −−→
OM/ρ, it is a unit vector along −−→

OM and of the same direction. (2.14)
e⃗θ = unit vector directly perpendicular to e⃗ρ, it is at + π/2 from e⃗ρ. (2.15)

In (⃗i, j⃗) basis, we have :

e⃗ρ = cos θ i⃗ + sin θ j⃗, (2.16)
e⃗θ = cos(θ + π/2) i⃗ + sin(θ + π/2) j⃗ = − sin θ⃗i + cos θj⃗. (2.17)

This is a local basis, attached to the point M and therefore moving with M . Let’s express position, velocity
and acceleration in this basis. −−→

OM = ρe⃗ρ (2.18)

−→v = d(ρe⃗ρ)
dt

= dρ

dt
e⃗ρ + ρ

de⃗ρ

dt
(2.19)

Let’s calculate de⃗ρ/dt :
We have deρ/dθ = − sin θ⃗i + cos θj⃗, which is none other than e⃗θ (see equation (2.17)), so de⃗ρ/dθ = e⃗θ. One
more step and we’re done with the derivative of e⃗ρ.

de⃗ρ

dt
= de⃗ρ

dθ

dθ

dt
= θ̇ e⃗θ (2.20)

Velocity in polar coordinnates is finally :
−→v = ρ̇ e⃗ρ + ρθ̇ e⃗θ (2.21)

Its modulus is : ∥−→v ∥ =
√

ρ̇2 + ρ2θ̇2.
Now, let’s calculate the acceleration :

−→a = d(ρ̇ e⃗ρ + ρθ̇ e⃗θ)
dt

= ρ̈ e⃗ρ + ρ̇θ̇ e⃗θ + (ρ̇θ̇ + ρθ̈) e⃗θ + ρθ̇2(−e⃗ρ) = (ρ̈ − ρθ̇2) e⃗ρ + (2ρ̇θ̇ + ρθ̈) e⃗θ (2.22)

where we have taken into account : de⃗ρ

dt = θ̇e⃗θ et de⃗θ
dt = θ̇(−e⃗ρ). Modulus of −→a is : ∥−→a ∥ =

√
(ρ̈ − ρθ̇2)2 + (2ρ̇θ̇ + ρθ̈)2.

2.4.2 Cylindrical coordinates
The motion of M takes place in three-dimensional space represented
by the orthonormal axis system Oxyz. Let m be the orthogonal
projection of M on the xy plane.
The cylindrical coordinates are obtained by adding the z coordinate
to the two polar coordinates ρ and θ already defined above. So, these
three coordinates are ρ = OM , θ = (−→Ox,

−−→
Om), z = mM and are

related to the Cartesian coordinates by :

x = ρ cos θ (2.23)
y = ρ sin θ (2.24)
z = z (2.25)

Why are they called cylindrical coordinates ? Because when θ and
z vary while fixing ρ, the point M describes a cylindrical surface.
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Figure 2.6 – Coordonnées cylin-
driques

Now, we attach to M the local basis (e⃗ρ, e⃗θ, k⃗) such that
e⃗ρ = −−→

Om/Om, e⃗θ = unit vector directly perpendicular to e⃗ρ

and k⃗ is the unit vector completing a direct orthonormal ba-
sis.

Let’s express position, velocity and acceleration in this base. We
won’t repeat the calculations, since we’ve already done them in polar
coordinates. We’ll just add the z component.

−−→
OM = −−→

Om + −−→
mM = ρe⃗ρ + zk⃗ (2.26)

−→v = ρ̇ e⃗ρ + ρθ̇ e⃗θ + ż k⃗ (2.27)
−→a = (ρ̈ − ρθ̇2) e⃗ρ + (2ρ̇θ̇ + ρθ̈) e⃗θ + z̈ k⃗ (2.28)

2.4.3 Spherical coordinates
The spherical coordinates of M are r, θ and φ defined by : r = OM , θ = (−→Oz,

−−→
OM) et ϕ = (−→Ox,

−−→
Om), m

étant, comme dans la sous-section précédente, la projection orthogonale de M sur le plan xy. θ varie entre 0
et π alors que φ va de 0 à 2π.

