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The equation of the trajectory of P is :
y = − g

2v2
0 cos2 θ
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Galileo (left portrait) writes : "Aristotle declares
that a 100-pound iron ball has already descended
100 cubits when a 1-pound ball has traveled only
one cubit. I affirm that the two balls arrive toge-
ther."

In 1687, Newton (right portrait) published the ma-
thematical principles of natural philosophy (Phi-
losophiae naturalis principia mathematica). In it,
he described his discoveries on universal gravita-
tion and the three famous laws, known as Newton’s
Laws. These laws describe the physical phenomena
of inertia and the forces exerted on objects.

Above, the blue figure (left) shows the trajectory of a small ball P launched from the top of a building (height h)
with a velocity vecv0 making an angle θ with the horizontal. The expressions to its right give the equation of the
ball’s trajectory and its velocity when it hits the ground. The figure on the far right defines the radius of curvature
at a point on the trajectory. When M ′ tends towards M (trajectory (T ) in red), the normals to the tangents at M

and M ′ meet at a point C called the center of curvature. The lengths CM and CM ′ are then equal to a quantity
ρ called radius of curvature. A circle with center C and radius ρ will necessarily pass through M and M ′. As for
the two portrait photos below, they are of Galileo (left) and Newton (right), two great scientists who left their
mark on the history of science and contributed greatly to mechanics.

P̊r`o˝f. M. A. B`e¨l‚k˛h˚i˚rffl, `a‹n‹n`é´e 2023-2024
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Chapitre 4

Work and Energy

4.1 Learning objectives
- Understand the concept of work and how to calculate the work done by a force.
- Understand the concept of the net work done on an object and how that relates to a change in speed of the
object.
- Understand the concept of kinetic energy and where it comes from.
- Understand the concept of power.

4.2 Introduction
In everyday language, the word ’work’ is used to designate any muscular or intellectual effort. So, for example,
a teacher does work when he teaches, a student does work when he reads his lesson, a farmer does work
when he tills his field, a bus-driver does work when he drives his bus, and an architect does work when he
designs a building, etc. The word ’energy’, on the other hand, conveys the idea of strength and firmness in
action, or vitality. For example, protest with energy (force), or feel full of energy (vitality).
In physics, work and energy are fundamental concepts ; they have a more specific meaning. We will see that
work is related to the transfer of energy, and energy represents the capacity to do work.
In this chapter, we’ll develop all these concepts, we’ll talk about the work done by a force on an object, and
then introduce the notions of kinetic energy, potential energy and mechanical energy. So, energy comes in
various forms. In addition to kinetic, potential, and mechanical energies, energy can also have the form of :
- Thermal (Heat) Energy : The internal energy of an object due to the motion of its atoms and molecules. It
is related to the temperature of the object.
- Chemical Energy : The energy stored in the bonds between atoms and molecules. It can be released through
chemical reactions.
- Electrical Energy : The energy associated with the flow of electric charge.
- Nuclear Energy : The energy stored in the nucleus of an atom. It can be released through nuclear reactions.
- Electromagnetic (Radiant) Energy : The energy carried by electromagnetic waves, such as light.
We will talk about electrical energy in the next semster in Physics 2. Energy is subject to the principle
of conservation of energy, which states that the total energy of an isolated system remains constant over
time. Energy is neither created nor destroyed, only transferred or converted from one form to another. This
principle is a fundamental concept in understanding and solving problems in physics.
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CHAPITRE 4. WORK AND ENERGY

4.3 Work done by a force on an object
4.3.1 Work done by a constant force on an object moving in a straight line
Consider an object moving in a straight line while an external constant force F⃗ (modulus, direction and
sense do not vary) acts on it. The work, noted W , that vecF performs on the object, is defined to be the
scalar product of vecF dot the vector displacement, say −−→

AB, through which the force acts. In equation form :

W = F⃗ ·
−−→
AB (4.1)

If α is the angle between F⃗ and −−→
AB, the equation becomes :

x
A B
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x
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BA
x
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α>90
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o

o
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object object object

W = F AB cos α (4.2)

∗ W is a scalar quantity. (4.2) shows that the SI unit of work is the newton meter. This unit is called the joule
(symbol J) : 1 J = 1 N · m. Therefore, a joule corresponds to the work done on (i.e. the energy transferred to)
an object by a force of 1 N acting on the object during a displacement of this object by 1 m in the direction
of the force.
∗ Equation (4.1) shows that work can be zero, positive or negative. Its sign is that of cos α because F and
AB, being moduli, are positive.

