TD n ${ }^{\circ} 1$: Solution

Vector exercises with solutions, L1 SCMI ——October 2023
This series of questions relates to the 1 st chapter. I've ticked the right answers. It's up to you to convince yourself of all the answers you've ticked. For example, in question 28, I chose answer c). I'll show you with a detailed calculation that answer c) is indeed the right answer.
Solution of Question $28: \vec{a}+\vec{b}=\vec{c} \Longrightarrow(\vec{a}+\vec{b})^{2}=(\vec{c})^{2} \rightarrow a^{2}+b^{2}+2 a b \cos (\widehat{a}, \vec{b})=c^{2} \Longrightarrow$ $144+25+120 \cos (\widehat{\vec{a}, \vec{b}})=169 \Longrightarrow 169+120 \cos (\widehat{\vec{a}, \vec{b}})=169 \Longrightarrow 120 \cos (\widehat{\vec{a}, \vec{b}})=0 \Longrightarrow \cos (\widehat{\vec{a}, \vec{b}})=0 \Longrightarrow$ $(\widehat{\vec{a}, \vec{b}})=\pi / 2$. Answer c) is the right choice. Do the same to solve the other questions.

Questions to be solved in tutorial classroom : 2, 5, 6, 8, 9, 12, 13, 17, 18, 20, 23, 24, 25, 29.

Question $1-P$ and Q are two physical quantities with different dimensions, i.e. $[P] \neq[Q]$. Which of the following operations are possible?
a) $P-Q$;
\square
b) $P Q$;c) $1-P / Q$;d) None of the above answers.

Question 2 - P et Q sont deux grandeurs physiques possédant la même dimension, i.e. $[P]=[Q]$. Parmi les opérations ci-dessous, lesquelles sont possibles?
\square a) $P-Q$;
\square
b) $P Q$;
\square
c) $1-P / Q$;
d) None of the above answers.

Question 3 - One of the health measures during the covid-19 period is to maintain a minimum distance of 1 m between individuals. Distance is a scalar quantity because
\square a) to express it, we don't need to specify a direction or orientation. All you need is a number followed by a unit;b) to express it, you need a number, a direction and an orientation ;
c) a distance can be a vector ;
d) a distance cannot be calculated from a vector.

Question 4 - To get to a position B from an initial position A, we need to know in what direction and at what distance B is located. The displacement from A to B is a vector because
a) to express it, we don't need to know the distance between A and B;
b) to express it, you just need to know the distance between A and B;
c) to express it, you don't need to know the direction;
$\square d$) to express it, you need to specify the direction of the vector $\overrightarrow{A B}$, in addition to the distance $A B$.

Question 5 - Which of the following quantities are scalars? Radius of a circle, time, force, area, mass, weight, temperature, moment of inertia, moment of a force, electrical resistance, electric field, volume, storage capacity of a hard disk, magnetic field, kinetic energy, centripetal acceleration, potential energy, pressure.
a) Radius of a circle, force, surface area, mass, weight, moment of inertia ;
b) weight, moment of a force, force, electric field, centripetal acceleration;
\square c) Radius of a circle, time, area, mass, moment of inertia, electrical resistance, volume, storage
capacity of a hard disk, kinetic energy, potential energy, pressure ;
d) Radius of a circle, time, area, mass, temperature, moment of inertia, electrical resistance, volume, storage capacity of a hard disk, kinetic energy, centripetal acceleration, potential energy, pressure.

Question 6 - Given two vectors \vec{a} and \vec{b} such that $\vec{a}=-\vec{b}$. From this equality, we deduce that the vectors \vec{a} and \vec{b}
\square a) have the same modulus;
b) have different moduli ;c) point in the same direction;
\square d) point in opposite directions.

Question 7 - Which of the following vectors are null vectors?
\square a) velocity of a body in uniform motion on a circle;
b) velocity of a body in uniform rectilinear motion;
\square
c) vector position of the origin of a coordinate system ;
\square d) displacement vector of a stationary object.

Question 8 - How must two non-zero vectors be arranged so that their sum gives a resultant of minimum length?
a) perpendicularly;b) parallel and in the same direction;c) parallel but in opposite directions ;
d) at 45° from each other.