θ
r e

eϕ

θ

y
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z

z

M

ϕx

y

m

er

Figure 2.7 – Coordonnées sphériques

They are related to the Cartesian coordinates by :

x = r sin θ cos φ (2.29)
y = r sin θ sin φ (2.30)
z = r cos θ (2.31)

When θ and φ vary while keeping r constant, the point M moves on
a spherical surface of radius r, hence the name spherical coordinates.
We define a local basis (e⃗r, e⃗θ, e⃗φ) attached to M as follows :
The vector e⃗r is such that −−→

OM = r e⃗r, e⃗r is therefore the unit vector
having the direction of −−→

OM .
etheta is the unit vector tangent at M to the (half)circle described
by M when theta varies, r and varphi being kept constant.
e⃗φ is the unit vector that completes a direct orthonormal basis (e⃗r,
e⃗θ, e⃗φ) :

e⃗φ = e⃗r × e⃗θ (2.32)

It turns out that it is the vector tangent at M to the circle described by M when ϕ varies, r and θ held
constant.

Let’s express e⃗r, e⃗θ, e⃗φ in (⃗i, j⃗, k⃗) basis
e⃗r = −−→

OM/r = (x⃗i + yj⃗ + zk⃗)/r = sin θ cos φ i⃗ + sin θ sin φ j⃗ + cos θ k⃗.
Calculation of e⃗φ : it is given by e⃗r × e⃗θ. But, as we don’t know eθ, we can’t use this formula. However, by

noticing that e⃗r and e⃗θ lie in (−→Oz,
−−→
Om) plane and by considering the unit vector, let(s call it u⃗, of −−→

Om, the
vector e⃗φ can be written as eφ = k⃗ × u⃗. Then
e⃗φ = k⃗ × (cos φ⃗i + sin φj⃗) = − sin φ i⃗ + cos φ j⃗

Calculation of e⃗θ : e⃗θ = e⃗φ × e⃗r =

∣∣∣∣∣∣∣
i⃗ j⃗ k⃗

− sin φ cos φ 0
sin θ cos φ sin θ sin φ cos θ

∣∣∣∣∣∣∣ = cos θ cos φ i⃗ + cos θ sin φ j⃗ − sin θ k⃗.
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These expressions are summarized in the following equations :

e⃗r = sin θ cos φ i⃗ + sin θ sin φ j⃗ + cos θ k⃗ (2.33)
e⃗θ = cos θ cos φ i⃗ + cos θ sin φ j⃗ − sin θ k⃗ (2.34)
e⃗φ = − sin φ i⃗ + cos φ j⃗ (2.35)

Let’s express v⃗ and a⃗ in (e⃗r, e⃗θ, e⃗φ) basis :
Velocity is obtained by deriving −−→

OM with respect to time :
v⃗ = d

−−→
OM/dt = d(r e⃗r)/dt = ṙ e⃗r + rde⃗r/dt. To calculate de⃗r/dt, we first express the differential de⃗r :

de⃗r = ∂e⃗r
∂θ dθ + ∂e⃗r

∂φ dφ =⇒ de⃗r
dt = ∂e⃗r

∂θ
dθ
dt + ∂e⃗r

∂φ
dφ
dt = θ̇ ∂e⃗r

∂θ + φ̇∂e⃗r
∂φ

∂e⃗r
∂θ = cos θ cos φ i⃗ + cos θ sin φ j⃗ − sin θ k⃗ = e⃗θ.
∂e⃗r
∂φ = − sin θ sin φ i⃗ + sin θ cos φ j⃗ = sin θe⃗φ, il vient

de⃗r/dt = θ̇ e⃗θ + φ̇ sin θ e⃗φ. (2.36)

Finally, we obtain :

v⃗ = ṙ e⃗r + rθ̇ e⃗θ + rφ̇ sin θ e⃗φ (2.37)
Acceleration is obtained by deriving v⃗ with respect to time :
a⃗ = dv⃗/dt = d(ṙ e⃗r + rθ̇ e⃗θ + rφ̇ sin θ e⃗φ)/dt,
which gives :

a⃗ = r̈ e⃗r + ṙ de⃗r/dt + (ṙθ̇ + rθ̈) e⃗θ + rθ̇ de⃗θ/dt + (ṙφ̇ sin θ + rφ̈ sin θ + rφ̈ cos θ) e⃗φ + rφ̇ sin θde⃗φ/dt (2.38)
de⃗θ
dt = ∂e⃗θ