- When 0 < α < π/2 and F ̸= 0 and AB ̸= 0, as in figure a), the cosine is positive and, consequently, the
work is positive. In this case, the force is said to be doing motive work.

- For π/2 < α < π, and F ̸= 0 and AB ̸= 0, as in figure b), the work is negative and the force is said to
be doing resistive work.

- When α = π/2, and F ̸= 0 and AB ̸= 0, as in figure c), the cosine is 0 and the work is zero.
A force acting on an object perpendicularly to the displacement does no work.
∗ Of course, no work is done for zero force (F = 0), and no work is done for zero displacement (AB = 0).
∗ When we talk about the work of F⃗ along several displacements AB, BC, ..., we adopt a notation that
avoids confusion, for example : WAB, WBC , ...
When there are several forces F⃗1, F⃗2 ..., we write WAB(F⃗1), WAB(F⃗2), ....
Questions :
1) You exert a push on a wall. What is the value of the work done on the wall ? The work on the wall is zero
because the wall makes no displacement.
2) When you walk with a bottle of water in your hand, do you do any work on the bottle ? No, because the
force you exert on the bottle is vertical, whereas its displacement is horizontal.
3) What is the work done by the force of static friction on an object ? The work is zero because there is no
displacement.
4) What is the work of the kinetic frictional force F⃗k on a 2 kg block descending at constant velocity a
distance of 4 m along a plane inclined at 30° to the horizontal ?
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CHAPITRE 4. WORK AND ENERGY

Let’s denote by d⃗ the displacement. Therefore, the work done by F⃗k is W = F⃗k · d⃗, d⃗ that gives −Fk × d
because F⃗k is directed opposite to d⃗. Constant velocity means that the acceleration is zero, in other words,
the sum of applied external forces is zero : F⃗k = −P⃗∥, P⃗∥ being the parallel component (to the plane) of
the block weight. So, F⃗k has same magnitude as P⃗∥, i.e., Fk = m g sin 30 and the work done by F⃗k reads :
W = −m g sin 30 × d = 2 × 9.8 × (1/2) × 4 = −39.2 J.

4.3.2 Work done by a variable force on an object moving along a non-rectilinear
trajectory

For an elementary (i.e. infinitesimal) displacement Q
	
ª�Ë@ ù



ëA
	
J
�
JÓ) dr⃗ =

−−−→
MM ′, we can assume that the motion

is rectilinear and that the force F⃗ is constant.

F

M

x

y

z

M
M

1

2

M’
MM’=   rd

In the same way as in equation (4.1), we can express the elementary work 1 of F⃗ from M to M ′ as :

δW = F⃗ · dr⃗ (4.3)

The work done by vecF for a displacement from M1 to M2 is obtained by integration :

W =
ˆ M2

M1

δW =
ˆ M2

M1

F⃗ · dr⃗ (4.4)

Note : When n forces F⃗1, F⃗2,...,F⃗n are acting on the object, their resultant is written F⃗ = F⃗1 + F⃗2 + . . . + F⃗n

and the previous equation becomes

W =
ˆ M2

M1

(F⃗1 + F⃗2 + · + F⃗n) · dr⃗ = W1 + W2 + . . . + Wn (4.5)

In other words, the net (i.e. the total) work done on the object by all these forces can also be written as the
algebraic sum of the individual works.
The previous equation can also be written as :

W =
ˆ M2

M1

R⃗ · dr⃗ (4.6)

1. In mathematics, an exact differential form of a function f is written df . In physics, the work done by a force F⃗ along an
elementary displacement is noted δW rather than dW because, in general, δW is not an exact differential form. This means that
the integral

´ M2
M1

δW depends upon the path taken to move from M1 to M2. The elementary work is an exact differential form if
the force F⃗ is conservative (see in section 4.6.1). In this case we can use the notation dW for the elementary work.
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CHAPITRE 4. WORK AND ENERGY

where R⃗ = F⃗1 + F⃗2 + · + F⃗n is the resultant of all of the forces applied to the object. That is, the net work
done on the object is also given by the work of the net force force applied to it.

