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Differential Calculus of Functions of One
Variable
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5.1 The Derivative of a Function at a Point
Definition 5.1

Let f be a function defined in the neighborhood of x0. We say that f is differentiable at
a point x0 if the limit

lim
x→x0

f(x) − f(x0)
x − x0

exists in R. When this limit exists, it is denoted by f ′(x0) and called the derivative of f
at x0.

Remark 5.1 If we put x−x0 = h, the quantity f(x) − f(x0)
x − x0

becomes f(x0 + h) − f(x0)
h

. So
we can define the notion of differentiability of f at x0 in the following way:

f is differentiable at the point x0 ⇔ lim
h→0

f(x0 + h) − f(x0)
h

exists in R

Notations:
We can use the notations f ′(x0), Df(x0),

df

dx
(x0) to designate the derivative of f at x0.
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Chapter 05 Differentiable Functions

Example 5.1

1. The function f(x) = x2 is differentiable at any point x0 ∈ R and the derivative
f ′(x0) = 2x0. As an explanation, given x0 ∈ R we have:

lim
h→0

f(x0 + h) − f(x0)
h

= lim
h→0

(x0 + h)2 − x2
0

h
= lim

h→0
(h + 2x0) = 2x0.

2. The function f(x) = sin(x) is differentiable at any point x0 ∈ R and the derivative
f ′(x0) = cos(x0). As an explanation, given x0 ∈ R we have:

lim
h→0

f(x0 + h) − f(x0)
h

= lim
h→0

sin(x0 + h) − sin(x0)
h

= lim
h→0

cos
(

2x0 + h

2

) sin
(

h
2

)
h
2

= cos(x0)

Definition 5.2: (Left and right derivative)

1. Let f be a function defined on an interval of type [x0, x0 + α[ with α > 0. We say
that f is right-differentiable at x0 iff:

lim
h→0+

f(x0 + h) − f(x0)
h

exists in R. This limit is denoted by f ′
r(x0) and is called the right derivative of f

at x0.

2. Let f be a function defined on an interval of type ]x0 − α, x0] with α > 0. We say
that f is left-differentiable at x0 iff:

lim
h→0−

f(x0 + h) − f(x0)
h

exists in R. This limit is denoted by f ′
l (x0) and is called the left derivative of f at

x0.

Proposition 5.1

Let f be a function defined in the neighborhood of x0, we have:

f is differentiable at x0 ⇐⇒


f is differentiable on the right and left at x0

and
f ′

r(x0) = f ′
l (x0)
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Example 5.2

Let f(x) = |x|, we have:

lim
h→0−

f(0 + h) − f(0)
h

= lim
h→0−

|h|
h

= lim
h→0−

−h

h
= −1 = f ′

l (0)

lim
h→0+

f(0 + h) − f(0)
h

= lim
h→0+

|h|
h

= lim
h→0+

h

h
= 1 = f ′

r(0)

=⇒ The function f is differentiable on the right and on the left at x0 = 0 and
moreover f ′

r(0) = 1 and

f ′
l (0) = −1, so f ′

l (0) ̸= f ′
r(0) =⇒ f is not differentiable at x0 = 0 c

5.1.1 Geometrical interpretation
The figure below shows the graph of a function y = f(x):

The ratio f(x0 + h) − f(x0)
h

= tan(θ) is the slope of the straight line joining point A(x0, f(x0))
to point B(x0 + h, f(x0 + h)) on the graph. When h → 0, this line tends towards the tangent
(AC) to the curve at a point A(x0, f(x0)). So we get:

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

= tan(α) = CD

AD

is the slope of the tangent to the curve at point A(x0, f(x0)).