∂θ
dθ
dt + ∂e⃗θ

∂φ
dφ
dt = θ̇ ∂e⃗θ

∂θ + φ̇∂e⃗θ
∂φ = θ̇(− sin θ cos φ i⃗ − sin θ sin φ j⃗ − cos θ k⃗) + φ̇ cos θ(− sin φ i⃗ + cos φ j⃗)

de⃗θ/dt = −θ̇ e⃗θ + φ̇ cos θ e⃗φ. (2.39)
de⃗φ

dt = ∂e⃗φ

∂φ
dφ
dt = φ̇

∂e⃗φ

∂φ = −φ̇(cos φ i⃗+sin φ j⃗), here the symbol (operator) ∂ can be denoted as d (right d), since
e⃗φ depends on a single variable, φ in this case. Remember that we’re trying to express a⃗ in (e⃗r, e⃗θ, e⃗φ) basis.
So we’ll need to express de⃗φ

dt in this base. To do this, we know that de⃗φ

dt is perpendicular to e⃗φ (we can also see
that the scalar product de⃗φ

dt · e⃗φ is zero). So de⃗φ

dt is in the plane of the two vectors e⃗r and e⃗θ) and can therefore
be decomposed according to these two vectors. It’s easy to see that : (cos φ i⃗ + sin φ j⃗) = sin θ e⃗r + cos θ e⃗θ,
and

de⃗φ/dt = −φ̇ sin θ e⃗r − φ̇ cos θ e⃗θ (2.40)

Substituting (2.36), (2.39) and (2.40) into (2.38), we obtain :

a⃗ =
(
r̈ − rθ̇2 − rφ̇2 sin2 θ)

)
e⃗r +

(
2ṙθ̇ + rθ̈ − rφ̇2 sin θ cos θ

)
e⃗θ +

(
2ṙφ̇ sin θ + 2rθ̇φ̇ cos θ + rφ̈ sin θ

)
e⃗φ

(2.41)

2.5 Order of magnitude of some examples of speed and acceleration
The table below gives a few orders of magnitude for speed and acceleration :
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Speed Acceleration
Example m/s km/h Example m/s2 in terms of g
Escargot 0,0013 0,00468 Acceleration d’un train 0.25 ≈ g/40
Walking 1,3 4,5 Starting acceleration of a car 3.2 ≈ g/3
Galloping horse 15 55 Braking a car 8 ≈ 0.8 g
A car on the freeway 30 108 Gravitational acceleration g 9.8 1 g
Airliner takeoff 69 250 Rocket acceleration 90 ≈ 9 g
High-speed train 90 320 Acceleration supported by man 100 ≈ 10 g
Aircraft cruise speed 280 1000 Car hitting a wall at 100 km/h 982 ≈ 100 g
Speed of sound in air 340 1225 Kicked soccer ball 2946 ≈ 300 g
Rocket speed 7800 28000 Washing machine drum rotation 4944 ≈ 500 g
Earth around the Sun 30000 108000 Ball fired from a pistol 304 000 ≈ 31000 g
Speed of light 3×108 1,08×109 Proton acceleration at the LHC ! 2.1×1013 ≈ 2.1 × 1012 g

! The LHC (Large Hadron Collider) is the world’s largest and most powerful particle gas pedal. Commissioned
in 2008, it is located in the border region between France and Switzerland, between the north-western
outskirts of Geneva and the Pays de Gex. It consists of a 27-kilometer ring of superconducting magnets and
accelerator structures that increase the energy of the particles flowing through it.

2.6 Rectilinear motion (also called straight-line motion)
The motion of a material point is said to be rectilinear when its trajectory is a straight line. Such motion is
simply described by taking the axis x′Ox bearing the line along which the motion takes place, and provided
with the unit vector i⃗. With respect to x′Ox, we have :

x’ O xM

i x(t)

−−→
OM = x i⃗ (2.42)

v⃗ = v i⃗ (2.43)
a⃗ = a i⃗ (2.44)

Given the expressions (2.42), (2.43) and (2.44), velocity and acceleration can be written as :

v i⃗ = d(x⃗i)
dt

= dx

dt
i⃗ =⇒ v = dx

dt
(2.45)

a i⃗ = d(v⃗i)
dt

= dv

dt
i⃗ =⇒ a = dv

dt
(2.46)