4.4 Kinectic energy and kinectic energy theorem
We know that Newton’s second law for an object (a material point) 2 of constant mass m and velocity vecv
is written as :

F⃗ = m
dv⃗

dt
, (4.7)

where F⃗ represents the sum of the forces applied to m. By multiplying both members scalarly by v⃗, we
obtain :

F⃗ · v⃗ = m
dv⃗

dt
· v⃗. (4.8)

Note that
dv⃗

dt
· v⃗ = d

dt

(1
2 v⃗ · v⃗

)
,

and since v⃗ · v⃗ = v2 and m is constant, we finally have :

m
dv⃗

dt
· v⃗ = d

dt

(1
2mv2

)
,

and then,
F⃗ · v⃗ = d

dt

(1
2mv2

)
, (4.9)

or
F⃗ · v⃗dt = d

(1
2mv2

)
. (4.10)

The first member of equation (4.10) represents the elementary work of F⃗ for an elementary displacement
v⃗dt = dr⃗, i.e., F⃗ · v⃗dt = F⃗ · dr⃗ = δW (see equation (4.3)). We therefore have :

δW = d

(1
2mv2

)
(4.11)

The quantity 1
2mv2 has the same dimension as W , i.e. the dimension of an energy. It is an energy that results

from the fact that there is motion (velocity ̸= 0). It’s called kinetic energy and is often referred to as Ec :

Ec = 1
2mv2 (4.12)

Equation (4.11) can be rewritten as follows :

δW = dEc (4.13)

When m goes from M1 (velocity v1, kinetic energy Ec1) to M2 (velocity v2, kinetic energy Ec2), we have by
integration : ˆ M2

M1

dW =
ˆ Ec2

Ec1

dEc (4.14)

or,
W = ∆Ec ou encore W = Ec2 − Ec1 = 1

2mv2
2 − 1

2mv2
1 (4.15)

2. Here, we recall that objects are considered as "point materials". In reality, objects’ size is not point-like but they are
qualified as such because we limit ourselves to movements where all the points of the object perform the same motion.
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CHAPITRE 4. WORK AND ENERGY

This last equation constitutes the kinetic energy theorem, which states that :
The work done by the sum of all the forces acting on an object moving from M1 to M2 is equal to the variation
in the object’s kinetic energy between M1 and M2.

From the kinetic energy theorem, we deduce that :
1- When the modulus of v⃗ does not change, no work is done. If there are applied forces, they are necessarily
perpendicular to the displacement. This is the case in uniform rectilinear motion or uniform circular motion.
2- If Ek decreases, work is negative (resistive work). If Ek increases, work is positive (motive work).
Example : A girl pushes a toy car ( �èQ 	ª�Ó

�
éJ.ªË

�
èPAJ
�) towards her little brother on level ground. She exerts a

horizontal force of 5 N on the car, initially at rest, over a distance of 1 m.
a) What is the value of the work supplied to the car ? W = 5 N × 1 m = 5 J
b) What is the kinetic energy at the end of 1 m ? Ec2 − Eci = W =⇒ Ec2 = 5 J
c) If the car has a mass of 0.1 kg, what will its speed be after 1 m ? mv2

c1m/2 = Ec2 =⇒ v =
√

2Ec2/m =
10 m/ s.
d) The girl lets go of the car after 1 m. The car continues to roll along the ground and reaches the brother,
who stops it over a distance of 0.25 m by exerting a constant force F ′ in the opposite direction. Évaluate F ′

neglecting friction.
Let’s apply the kinetic energy theorem in the 0.25 m phase : W (F ′) = Ekf

− Eki
, W (F ′) = −F ′ × 0.25,

Ecf
= 0, Eki

= 5 J =⇒ −0.25F ′ = −5 =⇒ F ′ = 20 N. The negative sign (W = −5 J) indicates that it’s, in
a way, the car that is doing the work on the child.
This exercise teaches us that when positive work is done on an object, it gives it kinetic energy. This energy
is then available for further work.