Question 9 - In the figure below, the vector \vec{P} represents the orthogonal projection of \vec{a} onto \vec{b}. If a and b denote the moduli of \vec{a} and \vec{b} respectively, \vec{P} can be expressed by

■ a) $\vec{P}=a \cos \theta \frac{\vec{b}}{b}$;
b) $\vec{P}=b \cos \theta \frac{\vec{b}}{a}$;c) $\vec{P}=(\vec{a} \cdot \vec{b}) \frac{\vec{b}}{a}$;
\square d) $\vec{P}=\left(\vec{a} \cdot \frac{\vec{b}}{b}\right) \frac{\vec{b}}{b}$.
Question 10 - The points A and C being given, for any point B, we have

\square a) $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A C}$ (head-to-tail method or triangle method : the 2 vectors are arranged so that the head of the 1st vector coincides with the tail of the 2 nd vector. The 3 rd side which completes a triangle is the resultant vector of the sum.)
\square b) $\overrightarrow{A B}-\overrightarrow{A C}=\overrightarrow{C B}$ (end of the 2nd vector to end of the 1st vector)
\square c) $\overrightarrow{A C}-\overrightarrow{A B}=\overrightarrow{B C}$;
\square d) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{A A}=\overrightarrow{0}$.

Question 11 - On the figure in the exercise 10 , we also have
\square a) $\overrightarrow{A B}=\overrightarrow{D C}$ and $\overrightarrow{A D}=\overrightarrow{B C}$;
\square b) $\overrightarrow{A B}+\overrightarrow{B C}=\overrightarrow{A D}+\overrightarrow{D C}=\overrightarrow{A C}$;
\square c) $\overrightarrow{B A}+\overrightarrow{B C}=\overrightarrow{B A}+\overrightarrow{A D}=\overrightarrow{B D}$;
$\square \mathrm{d}) \overrightarrow{I A}+\overrightarrow{I C}=\overrightarrow{0}$ and $\overrightarrow{I B}+\overrightarrow{I D}=\overrightarrow{0}$.

Question 12 - Given three vectors \vec{a}, \vec{b} and \vec{c} such that \vec{c} is perpendicular to the plane (\vec{a}, \vec{b}). Which of the following relationships are possible?
\square a) $\vec{a} \times \vec{b}=\vec{c}$;
\square b) $\vec{a} \times \vec{b}=-\vec{c}$;
\square c) $\vec{a}+\vec{b}=\vec{c}$;
d) $\vec{a}+\vec{b}=-\vec{c}$.

Question 13 - Given two vectors \vec{a} et \vec{b}. Their scalar product cancels out if
\square a) \vec{a} is zero, and \vec{b} is non-zero;
\square b) \vec{b} is zero, and \vec{a} is non-zero;
c) \vec{a} and \vec{b} are both zero;
d) \vec{a} and \vec{b} are non-zero and perpendicular to each other.

Question 14 - Given two vectors \vec{a} and \vec{b} making an angle θ between them (we're talking about the angle between 0° and 180°). Their vector product $\vec{a} \times \vec{b}$
\square a) is, by definition, given by $a b \sin \theta \vec{n}, \vec{n}$ being a unit vector directly perpendicular to \vec{a} and \vec{b};
\square b) can be calculated, in a direct orthonormal basis $(\vec{i}, \vec{j}, \vec{k})$, using the determinant $\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a_{i} & a_{j} & a_{k} \\ b_{i} & b_{j} & b_{k}\end{array}\right|$;
\square c) represents, in modulus, the area of the parallelogram built on the two vectors;
$\square \mathrm{d})$ is anti-commutative : $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$.
Question 15 - Given two vectors \vec{a} and \vec{b}. Their cross product is zero if
\square a) \vec{a} is zero, and \vec{b} is non-zero;
\square b) \vec{b} is zero, and \vec{a} is non-zero;
\square c) \vec{a} and \vec{b} are both zero;
\square d) \vec{a} and \vec{b} are non-zero and parallel to each other.

Question 16 - Given three vectors \vec{a}, \vec{b} and \vec{c}. The double vector product $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
\square a) $(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b}$;
b) $(\vec{b} \cdot \vec{a}) \vec{c}+(\vec{c} \cdot \vec{a}) \vec{b}$;c) $(\vec{b} \times \vec{a}) \cdot \vec{c}-(\vec{c} \times \vec{a}) \cdot \vec{b}$;
d) $(\vec{b} \times \vec{a}) \vec{c}+(\vec{c} \times \vec{a}) \cdot \vec{b}$.

Question 17 - Given three vectors \vec{a}, \vec{b} and \vec{c}. The scalar triple product (or mixed product) $\vec{a} \cdot(\vec{b} \times \vec{c})$ cancels out if
\square a) one of the three vectors is zero;
b) one of the three vectors is perpendicular to the plane of the other two;
\square c) two of the three vectors are parallel;
\boxtimes d) all three vectors lie in the same plane.
Question 18 - Given three non-zero, and noncollinear vectors \vec{a}, \vec{b} and \vec{c} that are not in the same plane. Then
a) we can write $\vec{c}=\alpha \vec{a}+\beta \vec{b}$, where α and β are real numbers;
\square b) their mixed product is not 0 ;
\square c) the three vectors are linearly independent;
$\square d$) it is impossible to express one as a combination of the other two.