Note that in the previous relations, we were able to take i⃗ out of the derivative because it’s a constant vector
(it doesn’t depend on t), allowing us to simplify it in the following. This is why, when doing one-dimensional
kinematics, vector notation is not necessary for position, velocity and acceleration, which are simply denoted
by x, v and a. Once the axis orientation is fixed, their vector character is contained in their sign.
A positive (negative) x means that M is on the positive (negative) side of the axis. A positive (negative) v
means that M is moving in the positive (negative) direction of the axis. The sign of a will be interpreted
according to that of v. If a has the same sign as v (i.e. both are negative or positive), then velocity increases
and motion is said to be accelerated. If a and v have opposite signs (i.e. one negative and the other positive),
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then the modulus of velocity decreases and motion is said to be decelerated (or retarded). We’ll come back
to this point a little later in the section 2.7. In conclusion, knowledge of x, v and a completely determines
the motion of M .

Calculate v and x from a.
If we know the acceleration a of a motion between instant t0 (position x0, velocity v0) and instant t (position
x, velocity v) we can find the velocity and position of M using :
a = dv/dt =⇒ dv = adt =⇒

´ v
v0

dv =
´ t

t0
adt et v = dx/dt =⇒ dx = vdt =⇒

´ x
x0

dx =
´ t

t0
vdt, ce qui conduit

à :

v = v0 +
ˆ t

t0

adt (2.47)

x = x0 +
ˆ t

t0

vdt (2.48)

Uniform rectilinear motion

A rectilinear motion is said to be uniform when the velocity is constant, i.e., does not vary with time. If v is
constant, then dv/dt = 0 ⇐⇒ a = 0. Saying that the velocity of a moving body does not vary with time
means that it does not accelerate, or that its acceleration is zero. For uniform rectilinear motion (for a = 0),
the equations (2.47) and (2.48) give :

v = v0 (2.49)
x = x0 + v0(t − t0) (2.50)

In uniform rectilinear motion, the speed of the moving body is constant throughout the duration of the
motion, and is equal to the speed the body had at t0. If t0 = 0, the equation (2.50) becomes : x = x0 + v0t.

Case of constant acceleration : uniformly varied rectilinear motion A constant acceleration of
a m/s2 means that the modulus of velocity increases or decreases by a m/s every second. This is called
uniformly varied rectilinear motion (accelerated or retarded). For a constant value of a, integration of the
equations (2.47) and (2.48) gives :

v = v0 + a(t − t0) (2.51)

x = x0 +
ˆ t

t0

vdt = x0 +
ˆ t−t0

0
(v0 + a(t − t0))d(t − t0) → x = x0 + v0(t − t0) + 1

2a(t − t0)2 (2.52)

If t0 = 0, the relationships (2.51) and (2.52) become :

v = v0 + at (2.53)

x = x0 + v0t + 1
2at2 (2.54)

By eliminating t from the preceding equations, we obtain this important equation in kinematics : v = v0 + at

=⇒ t = v−v0
a =⇒ x − x0 = v0

v−v0
a + 1

2a (v−v0)2

a2 = v2−v2
0

2a , that is :

v2 − v2
0 = 2a(x − x0) (2.55)

Free fall : An example of uniformly varied rectilinear motion is vertical free fall. An object is said to be in
free fall when it falls towards the Earth, subject only to the Earth’s gravitational acceleration g⃗ (the only
force acting on it is its weight). The g⃗ vector is directed at the center of the Earth, and its modulus near the
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Earth’s surface is 9.81 m/s2.
In air, the fall can be considered "free" if friction and Archimedes’ buoyancy can be neglected. The latter is
negligible when the density of the object is greater than that of the air.
Let’s take the example of a ball M released without initial velocity (v0 = 0) from a certain height h. The
motion is vertical, and we choose to locate it relative to a vertical axis y pointing upwards, with origin O
and unit vector vecj.
With respect to the y axis, the acceleration, velocity and position of the ball are :

g⃗ = − g⃗j (2.56)

v⃗ = vj⃗ =
ˆ

− g⃗jdt → v = − gt + C1 = − gt car C1 = v0 = 0. (2.57)

−−→
OM = yj⃗ → y =

ˆ
− gtdt = −1

2 gt2 + C2 = −1
2 gt2 + h car C2 = y(t = 0) = h. (2.58)

The position is y =
´

− gtdt = −1
2 gt2 + C2 = −1

2 gt2 + h car C2 = y(t = 0) = h.
Solve the same problem by choosing a downward axis.

