Chapter

Differential Calculus of Functions of One Variable

Contents

5.1 The Derivative of a Function at a Point	1
5.1.1 Geometrical interpretation \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	3
5.2 Differential on an interval. Derivative function	4
5.3 Operations on differentiable functions	4
5.4 Mean value Theorem	6
5.4.1 L'Hôpital's rules \ldots	8
5.5 Higher Order Derivatives	9
5.5.1 <i>n</i> -th derivative of a product (Leibniz rule) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	10
5.6 Taylor's formulas $\ldots \ldots 1$	0

5.1 The Derivative of a Function at a Point

Definition 5.1

Let f be a function defined in the neighborhood of x_0 . We say that f is differentiable at a point x_0 if the limit

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists in \mathbb{R} . When this limit exists, it is denoted by $f'(x_0)$ and called the derivative of f at x_0 .

Remark 5.1 If we put $x - x_0 = h$, the quantity $\frac{f(x) - f(x_0)}{x - x_0}$ becomes $\frac{f(x_0 + h) - f(x_0)}{h}$. So we can define the notion of differentiability of f at x_0 in the following way:

f is differentiable at the point
$$x_0 \Leftrightarrow \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 exists in \mathbb{R}

Notations:

We can use the notations $f'(x_0)$, $Df(x_0)$, $\frac{df}{dx}(x_0)$ to designate the derivative of f at x_0 .

Example 5.1

1. The function $f(x) = x^2$ is differentiable at any point $x_0 \in \mathbb{R}$ and the derivative $f'(x_0) = 2x_0$. As an explanation, given $x_0 \in \mathbb{R}$ we have:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{(x_0 + h)^2 - x_0^2}{h} = \lim_{h \to 0} (h + 2x_0) = 2x_0.$$

2. The function $f(x) = \sin(x)$ is differentiable at any point $x_0 \in \mathbb{R}$ and the derivative $f'(x_0) = \cos(x_0)$. As an explanation, given $x_0 \in \mathbb{R}$ we have:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h}$$
$$= \lim_{h \to 0} \cos\left(\frac{2x_0 + h}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} = \cos(x_0)$$

Definition 5.2: (Left and right derivative)

1. Let f be a function defined on an interval of type $[x_0, x_0 + \alpha]$ with $\alpha > 0$. We say that f is right-differentiable at x_0 iff:

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists in \mathbb{R} . This limit is denoted by $f'_r(x_0)$ and is called the right derivative of f at x_0 .

2. Let f be a function defined on an interval of type $]x_0 - \alpha, x_0]$ with $\alpha > 0$. We say that f is left-differentiable at x_0 iff:

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$$

exists in \mathbb{R} . This limit is denoted by $f'_l(x_0)$ and is called the left derivative of f at x_0 .

Proposition 5.1

Let f be a function defined in	the neighborhood of x_0 , we have:
	$\int f$ is differentiable on the right and left at x_0
f is differentiable at $x_0 \iff$	and
	$\int f_r'(x_0) = f_l'(x_0)$

Example 5.2

Let f(x) = |x|, we have:

 $\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} -\frac{h}{h} = -1 = f'_l(0)$ $\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = 1 = f'_r(0)$ $\implies \text{ The function } f \text{ is differentiable on the right and on the left at } x_0 = 0 \text{ and}$ $moreover f'_r(0) = 1 \text{ and}$ $f'_l(0) = -1, \text{ so } f'_l(0) \neq f'_r(0) \implies f \text{ is not differentiable at } x_0 = 0$

5.1.1 Geometrical interpretation

The figure below shows the graph of a function y = f(x):

The ratio $\frac{f(x_0+h)-f(x_0)}{h} = \tan(\theta)$ is the slope of the straight line joining point $A(x_0, f(x_0))$ to point $B(x_0+h, f(x_0+h))$ on the graph. When $h \to 0$, this line tends towards the tangent (AC) to the curve at a point $A(x_0, f(x_0))$. So we get:

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \tan(\alpha) = \frac{CD}{AD}$$

is the slope of the tangent to the curve at point $A(x_0, f(x_0))$.

