Tutorial \#3 : Dynamics of a point __ November 2023 (2 sessions) -

Exercise 1 : Two masses m_{1} and m_{2} are arranged, as shown in the figure below, on a horizontal plane on which they can slide without friction. A horizontal force \vec{F} is applied to m_{1}. Express as a function of the data $\left(m_{1}, m_{2}, \vec{F}\right.$ or $\left.\vec{g}\right)$
a) the net force (i.e. the resultant force) exerted on the whole system $\left[m_{1}+m_{2}\right]$. b) the force exerted by m_{1} on m_{2}. c) the force exerted
 by m_{2} on m_{1}. d) the force exerted by m_{1} on the ground.

Exercise 2:

A sled weighing 8 kg is pulled at constant speed by a rope across a horizontal plane. What force T is exerted on the sled if the coefficient of kinetic friction μ_{c} is 0.20 and the rope makes an angle $\theta=40^{\circ}$ with the plane? For the acceleration of gravity, take $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Exercise 3 : A brick weighing 24 N is pressed against a rough vertical wall by a force \vec{F}, as shown, figure opposite.
The coefficient of static friction between the brick and the wall is $\mu_{\mathrm{s}}=0.6$.
a) What forces does the wall exert on the brick? b) In addition to forces found in a), what are the other forces applied to the brick? c) Find the magnitude of the minimum value of \vec{F} to prevent the brick from sliding down the wall.

Exercise 4 : A block of mass $m_{1}=4 \mathrm{~kg}$ is placed on a block of mass $m_{2}=5 \mathrm{~kg}$. To make m_{1} slide on m_{2}, a horizontal force of at least 12 N must be applied to it. The system $\left[m_{1}+m_{2}\right]$ now res 0.6 and 0.4 ts on a flat, horizontal and frictionless surface (figure opposite). a) Find the maximum horizontal force F that can be applied to m_{2} so that the two masses move together with
 no relative movement between them. b) What is the acceleration of the two blocks?

Exercice 5 : (this exercise was proposed for the 2021 exam of Physics 1)
A mass $m_{1}=1.40 \mathrm{~kg}$ is connected to a mass m_{2} by an inextensible wire (غير قابل للإمتداد) of negligible mass (كتلة ضئيلة), as shown in the figure opposite. The coefficients of static anf kinetic friction between m_{1} and the horizontal surface are $\mu_{s}=0.5$ et $\mu_{c}=0.2$ respectively. Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$. a) To what maximum value $m_{2 \max }$ can m_{2} be increased without movement? b) Will motion occur if $m_{2}=0.82 \mathrm{~kg}$? If so, calculate the acceleration. We'll assume that the wire tension (قوة الشد للخيط) is the same in all of its points.

Exercice 6: À 2 kg block lies on a plane inclined $\alpha=20^{\circ}$ from the horizontal and is subjected to a $F=11 \mathrm{~N}$ force acting, as shown in the figure opposite, at an angle $\beta=35^{\circ}$ to the plane. Friction between the block and the plane is neglected, and we'll take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$. Find :

a) the acceleration of the block.
b) the force exerted by the plane on the block.