2.7 Accelerated motion, decelarated motion
The motion of a moving body is accelerated if the modulus v of the velocity increases with time, which
implies that v2 also increases with time and mathematically this is expressed by :

dv2

dt
> 0 (2.59)

Knowing that (see equation (1.6)) v2 = v⃗2, the previous derivative is written dv⃗2/dt = 2 (dv⃗/dt) · v⃗ = 2 a⃗ · v⃗
and the equation (2.59) leads to :

a⃗ · v⃗ > 0 (2.60)
The inequation (2.60) means that a⃗ and v⃗ make an angle of less than 90◦. So, for a motion to be accelerated,
the acceleration vector must be within 90◦ from the velocity vector.
In a decelerated motion, the modulus of velocity decreases with time and a calculation similar to the previous
one leads to :

a⃗ · v⃗ < 0 (2.61)
To decelerate a motion, the acceleration vector must form an obtuse angle (between 90◦ and 180◦) with the
velocity vector.

2.8 Two dimensional motion with constant acceleration
Motion with constant acceleration in the one-dimensional case, i.e. uniformly varied rectilinear motion, has
already been described in detail. When motion takes place in two- or three-dimensional space with constant
acceleration, the equations (2.53), (2.54) and (2.55) generalize and can be written in vector form :

v⃗ = v⃗0 + a⃗t (2.62)

r⃗ = r⃗0 + v⃗0t + 1
2 a⃗t2 (2.63)

v⃗2 − v⃗2
0 = 2a⃗(r⃗ − r⃗0) (2.64)

2.8.1 Case of projectile motion :
At t = 0 the projectile is launched from O with an initial velocity v⃗0 making an angle θ0 with the positive
direction of the x axis. If O designates the origin of the x and y axes, at t = 0 we have x0 = 0 and y0 = 0.
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Figure 2.8 – Mouvement d’un projectile

The components of the initial velocity are :
v0x = v0 cos θ (2.65)
v0x = v0 sin θ (2.66)

The acceleration is a⃗ = g⃗ = − g⃗j, so its components are :
a0x = 0 (2.67)
a0y = − g (2.68)

Acceleration is zero along x, so the vx component of velocity will
retain its initial value throughout the entire movement, leading
to :

vx = v0 cos θ0 (2.69)
x = v0 cos θ0 t (2.70)

Suivant l’axe y on a :
vy = v0 sin θ0 − gt (2.71)

y = v0 sin θ0 t − 1
2 gt2 (2.72)

The angle θ which v⃗ makes with the x axis is given at each instant by :

tan θ = vy

vx
= v0 sin θ0 − gt

v0 cos θ0
(2.73)

2.8.2 Trajectory equation
To find the shape of the trajectory, we express y as a function of x. To do this, we eliminate the time t
between x and y. From the equation (2.70) we derive t = x

v0 cos θ0
, and by substitution in the equation (2.72),

we obtain :
y = (tan θ0) x −

( g
2v2

0 cos2 θ0

)
x2 (2.74)

The resulting equation has the form of the equation of a parabola y = c + bx + ax2. The trajectory of a
projectile is therefore parabolic. The distance between the starting point (here y = 0) and the point where
the projectile returns to the same horizontal level (y = 0) is given by :

tan θ0 x − g
2v2

0 cos2 θ0
x2 = 0 ou x

(
tan θ0 − g

2v2
0 cos2 θ0

x

)
= 0 (2.75)

This equation has two solutions :

x1 = 0 et x2 = 2v2
0 cos2 θ0

g tan θ0 = 2v2
0 cos θ0 sin θ0

g = v2
0 sin 2θ0

g (2.76)

The first corresponds to the starting point, and is of no interest to us. The second corresponds to the distance
between the launch point and the point where the projectile touches the horizontal axis x on landing. This
distance, noted P , is called the horizontal range :

P = v2
0 sin 2θ0

g (2.77)

Note that P takes on a maximum value when sin 2θ0 = 1, i.e. when 2θ0 = 90°. In other words, maximum
range is obtained when the launch angle is 45°.