4.5 Power
How quickly work is done is measured by power. Power is the rate at which work is done on an object.
Average power :

Pav = work done by a force on an object between time t1 and time t2
t2 − t1

= ∆W

∆t

Instantaneous Power :
P = lim

∆t→0

∆W

∆t
= dW

dt

If power is constant, then P = Pm which yiels :

∆W = P∆t

In SI unit system, power is expressed in watts (symbol W), 1 W = 1 J/ s. A watt is the power required to do
one joule of work in one second.
We can also write the power supplied to an object as a function of the force F⃗ acting on it. Since dW = F⃗ · dr⃗,
we have dW/dt = F⃗ · dr⃗/dt = F⃗ · v⃗ and then :

P = F⃗ · v⃗

Example 4.5.1 : A boy with a mass of 51 kg climbs, at constant speed, a vertical rope 6 m long in 10 s.
a) How much work does the boy do ? b) How much power does the boy produce during the climb ? Take
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g = 9.8 m/s2.
Answer : a) To maintain a constant climbing speed, the boy just needs to exert a force to compensate for
his weight. The work he does is therefore given by : W = m gd = 51 kg × 9.8 m/s2 × 6 m = 2998.8 J, b) The
power produced by the boy during the climb is P = W/t = 2998.8 J/10 s = 299.88 W.
Example 4.5.2 : If a car engine can do work on the car (mass m = 1000 kg) with a power of P , what will be
the speed of the car at some time t if the car starts from rest ? How long does it take the car to accelerate
from 0 to 100 km/ h if its power is P = 90 hp ? hp is the symbol for horsepower a British unit for power,
1 hp = 745,7 W. Horsepower is one of the main measures that quantifies an engine’s power output. The
power of a Clio 4 gt-line car is typically 90 hp. The "Wonder of the Seas" cruise ship (362 m long and 65 m
wide) can deliver a power of 90000 hp, the equivalent of 1000 Clio 4 gt-line !
Solution : The total work done on the car is W = P × t. Then, using the Work-Energy Theorem between
t = 0 s and t = t s, we can find the speed of the car at some time t : W = 1

2mv2
t − 1

2mv2
0 or Pt = 1

2mv2
t .

Therefore, vt =
√

2Pt/m. The car reaches 100 km/ s at t = mv2
t /2P .

4.6 Law of Conservation of Mechanical Energy
When several forces act on a particle, the kinetic energy theorem (equation (4.15)) is written :

W1 + W2 + . . . + Wn = ∆Ec (4.16)

Among the applied forces, we’ll distinguish two types : nonconservative and non conservative forces. Conser-
vative forces lead us to introduce the concept of potential energy, which in turn enables us to express the
conservation of mechanical energy.