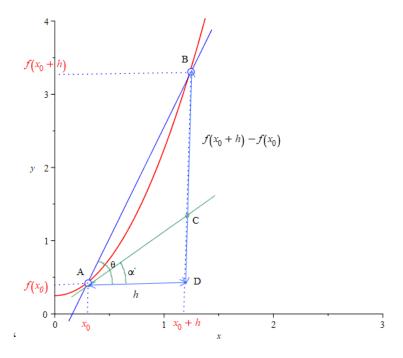


Figure 5.1: Geometrical Interpretation of Differentiability at a point x_0

Remark 5.2 According to the figure above, the equation of the tangent to the curve y = f(x)at the point $A(x_0, f(x_0))$ is $y - f(x_0) = f'(x_0)(x - x_0)$

Proposition 5.2

Let f be a function differentiable at a point x_0 , then f is continuous at x_0 .

Proof:

We have: $\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} \left(\frac{f(x) - f(x_0)}{x - x_0} \right) (x - x_0)$ Since f is differentiable at x_0 we get: $\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} f'(x_0)(x - x_0) = 0 \implies f \text{ is continuous at } x_0$

Remark 5.3 The opposite of this theorem is incorrect. A function can be continuous at a point x_0 without being differentiable at the same point. For example, the function $x \mapsto |x|$ is continuous at $x_0 = 0$ but not differentiable at the same point.

5.2 Differential on an interval. Derivative function.

Definition 5.3

Let f be a function defined on an open interval I. We say that f is differentiable on I if: it is differentiable at any point on I. The function defined on I by: $x \mapsto f'(x)$ is called the derivative function or simply the derivative of the function f and is denoted by f' ou $\frac{df}{dx}$.

Remark 5.4 *let* f *be a function defined on an interval* I *and* $a, b \in \mathbb{R} \cup \{+\infty, -\infty\}$ *then:*

- We say that f is differentiable on I = [a, b] iff: it is differentiable on the open interval [a, b] and differentiable on the right at a and on the left at b.
- We say that f is differentiable on I = [a, b[if: it is differentiable on the open interval]a, b[and differentiable on the right at a.
- We say that f is differentiable on I =]a, b] if: it is differentiable on the open interval]a, b[and differentiable on the left at b.

5.3 Operations on differentiable functions

Proposition 5.3: (At a point)

Let f, g be two functions differentiable at x_0 , then we have:

- f + g is differentiable at x_0 et $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- f.g is differentiable at x_0 et $(f.g)'(x_0) = f'(x_0).g(x_0) + f(x_0).g'(x_0)$
- If we have: $f(x_0) \neq 0$, alors $\frac{1}{f}$ is differentiable at x_0 et $\left(\frac{1}{f}\right)'(x_0) = -\frac{f'(x_0)}{f(x_0)^2}$
- If we have: $g(x_0) \neq 0$, then $\frac{f}{g}$ is differentiable at x_0 and

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0).g(x_0) - f(x_0).g'(x_0)}{g(x_0)^2}$$

Proposition 5.4: (On an interval)

Let f and g be two functions differentiable on an open interval I then:

- f + g is differentiable on I and (f + g)' = f' + g'
- f.g is differentiable on I and (f.g)' = f'.g + f.g'
- If $f \neq 0$ on I, $\frac{1}{f}$ is differentiable on I and $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$
- If $g \neq 0$ on I, $\frac{f}{g}$ is differentiable on I and

$$\left(\frac{f}{g}\right)' = \frac{f'.g - f.g'}{g^2}$$

Proposition 5.5: Differentiability and composition

Let $f: I \longrightarrow \mathbb{R}$ and $g: J \longrightarrow \mathbb{R}$ be two functions where I and J are two open intervals such that: $f(I) \subset J$

- Differentiability at a point: If f is differentiable at x_0 and g is differentiable at $f(x_0)$, then $g \circ f$ is differentiable at x_0 and $(g \circ f)'(x_0) = f'(x_0).g'(f(x_0))$
- differentiability on an interval: If f is differentiable on I and g is differentiable on J, then $g \circ f$ is differentiable on I and $(g \circ f)' = f' \cdot (g' \circ f)$

Proposition 5.6: Differentiability and inverse function

Let $f : I \longrightarrow J$ be a bijective and differentiable function at $x_0 \in I$. Then f^{-1} is differentiable at $y_0 = f(x_0)$ if and only if $f'(x_0) \neq 0$ and in this case: $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$.