2.9 Curvilinear motion
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trajectoire rectiligne

trajectoire curviligne

Figure 2.9 – Trajectoire curvi-
ligne

Curvilinear motion is motion where the trajectory is not a straight line
but a curved line. A special case of curvilinear motion is circular motion,
which we’ll discuss in section 2.12.

2.9.1 Curvilinear abscissa
Let M0 be a point on the trajectory chosen as origin (reference point).
At any instant t, the moving body is at M . To express the measure of
the length of the path from M0 to M , i.e. the arc

⌢
M0M , we introduce

the curvilinear abscissa s :
s =

⌢
M0M (2.78)

The path can be oriented either to the left or to the right of M0. In this course, we choose to orient it in the
direction of motion.

Relationship between v⃗ and s :

v⃗ = d
−−→
OM

dt
= d

−−→
OM

ds

ds

dt
(2.79)

Tha derivative d
−−→
OM
ds can be written, by definition, as :

d
−−→
OM

ds
= lim

s′→s

−−−→
OM ′ −

−−→
OM

s′ − s
= lim

M ′→M

−−−→
MM ′

⌢
MM ′

(2.80)

z

x

y

i
j

k
O

M

M’

u v
t

+

sens du mouvement

M0

Figure 2.10 – Abscisse curviligne

As M ′ approaches M (i.e. becomes infinitely close to it),
- the direction of the vector

−−−→
MM ′ is that of the tangent at M to the

trajectory, and it is also that of the velocity v⃗ since the vector v⃗ is, by
definition, always tangent to the trajectory.
- the arc

⌢
MM ′ merges with the segment (the chord) [MM ′], i.e.

⌢
MM ′

and
−−−→
MM ′ have the same length, which leads to :

∥d
−−→
OM∥
ds

= 1. (2.81)

From the above we deduce that d
−−→
OM/ds is a unit vector carried by the

tangent at M to the trajectory and oriented in the direction of
−−−→
MM ′.

It therefore has the same direction and sense as the velocity vector v⃗.
Designating it u⃗t, we can write :

v⃗ = ds

dt
u⃗t. (2.82)

Since the trajectory is oriented in the direction of motion, we have ds > 0 and the modulus of v⃗ is written as :

v = ds

dt
. (2.83)

Note : If the trajectory were oriented in the opposite direction, we’d have ds < 0 and in this case v = −ds/dt,
with dt assumed to be always positive.

Compute s from v : If v is known, we can compute s this way :

ds = vdt =⇒
ˆ s

s0

ds =
ˆ t

t0

vdt =⇒ s = s0 +
ˆ t

t0

vdt. (2.84)
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2.10 Tangential and normal components of acceleration

u’t

tu
M’M

C

dα

ρ

ρ=CM=CM’

cercle de centre C

tangentes

ρ

M
0

+

(T)

Figure 2.11 – Rayon de courbure

The velocity is written : v⃗ = vu⃗t, with v = ds/dt. By deriving
v⃗, we obtain the expression for acceleration as a function of u⃗t.

a⃗ = dv⃗

dt
= d(vu⃗t)

dt
= dv

dt
u⃗t + v

du⃗t

dt
(2.85)

Let’s take a closer look at the vector du⃗t/dt. We can already
see that :

du⃗t

dt
· u⃗t = 1

2
d(u⃗t · u⃗t)

dt
= 1

2
d(|u⃗t|2)

dt
= 1

2
d(1)
dt

= 0, (2.86)

which means that du⃗t/dt is normal (perpendicular) to du⃗t. Now
let’s calculate du⃗t/dt :

du⃗t

dt
= du⃗t

ds

ds

dt
= v

du⃗t

ds
, (2.87)

but,

du⃗t

ds
= lim

M ′→M

u⃗′
t − u⃗t

⌢
M0M ′ −

⌢
M0M

, (2.88)

The normals to the trajectory at M and M ′ intersect at a point C. When M and M ′ are infinitely close,
the arc

⌢
MM ′ on the trajectory merges with that of the circle of center C and radius ρ = CM = CM ′. The

quantity ρ is called the radius of curvature of the trajectory at point M . By definition, ρ is a positive quantity.
Point C is the center of curvature.
Denoting dα by the angle M̂CM ′, we have the relationship known in a circle :

ds = ρdα. (2.89)