4.6.1 Conservative force and nonconservative force
If we throw an object of mass m vertically upwards from a point O with a velocity v0, the object will rise
until it reaches the point where its velocity cancels out (the summit), then fall back down instantaneously.
Its velocity, now directed downwards, increases and it arrives at O (starting position) with velocity −v0.
This is, in fact, true in a more general way : if, during its ascent, the object is located at a position P with
velocity v, then, when it descends again, it will arrive at P with velocity −v. In other words, the object
returns to the same point with the same kinetic energy Ek = mv2/2. Even if the kinetic energy varies over
time (decreasing on the outward journey and increasing on the return), it is conserved in the sense that the
object returns to the initial point with the same kinetic energy.
In the previous reasoning, we implicitly ignored air resistance and assumed that the only force acting on the
object once launched is gravitational force (its weight). Because it conserves kinetic energy, gravitational
force is referred to as a conservative force. Any force that behaves like the gravitational force, i.e. any force
that conserves kinetic energy over a round trip, is a conservative force.
If, on the other hand, an object acted upon by one or more forces returns to its initial position with more
or less kinetic energy, then kinetic energy is not conserved over a round trip. In this case, at least one of
the forces applied to the object is a nonconservative force. In the example of the object launched upwards,
the kinetic energy on return would not be the same if the air resistance is not negligible. The force of air
resistance, which is a form of frictional force, is a nonconservative force.
To sum up, a force acting on an object is said to be a conservative force if the object’s kinetic energy returns
to its initial value after any round trip. The force is nonconservative if the object’s kinetic energy does not
return to its initial value (changes) after any round trip. .
Second definition : Conservative and nonconservative forces can be defined in terms of the work performed
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by the applied forces.
Let’s take the example of the object thrown vertically upwards.
If we neglect air resistance, the only force acting on the object is its weight. On the outward journey, the
work done by the weight on the object is m g⃗ · d⃗ = −m gd (negative because on the outward journey the
weight m g⃗ and the displacement d⃗ are in opposite directions). On the return trip, the work done by the
weight on the object is m g⃗ · (−d⃗) = +m gd (positive because on the return trip the weight m g⃗ and the
displacement −d⃗ are in the same direction). On the round trip, the work is therefore null.
If we take into account the force of air resistance, this force opposes the displacement and will do negative
work on both the outward and return journey, so that over the whole of the outward and return journey the
work cannot be zero (negative + negative ̸= 0). Hence the second definition : A force is conservative if the
work it does on an object in any round trip is zero. A force is non-conservative if the work it does on an
object in any round trip is non-zero.
This second way of defining conservative and non-conservative forces is completely equivalent to the first
definition. Indeed, if the variation ∆Ec of kinetic energy is zero in a closed path (outward and return),
then, according to the kinetic energy theorem (equation (4.15)), the work is zero and all forces applied to
the object must be conservative. If, on the other hand, ∆Ek ̸= 0 then at least one of the forces applied is
nonconservative.
Third definition : Consider an object moving from A to B along path 1 and back from B to A along path 2
(see figure 4.1A).

(B)

2

1

2

1

(A)

b

aa

b

Figure 4.1 –
Several forces can act on the object. Let’s consider them separately. If the force under consideration is
conservative, then the work it does on a round trip is zero, i.e. WAB,1 + WBA,2 = 0 or

WAB,1 = −WBA,2 (4.17)

The work done to go from A to B along path 1 is equal to minus the work done to go from B to A along
path 2. But, if the object takes path 2 to get from A to B (see figure 4.1B), the work is simply given by
minus the work done to get from B to A following path 2 :

WAB,2 = −WBA,2, (4.18)

and therefore
WAB,1 = WAB,2. (4.19)

Since points A to B and paths 1 and 2 are arbitrary, equation (4.19) tells us that the work done on a particle
by a conservative force in moving from A to B is the same whatever the path taken to move from A to B.
This brings us to the third definition of conservative and nonconservative forces : A force is conservative if
the work it does on a particle moving between two points depends only on these two points and not on the
path followed. A force is nonconservative if the work it does on a particle moving between two points depends
on the path taken to make the displacement between the two points. We’ll illustrate this last definition with
the following example. Consider a mass m and calculate the work done by its weight (weight m g⃗) when it is
made to move from A to B via path 1, then path 2 and then path 3, figure below.
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Figure 4.2 – Weight work from A to B is est le même whatever the path taken.