Proposition 5.7

Let $f: I \longrightarrow J$ be a bijective and differentiable function on I. If $f' \neq 0$ on I, then f^{-1} is differentiable on J and we have : $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$

5.4 Mean value Theorem

Theorem 5.1: (Rolle's theorem)

Let f be a function defined on [a, b]. If we have:

- 1. f is continuous on [a, b].
- 2. f is differentiable on]a, b[

$$3. \ f(a) = f(b)$$

then there exists a real number $c \in]a, b[$ such that f'(c) = 0

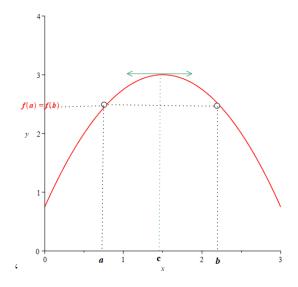


Figure 5.2: Geometrical interpretation of Rolle's theorem

Theorem 5.2: (Mean value Theorem)

Let f be a function defined on [a, b], if we have:

- 1. f is continuous on [a, b].
- 2. f is differentiable on]a, b[

then there exists a real number $c\in]a,b[$ such that:

f(b) - f(a) = f'(c)(b - a)

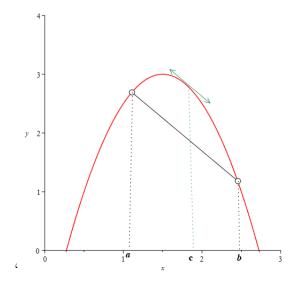


Figure 5.3: Geometrical interpretation of the mean value theorem

Consequence: (second form of the mean value theorem)

Let f be a function defined on I, h > 0 and $x_0 \in I$ such that $x_0 + h \in I$, then if we have:

- 1. f is continuous on $[x_0, x_0 + h]$.
- 2. f is derivable on $]x_0, x_0 + h[$

then there exists a $\theta \in]0,1[$ such that:

$$f(x_0 + h) - f(x_0) = f'(x_0 + \theta h)h$$

Example 5.3

By using the mean value theorem, show that:

$$\forall x > 0; \sin(x) \le x$$

By putting $f(t) = t - \sin(t)$ we get: $\forall x > 0$ we have: $\begin{cases} f \text{ is continuous on } [0, x] \\ and \\ f \text{ is differentiable on }]0, x[\end{cases}$ According to the mean value theorem, there exists $c \in]0, x[$ such that: f(x) - f(0) = f'(c)(x - 0) $\iff x - \sin(x) = (1 - \cos(c))x \iff \sin(x) = \cos(c)x$

$$\implies \sin(x) \le x \ (as \ \cos(c) \le 1)$$

Theorem 5.3: Generalized mean value theorem

Let f and g be two real functions defined on [a, b] such that:

- 1. f and g are continuous on [a, b].
- 2. f and g are differentiable on]a, b[.

Then there exists a real number $c \in]a, b[$ such that:

(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c)

Proposition 5.8: (Variations of a function)

Let f be a continuous function on [a, b] and differentiable on [a, b], we have:

1. If f'(x) > 0 on]a, b[, then f is strictly increasing on [a, b].

2. If $f'(x) \ge 0$ on]a, b[, then f is increasing on [a, b].

- 3. If f'(x) < 0 on]a, b[, then f is strictly decreasing on [a, b].
- 4. If $f'(x) \leq 0$ on]a, b[, then f is decreasing on [a, b].
- 5. If f'(x) = 0 on]a, b[, then f is constant on [a, b].

5.4.1 L'Hôpital's rules

Theorem 5.4: (First rule of L'Hôpital)

Let f and g be two continuous functions on I (where I is a neighborhood of x_0), differentiable on $I - \{x_0\}$ and satisfying the following conditions:

1.
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

2.
$$\forall x \in I - \{x_0\}; g'(x) \neq 0$$

Then:

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$$

Example 5.4

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = 1$$

Remark 5.5 The converse is generally false. For example: $f(x) = x^2 \cos(\frac{1}{x}), g(x) = x$. We have: $\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} x \cos(\frac{1}{x}) = 0$. While $\lim_{x\to 0} \frac{f'(x)}{g'(x)} = \lim_{x\to 0} (2x \cos(\frac{1}{x}) + \sin(\frac{1}{x}))$ does not exist (since: $\lim_{x\to 0} \sin(\frac{1}{x})$ does not exist)

Remark 5.6 Also, the Hopital's rules is true when $x \to \pm \infty$

Theorem 5.5: (Second rule of L'Hôpital)

Let f and g be two functions defined on I (where I is a neighborhood of x_0), differentiable on $I - \{x_0\}$ and satisfying the following conditions:

1. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = \pm \infty$

2.
$$\forall x \in I - \{x_0\}; g'(x) \neq 0$$

Then:

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \implies \lim_{x \to x_0} \frac{f(x)}{g(x)} = l$$