We then have
du⃗t

ds
= du⃗t

dα

dα

ds
= 1

ρ

du⃗t

dα
=⇒ du⃗t

dt
= v

ρ

du⃗t

dα
(2.90)

The equation (2.85) then becomes :

a⃗ = dv

dt
u⃗t + v2

ρ

du⃗t

dα
(2.91)

Since v and ρ are positive quantities, the equation (2.90) tells us that du⃗t/dα is a vector of the same direction
and sense as du⃗t/dt.

u’t

tu

tu

dα

du  =t u’ −t

Figure 2.12 – Module de du⃗t/dα

Let’s find the modulus of du⃗t/dα. In the figure opposite, we
have : ∥du⃗t| = ∥u⃗t∥,dα = dα because ∥u⃗t∥ = 1, donc du⃗t/dα is
a unit vector.
We have already shown that it is normal to u⃗t. All that remains
is to specify its direction with respect to the trajectory. As shown
in the adjacent figure, its direction is that of vecu′

t − vecut,
which is always oriented towards the inside of the concavity of
the trajectory. More precisely, when M and M ′ are infinitely
close, this vector points towards the center of curvature C. It
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is denoted by u⃗n (du⃗t
dα = u⃗n) ) and the equation (2.91) is finally

written as :
a⃗ = dv

dt
u⃗t + v2

ρ
u⃗n (2.92)

Acceleration can be decomposed in a tangential component a⃗t and a normal component a⃗n.
a⃗t = dv/dtu⃗t, it is tangential to the trajectory and results from the variation in the modulus of velocity over
time. an = fracv2ρ u⃗n(= vdu⃗t/dt), it is normal to the trajectory and results from the variation in direction
of the velocity vector over time.

2.11 Expression of the radius of curvature ρ as a function of v⃗ and a⃗

On a :
v⃗ × a⃗ = v⃗ ×

(
dv

dt
u⃗t + v2

ρ
u⃗n

)
= v3

ρ
(u⃗t × u⃗n) (2.93)

Since the vectors u⃗t and u⃗n are unitary, the same applies to u⃗t × u⃗n. Turning to moduli, the equation (2.93)
is as follows :

∥v⃗ × a⃗∥ = v3

ρ
=⇒ ρ = v3

∥v⃗ × a⃗∥
(2.94)

This expression is valid in any coordinate system. In Cartesian coordinates, it reads :

ρ = (ẋ2 + ẏ2 + ż2)3/2

[(ẏz̈ − żÿ)2 + (żẍ − ẋz̈)2 + (ẋÿ − ẏẍ)2]1/2 (2.95)

If motion takes place in the xy plane, then z = 0, ż = 0 and z̈ = 0 and the expression for ρ becomes :

ρ = (ẋ2 + ẏ2)3/2

[(ẋÿ − ẏẍ)2]1/2 = (ẋ2 + ẏ2)3/2

|ẋÿ − ẏẍ|
(2.96)

2.12 Circular motion
A motion is said to be circular when the trajectory is an circle. It can be considered as a special case of
curvilinear motion where the radius of curvature is the radius R of the circle and the center of curvature is
the center O of the circle.
If M0 is a point of the circle chosen as origin, then

s =
⌢

M0M = Rθ, θ = M̂0OM (2.97)

v⃗ = ds

dt
u⃗t = Rθ̇ u⃗t (2.98)

a⃗ = Rθ̈ u⃗t + Rθ̇2 u⃗n (2.99)

θ̇ gives the variation of angle θ as a function of time. It’s called angular velocity, and its unit is radian per
second (rad/s). θ̈ is angular acceleration, its unit is radian per second squared (rad/ s2).

Uniform circular motion Circular motion is said to be uniform when the angular velocity θ̇ does not
change over time, i.e. when θ̇ is a constant (often noted ω).
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Figure 2.13 – Circular motion

In this case θ̈ = dω/dt = 0. Equations (2.98) et (2.99) become :

v⃗ = Rω u⃗t (2.100)

a⃗ = Rω2 u⃗n = −ω2−−→
OM (2.101)

The linear velocity v has a constant modulus v = Rω. The acceleration
vector a⃗ has a constant modulus (a = Rω2 = v2/R), constantly chan-
ging direction but pointing at all times to the center O of the circle ;
acceleration is said to be centripetal.