‘

Figure 5.1: Geometrical Interpretation of Differentiability at a point x0

Remark 5.2 According to the figure above, the equation of the tangent to the curve y = f(x)
at the point A(x0, f(x0)) is y − f(x0) = f ′(x0)(x − x0)
Proposition 5.2

Let f be a function differentiable at a point x0, then f is continuous at x0.
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Proof:
We have: lim

x→x0
(f(x) − f(x0)) = lim

x→x0

(
f(x) − f(x0)

x − x0

)
(x − x0)

Since f is differentiable at x0 we get:
lim

x→x0
(f(x) − f(x0)) = lim

x→x0
f ′(x0)(x − x0) = 0 =⇒ f is continuous at x0

Remark 5.3 The opposite of this theorem is incorrect. A function can be continuous at a
point x0 without being differentiable at the same point. For example, the function x 7→ |x| is
continuous at x0 = 0 but not differentiable at the same point.

5.2 Differential on an interval. Derivative function.
Definition 5.3

Let f be a function defined on an open interval I. We say that f is differentiable on I if:
it is differentiable at any point on I. The function defined on I by: x 7→ f ′(x) is called
the derivative function or simply the derivative of the function f and is denoted by f ′ ou
df

dx
.

Remark 5.4 let f be a function defined on an interval I and a, b ∈ R ∪ {+∞, −∞} then:

• We say that f is differentiable on I = [a, b] iff: it is differentiable on the open interval
]a, b[ and differentiable on the right at a and on the left at b.

• We say that f is differentiable on I = [a, b[ if: it is differentiable on the open interval
]a, b[ and differentiable on the right at a.

• We say that f is differentiable on I =]a, b] if: it is differentiable on the open interval ]a, b[
and differentiable on the left at b.

5.3 Operations on differentiable functions

Proposition 5.3: (At a point)

Let f, g be two functions differentiable at x0, then we have:

• f + g is differentiable at x0 et (f + g)′(x0) = f ′(x0) + g′(x0)

• f.g is differentiable at x0 et (f.g)′(x0) = f ′(x0).g(x0) + f(x0).g′(x0)

• If we have: f(x0) ̸= 0, alors 1
f

is differentiable at x0 et
(

1
f

)′

(x0) = − f ′(x0)
f(x0)2

• If we have: g(x0) ̸= 0, then f

g
is differentiable at x0 and

(
f

g

)′

(x0) = f ′(x0).g(x0) − f(x0).g′(x0)
g(x0)2
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Proposition 5.4: (On an interval)

Let f and g be two functions differentiable on an open interval I then:

• f + g is differentiable on I and (f + g)′ = f ′ + g′

• f.g is differentiable on I and (f.g)′ = f ′.g + f.g′

• If f ̸= 0 on I, 1
f

is differentiable on I and
(

1
f

)′

= − f ′

f 2

• If g ̸= 0 on I, f

g
is differentiable on I and

(
f

g

)′

= f ′.g − f.g′

g2

Proposition 5.5: Differentiability and composition

Let f : I −→ R and g : J −→ R be two functions where I and J are two open intervals
such that: f(I) ⊂ J

• Differentiability at a point: If f is differentiable at x0 and g is differentiable at
f(x0), then g ◦ f is differentiable at x0 and (g ◦ f)′(x0) = f ′(x0).g′(f(x0))

• differentiability on an interval: If f is differentiable on I and g is differentiable
on J , then g ◦ f is differentiable on I and (g ◦ f)′ = f ′.(g′ ◦ f)

Proposition 5.6: Differentiability and inverse function

Let f : I −→ J be a bijective and differentiable function at x0 ∈ I. Then f−1 is
differentiable at y0 = f(x0) if and only if f ′(x0) ̸= 0 and in this case: (f−1)′(y0) = 1

f ′(x0)
.

Proposition 5.7

Let f : I −→ J be a bijective and differentiable function on I. If f ′ ̸= 0 on I, then f−1

is differentiable on J and we have : (f−1)′ = 1
f ′ ◦ f−1
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5.4 Mean value Theorem

Theorem 5.1: (Rolle’s theorem)

Let f be a function defined on [a, b]. If we have:

1. f is continuous on [a, b].

2. f is differentiable on ]a, b[

3. f(a) = f(b)

then there exists a real number c ∈]a, b[ such that f ′(c) = 0

‘

Figure 5.2: Geometrical interpretation of Rolle’s theorem

Theorem 5.2: (Mean value Theorem)

Let f be a function defined on [a, b], if we have:

1. f is continuous on [a, b].