Example 5.5

$$\lim_{x \to +\infty} \frac{x^n}{e^x} = \lim_{x \to +\infty} \frac{nx^{n-1}}{e^x} = \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{e^x} = \dots = \lim_{x \to +\infty} \frac{n!x^0}{e^x} = 0$$

5.5 Higher Order Derivatives

Definition 5.4

Let f be a function differentiable on I, then f' is called the 1st-order derivative of f; if f' is differentiable on I, then its derivative is called the 2nd-order derivative of f and is denoted by f'' or $f^{(2)}$. Recursively, we define the derivative of order n of f as follows:

$$\begin{cases} f^{(0)} = f \\ \\ (f^{(n-1)})' = f^{(n)} \end{cases}$$

Another notations used are: $D_n f, \frac{d^n f}{dx^n}$ for $f^{(n)}$

Example 5.6

$$\sin^{(n)}(x) = \sin(x + n\frac{\pi}{2})$$
 and $\cos^{(n)}(x) = \cos(x + n\frac{\pi}{2})$

Definition 5.5: (Class Functions: C^n)

Let n be a non-zero natural number. A function f defined on I is said to be of class C^n or n times continuously differentiable if it is n times differentiable and $f^{(n)}$ is continuous on I, and we note $f \in C^n(I)$.

Remark 5.7 A function f is said to be "of class C^0 " if it is continuous on I.

Definition 5.6: (Class Functions: C^{∞})

A function f is said to be of class C^{∞} on I if it is in the class C^n . $\forall n \in \mathbb{N}$

5.5.1 *n*-th derivative of a product (Leibniz rule)

Theorem 5.6

Let f and g be two functions n times differentiable on I, then fg is n times differentiable on I and we have:

$$\forall x \in I; (f.g)^{n}(x) = \sum_{k=0}^{n} C_{n}^{k} f^{(n-k)}(x) g^{(k)}(x)$$

with: $C_{n}^{k} = \frac{n!}{k!(n-k)!}$

Example 5.7

Compute $(x^2 \sin(2x))^{(3)}$ According to Leibniz' formula, we have:

$$(x^{2}\sin(2x))^{(3)} = \sum_{k=0}^{3} C_{3}^{k}(x^{2})^{(3-k)}(\sin(2x))^{(k)}$$

= $C_{3}^{0}(x^{2})^{(3)}(\sin(2x))^{(0)} + C_{3}^{1}(x^{2})^{(2)}(\sin(2x))^{(1)}$
+ $C_{3}^{2}(x^{2})^{(1)}(\sin(2x))^{(2)} + C_{3}^{3}(x^{2})^{(0)}(\sin(2x))^{(3)}$
= $12\cos(2x) - 24x\sin(2x) - 8x^{2}\cos(2x)$

5.6 Taylor's formulas

Theorem 5.7: (Taylor's formula with Lagrange remainder)

Let $x_0 \in [a, b]$ et $f : [a, b] \longrightarrow \mathbb{R}$ be a function that checks:

- 1. $f \in C^n$ on [a, b].
- 2. $f^{(n)}$ is differentiable on]a, b[.

then, $\forall x \in [a, b]$ (with $x \neq x_0$), $\exists c \in [a, b]$ such that:

$$f(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

This expression is the Taylor formula of order n with the Lagrange remainder

$$R_n(x, x_0) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

Theorem 5.8: (Taylor Mac-Laurin formula)

If we set $x_0 = 0$ in the Taylor-Lagrange formula, we obtain: $\exists \theta \in]0, 1[$ such that:

$$f(x) = f(0) + \frac{f^{(1)}(0)}{1!}x + \frac{f^{(2)}(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}$$

This is Taylor Mac-Laurin's formula.

Remark 5.8 In practice, the Taylor Mac-Laurin formula is used to calculate the approximate values.

Example 5.8

Show that for every $x \in \mathbb{R}_+$:

$$x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$

Let $x \ge 0$, Applying the Taylor Mac-Laurin formula of order 2 to the function $f(x) = \ln(1+x)$, we find:

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3} / \theta \in]0,1[$$

Since $x \ge 0$ then,

$$x - \frac{x^2}{2} \le x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3}$$

$$\implies x - \frac{x^2}{2} \le \ln(1+x)$$
(5.1)

On the other hand $\frac{x^3}{3(1+\theta x)^3} \le \frac{x^3}{3}$

$$\implies x - \frac{x^2}{2} + \frac{x^3}{3(1+\theta x)^3} \le x - \frac{x^2}{2} + \frac{x^3}{3}$$
$$\implies \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$
(5.2)

from (5.1) and (5.2) we get:

$$x - \frac{x^2}{2} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$$