Equation θ0 as a function of time

dθ

dt
= ω =⇒

ˆ θ

θ0

dθ =
ˆ t

t0

ω dt =⇒ θ = θ0 + ω(t − t0), (2.102)

θ0 is the value of θ at initial time t0.

The motion repeats itself identically with each complete rotation. The duration T of a complete rotation is
the period of the motion :

T = 2πR

v
= 2πR

Rω
= 2π

ω
(en secondes) (2.103)

We can also define the frequency f of the motion, which corresponds (here) to the number of complete
rotations performed per second :

f = 1
T

(2.104)

Frequency has the dimension of the inverse of time, T−1. Its SI unit is the hertz (Hz), 1 Hz = 1 s−1.

2.13 Movement with central acceleration
The motion of a moving body M is said to be centrally accelerated if its acceleration a⃗ is constantly directed
towards a fixed point (center), noted O on the figure 2.14.

M

M M

M

a

a

a

1 2

3

2

3

O

1
a

Figure 2.14 – Mouvement à accélération
centrale

The vectors −−→
OM and a⃗ are, of course, collinear, which implies

that :
−−→
OM × a⃗ = 0⃗ (2.105)

The equation (2.105) shows that a motion with central accelera-
tion is a plane motion, i.e. it takes place in a plane. Indeed, if v⃗

is the velocity of M , then : −−→
OM × a⃗ = 0⃗ ⇐⇒

−−→
OM ×dv⃗/dt = 0⃗.

Knowing that −−→
OM × dv⃗/dt = d(−−→

OM × dv⃗)/dt − d
−−→
OM/dt × v⃗,

il vient d(−−→
OM × v⃗)/dt − d

−−→
OM/dt × v⃗ = 0⃗, soit

d(−−→
OM × v⃗)

dt
= 0⃗, (2.106)

car d
−−→
OM/dt × v⃗ = v⃗ × v⃗ = 0⃗.

Equality to 0 of the derivative in the equation (2.106) implies
that the vector −−→

OM/dt × v⃗ is constant :
−−→
OM/dt × v⃗ = C⃗ ′, C⃗ ′ constant in modulus, direction and sense.
By definition of the vector product, the vector −−→

OM is perpendicular to C⃗ ′. So the point M moves in the
plane perpendicular in O to C⃗ ′. Centrally accelerated motions are planar motions.
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2.13.1 Areal speed
∆A = variation in area swept by −−→

OM between t and t + ∆t. Pour ∆t assez petit, c’est-à-dire M ′ assez proche
de M , we can confuse the arc

⌢
MM ′ with the cord MM ′. The area ∆A is then just half of the area of the

parallelogram built on −−→
OM and

−−−→
MM ′ :

∆A = 1
2

∥∥∥∥−−→
OM ×

−−−→
MM ′

∥∥∥∥ =⇒ ∆A

∆t
= 1

2

∥∥∥∥∥∥−−→
OM ×

−−−→
MM ′

∆t

∥∥∥∥∥∥
At the limit ∆t → 0, we’ll have :

lim
∆t→0

∆A

∆t
= 1

2

∥∥∥∥∥∥−−→
OM × lim

∆t→0

−−−→
MM ′

∆t

∥∥∥∥∥∥ ,

then, since lim∆t→0
−−−→
MM ′

∆t = v⃗,
dA

dt
= 1

2

∥∥∥−−→
OM × v⃗

∥∥∥ (2.107)

The areal speed is a positive quantity and measures the area swept by the −−→
OM radius-vector in one second.

Its SI unit is square meters per second ( m2 s−1) and its dimension is square length per time (L2 T−1). The
areal speed is the magnitude of the areal velocity 1

2(−−→
OM × v⃗).

Note : For motion with central acceleration, the −−→
OM × v⃗ is constant and, consequently, dA

dt is equal to a
positive constant C. We therefore have :

dA

dt
= C (2.108)

The constant C is called the area constant because −−→
OM sweeps out equal areas over equal durations. The

motion is said to follow the law of areas. The converse is also true. If dA
dt = C, then motion has central

acceleration.

The law of areas applies to the motion of planets around the Sun : A radius vector joining any planet to the
Sun sweeps out equal areas in equal intervals of time. This is known as the Kepler’s second law.

∆

∆

t

t

A

B

Sun

Planet

Figure 2.15 – For the same interval of time ∆t, area A equals area B
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