2. f is differentiable on ]a, b[

then there exists a real number c ∈]a, b[ such that:

f(b) − f(a) = f ′(c)(b − a)
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‘

Figure 5.3: Geometrical interpretation of the mean value theorem

Consequence:(second form of the mean value theorem)

Let f be a function defined on I, h > 0 and x0 ∈ I such that x0 + h ∈ I, then if we have:

1. f is continuous on [x0, x0 + h].

2. f is derivable on ]x0, x0 + h[

then there exists a θ ∈]0, 1[ such that:

f(x0 + h) − f(x0) = f ′(x0 + θ.h)h

Example 5.3

By using the mean value theorem, show that:

∀x > 0; sin(x) ≤ x

By putting f(t) = t − sin(t) we get:

∀x > 0 we have:


f is continuous on [0, x]

and
f is differentiable on ]0, x[

According to the mean value theorem, there exists c ∈]0, x[ such that:

f(x) − f(0) = f ′(c)(x − 0)

⇐⇒ x − sin(x) = (1 − cos(c))x ⇐⇒ sin(x) = cos(c)x

=⇒ sin(x) ≤ x (as cos(c) ≤ 1)
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Theorem 5.3: Generalized mean value theorem

Let f and g be two real functions defined on [a, b] such that:

1. f and g are continuous on [a, b].

2. f and g are differentiable on ]a, b[.

Then there exists a real number c ∈]a, b[ such that:

(f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c)

Proposition 5.8: (Variations of a function)

Let f be a continuous function on [a, b] and differentiable on ]a, b[, we have:

1. If f ′(x) > 0 on ]a, b[, then f is strictly increasing on [a, b].

2. If f ′(x) ≥ 0 on ]a, b[, then f is increasing on [a, b].

3. If f ′(x) < 0 on ]a, b[, then f is strictly decreasing on [a, b].

4. If f ′(x) ≤ 0 on ]a, b[, then f is decreasing on [a, b].

5. If f ′(x) = 0 on ]a, b[, then f is constant on [a, b].

5.4.1 L’Hôpital’s rules

Theorem 5.4: (First rule of L’Hôpital)

Let f and g be two continuous functions on I (where I is a neighborhood of x0),
differentiable on I − {x0} and satisfying the following conditions:

1. lim
x→x0

f(x) = lim
x→x0

g(x) = 0

2. ∀x ∈ I − {x0}; g′(x) ̸= 0

Then:
lim

x→x0

f ′(x)
g′(x) = l =⇒ lim

x→x0

f(x)
g(x) = l

Example 5.4

lim
x→0

sin(x)
x

= lim
x→0

cos(x)
1 = 1

Remark 5.5 The converse is generally false. For example: f(x) = x2 cos( 1
x
), g(x) = x.

We have: lim
x→0

f(x)
g(x) = lim

x→0
x cos( 1

x
) = 0. While lim

x→0

f ′(x)
g′(x) = lim

x→0
(2x cos( 1

x
) + sin( 1

x
)) does not

exist (since: lim
x→0

sin( 1
x
) does not exist)

Remark 5.6 Also, the Hopital’s rules is true when x → ±∞
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Theorem 5.5: (Second rule of L’Hôpital)

Let f and g be two functions defined on I (where I is a neighborhood of x0), differentiable
on I − {x0} and satisfying the following conditions:

1. lim
x→x0

f(x) = lim
x→x0

g(x) = ±∞

2. ∀x ∈ I − {x0}; g′(x) ̸= 0

Then:
lim

x→x0

f ′(x)
g′(x) = l =⇒ lim

x→x0

f(x)
g(x) = l

Example 5.5

lim
x→+∞

xn

ex
= lim

x→+∞

nxn−1

ex
= lim

x→+∞

n(n − 1)xn−2

ex
= ......... = lim

x→+∞

n!x0

ex
= 0

5.5 Higher Order Derivatives

Definition 5.4

Let f be a function differentiable on I, then f ′ is called the 1st-order derivative of f ; if
f ′ is differentiable on I, then its derivative is called the 2nd-order derivative of f and is
denoted by f ′′ or f (2). Recursively, we define the derivative of order n of f as follows:

f (0) = f

(f (n−1))′ = f (n)

