UNIVERSITE BATNA 2
FACULTE DE TECHNOLOGIE
DEPARTEMENT D'ELECTRONIQUE
MASTER I « SYSTEMES DES TELECOMMUNICATIONS »

Travaux Dirigés N° 1 de la matière (CANAUX DE TRANSMISSION)

Enseignant: D. BENATIA

EXERCICE-1:

Une ligne sans pertes d'impédance caractéristique Zo= 50Ω de longueur L=1,5 λ est terminée sur une résistance R_L = 60Ω . La tension sur la charge est V_L =20. exp j(ω t+0.22 π) Volts. On demande de calculer :

- 1/- La puissance moyenne délivrée à la charge
- 2/- La tension minimale sur la ligne
- 3/- Le courant maximal sur la ligne

EXERCICE-2:

Une ligne sans pertes d'impédance caractéristique Zo=300 Ω de longueur L=0.25 λ est terminée sur une résistance R_L =500 Ω . La ligne est reliée à l'entrée à une source de 90. exp(j ω t) en série avec une résistance interne de 100 Ω . On demande de calculer :

- 1/- La tension au niveau de la charge
- 2/- La tension au milieu de la ligne

EXERCICE-3:

Représenter sur l'abaque de Smith les impédances réduites suivantes : z₁= 2+j, z₂=2-j

EXERCICE-4:

Trouver l'impédance d'entrée d'une ligne où : $Z_L = (140+70i)\Omega$, $Z_0 = 70\Omega$, $\beta l = 82^{\circ}$

EXERCICE-5:

Dans une ligne sans pertes de longueur 0.35 m et dont $Z_0=55\Omega$ est alimentée par un générateur de fréquence f=150MHz, de valeur efficace $E_{eff}=100 V$ et dont l'impédance interne est $Z_0=40\Omega$. A son extrémité est placée une charge $Z_L=(115+75j)\Omega$. La vitesse de propagation est de $2.85.10^8$ m/s. On demande :

- 1/- La valeur du courant dans la charge
- 2/- La valeur de la différence de potentiels aux bornes de la charge
- 3/- La valeur de la puissance au niveau de la charge

EXERCICE-6:

Une ligne sans pertes d'impédance caractéristique $Z_0=70\Omega$ terminer par une charge $Z_1=(115-80j)\Omega$. On demande :

- 1/- La valeur du TOS
- 2/- La valeur de Zmax et Zmin de la ligne
- Si la ligne transmet une puissance de 50W trouver :

Umax Umin, Imax, Imin et V_L

EXERCICE-7:

On pose : $y_L = G + jB$

En utilisant cette expression, comme nous l'avons fait précédemment pour z_L, nous verrons que l'abaque de Smith sera utilisé de la même manière en remplaçant R par G et X par B. Ainsi l'abaque peut être utilisé également pour le calcul des admittances.

Dans ce cas, on demande de calculer la longueur d'un Stub en court-circuit et sa position par rapport à la charge a fin d'adapter une ligne dont Z_0 =600 Ω à une charge Z_L =(150+150j) Ω .

UNIVERSITE BATNA 2
FACULTE DE TECHNOLOGIE
DEPARTEMENT D'ELECTRONIQUE
MASTER I « SYSTEMES DES TELECOMMUNICATIONS »

Travaux Dirigés N° 2 de la matière (CANAUX DE TRANSMISSION)

Enseignant: D. BENATIA

EXERCICE-1:

Une onde électromagnétique se propage dans la direction des X+ d'un guide d'onde de mode TE_{10} . Déterminer les expressions des champs E et H et celle du vecteur Poynting.

EXERCICE-2:

Trouver les modes qui peuvent se propager dans un guide rectangulaire de dimension a=10cm et b=5cm jusqu'à la fréquence 3 GHz.

EXERCICE-3:

Un guide rectangulaire (a=22,86 mm, b=10,16 mm) excité en mode fondamental TE₁₀ de fréquence.

a-) f=10GHz, b-) f=5 GHz

Calculer la longueur d'onde du guide λg dans le cas (a) et l'atténuation α dans le cas (b).

EXERCICE-4:

Dans un guide rectangulaire (a=1,5b) se propage une O.E.M de f=2GHz en mode TE_{10} sans atténuation et dans le mode TE_{01} avec une atténuation α =25(NP/m).

On demande les valeurs des dimensions du guide.

EXERCICE-5:

Montrer que dans un guide rectangulaire : $Zg=Zo/(1-(\lambda/\lambda c)^2)^{1/2}$

Dans ce guide de dimensions a=5cm et b=3cm se propage une O.E.M de f=3,3 GHz. Sachant que l'amplitude du champ électrique et de 5v/m. On demande :

1/- L'amplitude du champ magnétique pour le mode TE₁₀.

2/- La valeur de la densité de puissance transmise du mode TE₁₀

UNIVERSITE BATNA 2
FACULTE DE TECHNOLOGIE
DEPARTEMENT D'ELECTRONIQUE
MASTER I « SYSTEMES DES TELECOMMUNICATIONS »

Travaux Dirigés N° 3 de la matière (CANAUX DE TRANSMISSION)

Enseignant: D. BENATIA

EXERCICE-1:

Un guide d'ondes de dimension infini, de perméabilité magnétique μ_r =1, de permittivité diélectrique ϵ_r =50 et de constante électrique σ =20 Ω^{-1} /m. Dans ce guide se propage une onde électromagnétique de fréquence f=15,9 GHz. On demande la valeur du coefficient d'atténuation α et de la constante de propagation β ainsi que de l'impédance du milieu Z.

EXERCICE-2:

On demande la bande de travail d'un guide cylindrique à l'air de rayon a=1cm.

EXERCICE-3:

Un tronçon de guide cylindrique fourni une atténuation de 30 dB la fréquence f=4GHz. Calculer la fréquence de coupure de ce guide.

EXERCICE-4:

Une fibre optique de longueur 1 Km, l'indice de réfraction du cœur est de 1,5 (dans le cas du verre), celle de la gaine est de 1 (dans le cas de l'air). On demande la valeur du débit numérique maximum et celle de la bande passante.