Path 1 : W1 = m g⃗ ·
−→
AC + m g⃗ ·

−−→
CB = m g × ac × cos 90°︸ ︷︷ ︸

0
+m g × cb × cos 180°︸ ︷︷ ︸

−1
= −m gh

Path 2 : W2 = m g⃗ ·
−−→
AB. The angle between m g⃗ and −−→

AB (see figure below) is 90° + ϕ, then W2 =
m g × AB × cos(90° + ϕ) = m g × AB × (− sin ϕ) = −m g × CB = −m gh

Path 3 : For a displacement dr⃗ on path 3, the elementary work done by the weight is : dW = m g⃗ · dr⃗. Let’s
decompose dr⃗ according to x (unit vector i⃗) and y (unit vector j⃗) : dr⃗ = dx i⃗+dy j⃗. So, dW = m g⃗·dx⃗i+m g⃗·dyj⃗.
The first term is zero because g⃗ and i⃗ are perpendicular. Therefore dW = m g⃗ · dyj⃗ = −m g⃗j · dyj⃗ = −m gdy
because j⃗ · j⃗ = 1. The total work on the whole path 3 is obtained by integration from A to B, that is from
yA to yB : W3 =

´ yB

yA
−m gdy = −m g(yB − yA) = −m gh

We find −m gh for all three paths. The same result was obviously expected since, as already mentioned,
gravitational force (weight) is a conservative force. Note that if the paths were descending as in the figure
below (A higher than B), we would have found +m gh. This quantity can be written as : −m g(−h) so that
even here we can express the work as W3 = −m g(yB − yA).

4.6.2 Potentoial energy
When the particle moves from position 1 (velocity v1) to position 2 (velocity v2), the change in kinetic energy
is :

Ec2 − Ec1 = 1
2mv2

2 − 1
2mv2

1 (4.20)

If we assume that weight is the only force acting on the particle, the work done on the particle is :

W12 = −m g(y2 − y1) (4.21)

By introducing the quantity Ep = m gy, which depends only on the position y, the work W12 can be written
as −(Ep2 − Ep1), i.e., minus the variation in Ep. The kinetic energy theorem then gives :

Ec2 − Ec1 = −(Ep2 − Ep1), (4.22)

or more succinctly
∆Ec = −∆Ep (4.23)
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Figure 4.3 – The work of the weight is +m gh if point A is at a height h above B.

The quantity Ep is called potential energy. Remember that the expression of Ep is closely linked to the fact
that the force involved (in this case, weight) is a conservative force. In other words, potential energy only
makes sense for a conservative force. Potential energy cannot be associated with a nonconservative force !
Just as the kinetic energy of a particle represents its capacity to do work due to its motion (i.e. its velocity),
the potential energy of a particle represents its capacity to do work due to its position. Example : By lifting
an object to a height h, I do an amount of +mgh work on it, which I transfer to it in the form of potential
energy. If I let go of the object, it will be able to fall thanks to its potential energy.
The equation (4.23) tells us that if the kinetic energy Ek increases (decreases) by an amount, then the
potential energy Ep decreases (increases) by the same amount.

4.6.3 Conservation of mechanical energy
The equation (4.23) results in ∆Ek + ∆Ep = 0 or ∆(Ek + Ep) = 0, which also means that the sum Ek + Ep,
called mechanical energy, does not vary over time :

Ec + Ep = constant (4.24)

When the forces applied to a particle are conservative, its mechanical energy remains constant during motion.
Application exercise : An object of mass m, located at a height h from the ground, is dropped without initial
velocity. Air resistance is neglected. What is its velocity when it reaches the ground ?
1) First method : The relationship (2.55) seen in kinematics is written here v2 − 00 = 2 gh =⇒ v2 = 2 gh
and therefore v =

√
2 gh.

2) Second method : Once released, the object is subject only to its weight. Since weight is a conservative
force, we can apply the equation (4.24). This gives 0 + m gh = mv2/2 + 0 =⇒ v = sqrt2 gh. Of course, the
same result applies.