Question 19 - If $\vec{a} \times \vec{b}=\vec{c}$, which of the following statements are correct?
\square a) \vec{c} is perpendicular to \vec{a};
\square b) \vec{c} is perpendicular to \vec{b};
c) \vec{c} is perpendicular to \vec{a} and to \vec{b};
d) \vec{c} is in the plane of \vec{a} and \vec{b}.

Question 20 - Consider three points $A(-2,1,5)$, $B(1,3,5)$ and $C(-1,3,1)$ in a direct orthonormal coordinate system $(O ; \vec{i}, \vec{j}, \vec{k})$. Coordinates are in metres. The volume of the parallelepiped built on the vectors $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A O}$ is
(a) $48 \mathrm{~m}^{3}$;
b) $-48 \mathrm{~m}^{3}$;c) $A B \times A C \times A O$;
d) $\overrightarrow{A B} \times \overrightarrow{A C} \times \overrightarrow{A O}$.

Question 21 - The data from question 20 are repeated. The distance from O to the plane $(A B C)$ isa) 48 m ;b) -48 m ;
\square
c) $12 / \sqrt{14} \mathrm{~m}$;
d) $6 \sqrt{2 / 7} \mathrm{~m}$.

Question 22 - Let \vec{i}, \vec{j} and \vec{k} be the respective unit vectors of the orthogonal axes x, y, z. The vector $3 \vec{i}+4 \vec{j}-5 \vec{k}$ has modulus
a) 2 ;
b) 50 ;
\square
c) $5 \sqrt{2}$;
d) 0 .

Question 23 - The angle between the $3 \vec{i}+4 \vec{j}-5 \vec{k}$ vector and the z axis is
a) 45°;
b) 135°;
c) -45°;d) 75°.

Question $24-$ Let $\vec{V}=p \vec{i}+\frac{1}{2} \vec{j}+\frac{1}{2} \vec{k}$. What is p if \vec{V} is a unit vector?
a) $p= \pm 1$;b) $p= \pm 1 / 2$;c) $p= \pm 1 / 4$;d) $p= \pm 1 / \sqrt{2}$.

Question 25 - We give the vectors $\vec{A}=-\vec{j}+2 \vec{k}$ and $\vec{B}=\vec{i}-2 \vec{j}+\vec{k}$. Their scalar product is
a) 0 ;
b) 2 ;
\square c) 4 ;
d) 8 .

Question 26 - The vector product of the vectors \vec{A} and \vec{B} from question 25 is
\square a) $3 \vec{i}+2 \vec{j}-\vec{k}$;
b) $3 \vec{i}+2 \vec{j}+\vec{k}$;
c) $3 \vec{i}-2 \vec{j}+\vec{k}$;
d) $-3 \vec{i}+2 \vec{j}+\vec{k}$.

Question 27 - Take the vectors \vec{A} and \vec{B} from question 25 and consider a third vector $\vec{C}=s \vec{i}+\vec{j}+t \vec{k}$. For what values of s and t, does the vector \vec{C} lie in the same plane as \vec{A} and \vec{B} while being perpendicular to \vec{B} ?
a) $s=0, t=0 ;$
\square b) $s=-2, t=4$;
\square c) $s=2, t=0 ;$
d) $s=2, t=-4$.

Question 28 - Let \vec{a}, \vec{b}, and \vec{c} be three vectors such that $\vec{a}+\vec{b}=\vec{c}$ and $a=12, b=5, c=13$. The angle between \vec{a} and \vec{b} is
a) 0 ;
\square b) π;
c) $\pi / 2$;
d) $\pi / 4$.

Question 29 - Let \vec{a} be a vector which, when added to the resultant of the vectors $2 \vec{i}-3 \vec{j}+4 \vec{k}$ and $\vec{i}+5 \vec{j}+2 \vec{k}$, gives a unit vector along the y axis in the + direction. Then the vector \vec{a} is
(a) $-3 \vec{i}-\vec{j}-6 \vec{k}$;
b) $3 \vec{i}+\vec{j}-6 \vec{k}$;
c) $3 \vec{i}-\vec{j}+6 \vec{k}$;
\square d) $3 \vec{i}+\vec{j}+6 \vec{k}$.