Another notations used are: Dnf,
dnf

dxn
for f (n)

Example 5.6

sin(n)(x) = sin(x + n
π

2 ) and cos(n)(x) = cos(x + n
π

2 )

Definition 5.5: (Class Functions: Cn)

Let n be a non-zero natural number. A function f defined on I is said to be of class Cn

or n times continuously differentiable if it is n times differentiable and f (n) is continuous
on I, and we note f ∈ Cn(I).

Remark 5.7 A function f is said to be ”of class C0” if it is continuous on I.

Definition 5.6: (Class Functions: C∞)

A function f is said to be of class C∞ on I if it is in the class Cn. ∀n ∈ N
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5.5.1 n-th derivative of a product (Leibniz rule)

Theorem 5.6

Let f and g be two functions n times differentiable on I, then fg is n times differentiable
on I and we have:

∀x ∈ I; (f.g)n(x) =
n∑

k=0
Ck

nf (n−k)(x)g(k)(x)

with: Ck
n = n!

k!(n − k)!

Example 5.7

Compute (x2 sin(2x))(3) According to Leibniz’ formula, we have:

(x2 sin(2x))(3) =
3∑

k=0
Ck

3 (x2)(3−k)(sin(2x))(k)

=C0
3(x2)(3)(sin(2x))(0) + C1

3(x2)(2)(sin(2x))(1)

+ C2
3(x2)(1)(sin(2x))(2) + C3

3(x2)(0)(sin(2x))(3)

=12 cos(2x) − 24x sin(2x) − 8x2 cos(2x)

5.6 Taylor’s formulas

Theorem 5.7: (Taylor’s formula with Lagrange remainder)

Let x0 ∈ [a, b] et f : [a, b] −→ R be a function that checks:

1. f ∈ Cn on [a, b].

2. f (n) is differentiable on ]a, b[.

then, ∀x ∈ [a, b] (with x ̸= x0), ∃c ∈ [a, b] such that:

f(x) =f(x0) + f (1)(x0)
1! (x − x0) + f (2)(x0)

2! (x − x0)2 + .... + f (n)(x0)
n! (x − x0)n

+ f (n+1)(c)
(n + 1)! (x − x0)n+1

This expression is the Taylor formula of order n with the Lagrange remainder

Rn(x, x0) = f (n+1)(c)
(n + 1)! (x − x0)n+1
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Theorem 5.8: (Taylor Mac-Laurin formula)

If we set x0 = 0 in the Taylor-Lagrange formula, we obtain:
∃θ ∈]0, 1[ such that:

f(x) =f(0) + f (1)(0)
1! x + f (2)(0)

2! x2 + .... + f (n)(0)
n! xn + f (n+1)(θx)

(n + 1)! xn+1

This is Taylor Mac-Laurin’s formula.

Remark 5.8 In practice, the Taylor Mac-Laurin formula is used to calculate the approximate
values.

Example 5.8

Show that for every x ∈ R+:

x − x2

2 ≤ ln(1 + x) ≤ x − x2

2 + x3

3

Let x ≥ 0, Applying the Taylor Mac-Laurin formula of order 2 to the function
f(x) = ln(1 + x), we find:

ln(1 + x) = x − x2

2 + x3

3(1 + θx)3 /θ ∈]0, 1[

Since x ≥ 0 then,
x − x2

2 ≤ x − x2

2 + x3

3(1 + θx)3

=⇒ x − x2

2 ≤ ln(1 + x) (5.1)

On the other hand x3

3(1 + θx)3 ≤ x3

3

=⇒ x − x2

2 + x3

3(1 + θx)3 ≤ x − x2

2 + x3

3

=⇒ ln(1 + x) ≤ x − x2

2 + x3

3 (5.2)

from (5.1) and (5.2) we get:

x − x2

2 ≤ ln(1 + x) ≤ x − x2

2 + x3

3
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