4.6.3.1 Alternative definition of a conservative force
Taking the differential of the two sides of the equation (4.24), we have : d(Ec + Ep) = d(constante), since a
differential of a constant is zero, then dEc + dEp = 0 or

dEc = −dEp. (4.25)
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This last equation is none other than the differential form of the equation (4.23). Remember that this result
only applies for conservative forces. If F designates the sum of conservative forces, the kinetic energy theorem
for an elementary displacement dr gives dEk = F⃗ · dr⃗ and the equation (4.25) leads to :

F⃗ · dr⃗ = −dEp. (4.26)

Considering Ep as a function of position M(x,y,z), its total differential form is written (there are 3 variables) :

dEp = ∂Ep

∂x
dx + ∂Ep

∂y
dy + ∂Ep

∂z
dz (4.27)

If M is referenced to a system of axes Oxyz with an orthonormal basis i⃗, j⃗, k⃗, we have −−→
OM ≡ r⃗ = x⃗i+yj⃗ +zk⃗.

So dr⃗ = dx⃗i + dyj⃗ + dzk⃗. The equation (4.27) can be written as a scalar product :

dEp =
(

∂Ep

∂x
i⃗ + ∂Ep

∂y
j⃗ + ∂Ep

∂z
k⃗

)
· (dx⃗i + dyj⃗ + dzk⃗), (4.28)

The first factor in brackets represents the gradient of Ep. It is denoted −−−−−−−−→
textrmgrad Ep or −−−→

nablaEp. The
second factor is simply dr⃗. The total differential dEp can therefore be written as :

dEp = −−→grad Ep · dr⃗, (4.29)

and equation (4.26) becomes
F⃗ · dr⃗ = −

−−→grad Ep · dr⃗, (4.30)

or, since dr⃗ is arbitrary,
F⃗ = −

−−→gradEp. (4.31)

4.7 Frictional forces and mechanical energy
The kinetic energy theorem is : W = DeltaEc (see equation (4.15)). If, in addition to conservative forces,
there are also non-conservative forces, we can decompose the work W into two terms, Wc and Wnc. We then
have :

Wc + Wnc = ∆Ec (4.32)

If Ep is the potential energy associated with conservative forces, we have : Wc = −∆Ep. The equation (4.32)
then becomes :

−∆Ep + Wnc = ∆Ec (4.33)

When nonconservative forces are reduced to frictional forces, then Wnc = Wf and the equation (4.33)
becomes :

−∆Ep + Wf = ∆Ec (4.34)

This equation can be rearranged as :
∆(Ec + Ep) = Wf , (4.35)

which means that (Ec + Ep) is not constant, i.e. frictional forces are non-conservative forces. When frictional
forces act in addition to conservative forces, the change in mechanical energy (Ec + Ep) is equal to the work
of the frictional forces. The work Wf of the friction forces is negative, since friction opposes displacement.
Equation (4.35) therefore reflects a loss of mechanical energy.
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4.8 Résumé
- Travail d’une force constante d’un point A à un point B d’une trajectoire rectiligne : W = F⃗ ·

−−→
AB

- Travail d’une force variable fait sur un déplacement élémentaire dr⃗ pris sur une trajectoire quelconque :
dW = F⃗ · dr⃗

- Énergie cinétique d’une masse ponctuelle m animée d’une vitesse v : Ec = 1
2mv2

- Théorème de la variation d’énergie cinétique : W = ∆Ec, plus explicitement, entre deux points 1 et 2,
W1→2 = 1

2mv2
2 − 1

2mv2
1

- Forces conservatives et Forces non conservatives :

Comparaison entre forces conservatives et forces non conservatives
Forces conservatives Forces non conservatives

1 Le travail effectué dépend du chemin suivi Le travail effectué ne dépend pas du chemin suivi
2 Le travail effectué sur un circuit fermé est nul Le travail effectué sur un circuit fermé n’est pas nul
3 Force conservative F⃗c et énergie potentielle Ep Pour force non conservative, une telle relation

sont reliées par : F⃗c = −
−−→gradEp n’existe pas

4 L’énergie mécanique est conservée : L’énergie mécanique n’est pas conservée :
Ec + Ep = constante Ec + Ep ̸= constante

5 Le travail effectué par une force conservative Le travail effectué par une force non conservative
est entièrement récupérable n’est pas entièrement récupérable
Exemple : force d’attraction gravitationnelle Exemple : force de frottement

- En présence de forces conservatives seulement, l’énergie mécanique se conserve : ∆(Ec + Ep) = 0 ⇐⇒
∆Ec = −∆Ep.
- En présence de forces conservatives et non conservatives, l’énergie mécanique ne se conserve pas, sa variation
est égal au travail des forces non conservatives : ∆(Ec + Ep) = Wnc. Lorsque les forces non conservatives se
réduisent à des forces de frottement, alors Wnc = Wf .
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4.9 Exercices d’application
Exercice 1 : Un bloc de masse m = 2 kg, initialement au repos sur une table horizontale, se met en
mouvement sous l’action d’une force F = 7 N appliquée horizontalement. Le coefficient de frottement
cinétique entre le bloc et la table est µc = 0.1.
a) Calculer l’accélération du bloc.
Rép. : En plus de la force appliquée F , le bloc est soumis à son poids m g, la réaction normale N de la table
et à la force de frottement cinétique Fr = µcN . Les forces m g et N se compensent, i.e. N = m g. Le bloc
se déplace dans le sens de F alors que Fr s’oppose à la direction de déplacement. Au total, le bloc subit la
force nette F − Fr. D’après la deuxième loi de Newton, la force nette communique au bloc l’accélération
a = (F − Fr)/m = (7 − 0.1 × 2 × 9.8)/2 = (7 − 1.96)/2 = 2.52 m/ s2.
b) En déduire la distance parcourue après 10 s.
Rép. : Le mouvement est uniformément accéléré puisqu’on a une accélération constante. Sachant que le bloc a
une vitesse initiale nulle, la distance parcourue après 10 s est donnée par : d = at2/2 = 2.52 × 102/2 = 126 m.
c) Calculer le travail effectué sur le bloc après 10 s par chacune des forces qui agissent sur lui.
Rép. : WF = Fd = 7 × 126 = 882 J.
WFr = Fr × d = −1.96 × 126 = −247 J.
Wm g = WN , car ces deux forces sont ⊥ au déplacement.
d) Calculer le travail total sur le bloc après 10 s.
Le travail total est donné par la somme algébrique des travaux calculés en c).
Wtotal = 882 − 247 + 0 + 0 = 635 J.
Le travail Wtotal est équivalent au travail de la force nette agissant sur le bloc : Wtotal = (F − Fr) × d =
5.04 × 126 = 635 J.
Exercice 2 : Une voiture de 1000 kg dispose d’une force de freinage maximum égale à 5000 N.
a) Exprimer la distance d’arrêt minimum en fonction de sa vitesse ? (R : 0,1 v2 en unités S.I.).
b) Quelle est la puissance maximum développée par les freins si la vitesse initiale de la voiture est de
108 km/ h ? (R : 150 kW).
Solution : a) 1

2 × 1000 × 02 − 1
2 × 1000 × v2 = −5000 × d =⇒ d = (−500/ − 5000)v2 = 0.1v2

b)

plateau

poulie

moteur

Exercice 3 : Un monte-charge consiste en un plateau sur lequel on
dépose la charge à monter ou à descendre. Ce plateau est suspendu
à un câble passant sur treuil actionné par un moteur électrique.
a) Quel travail le monte-charge effectue-t-il lorsqu’il monte une charge
de 60 kg, comprenant la masse du plateau et de ses accessoires, d’une
hauteur de 3 m ?
b) Quelle doit être la puissance minimum du moteur pour effectuer ce
travail en une minute ?
c) Sachant que la poulie a un rayon de 25 cm, quelle doit être la vitesse
angulaire de la poulie pour effectuer ce travail en une minute ?
d) Lorsque la charge est arrivée au sommet de sa trajectoire, le câble
casse et la charge retombe sur le sol, 3 m plus bas. Avec quelle vitesse
touchera-t-elle le sol ?
e) Combien de temps mettra-t-elle pour arriver au sol ? On néglige la
résistance de l’air.
Rép. : a) 1800 J ; b) 30 W ; c) 0,2 rad/s ; d) 7,8 m/ s ; e) 0,77 s.
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