Differential Calculus of Functions of One Variable

Contents

5.1 The Derivative of a Function at a Point 1
5.1.1 Geometrical interpretation 3
5.2 Differential on an interval. Derivative function. 4
5.3 Operations on differentiable functions 4
5.4 Mean value Theorem 6
5.4.1 L'Hôpital's rules 8
5.5 Higher Order Derivatives 9
5.5.1 n-th derivative of a product (Leibniz rule) 10
5.6 Taylor's formulas 10

5.1 The Derivative of a Function at a Point

Definition 5.1

Let f be a function defined in the neighborhood of x_{0}. We say that f is differentiable at a point x_{0} if the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists in \mathbb{R}. When this limit exists, it is denoted by $f^{\prime}\left(x_{0}\right)$ and called the derivative of f at x_{0}.

Remark 5.1 If we put $x-x_{0}=h$, the quantity $\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ becomes $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$. So we can define the notion of differentiability of f at x_{0} in the following way:

$$
f \text { is differentiable at the point } x_{0} \Leftrightarrow \lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} \text { exists in } \mathbb{R}
$$

Notations:

We can use the notations $f^{\prime}\left(x_{0}\right), D f\left(x_{0}\right), \frac{d f}{d x}\left(x_{0}\right)$ to designate the derivative of f at x_{0}.

Example 5.1

1. The function $f(x)=x^{2}$ is differentiable at any point $x_{0} \in \mathbb{R}$ and the derivative $f^{\prime}\left(x_{0}\right)=2 x_{0}$. As an explanation, given $x_{0} \in \mathbb{R}$ we have:

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{2}-x_{0}^{2}}{h}=\lim _{h \rightarrow 0}\left(h+2 x_{0}\right)=2 x_{0} .
$$

2. The function $f(x)=\sin (x)$ is differentiable at any point $x_{0} \in \mathbb{R}$ and the derivative $f^{\prime}\left(x_{0}\right)=\cos \left(x_{0}\right)$. As an explanation, given $x_{0} \in \mathbb{R}$ we have:

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} & =\lim _{h \rightarrow 0} \frac{\sin \left(x_{0}+h\right)-\sin \left(x_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \cos \left(\frac{2 x_{0}+h}{2}\right) \frac{\sin \left(\frac{h}{2}\right)}{\frac{h}{2}}=\cos \left(x_{0}\right)
\end{aligned}
$$

Definition 5.2: (Left and right derivative)

1. Let f be a function defined on an interval of type $\left[x_{0}, x_{0}+\alpha[\right.$ with $\alpha>0$. We say that f is right-differentiable at x_{0} iff:

$$
\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists in \mathbb{R}. This limit is denoted by $f_{r}^{\prime}\left(x_{0}\right)$ and is called the right derivative of f at x_{0}.
2. Let f be a function defined on an interval of type $\left.] x_{0}-\alpha, x_{0}\right]$ with $\alpha>0$. We say that f is left-differentiable at x_{0} iff:

$$
\lim _{h \rightarrow 0^{-}} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists in \mathbb{R}. This limit is denoted by $f_{l}^{\prime}\left(x_{0}\right)$ and is called the left derivative of f at x_{0}.

Proposition 5.1

Let f be a function defined in the neighborhood of x_{0}, we have:
f is differentiable at $x_{0} \Longleftrightarrow\left\{\begin{array}{l}f \text { is differentiable on the right and left at } x_{0} \\ \text { and } \\ f_{r}^{\prime}\left(x_{0}\right)=f_{l}^{\prime}\left(x_{0}\right)\end{array}\right.$

Example 5.2

Let $f(x)=|x|$, we have:

$$
\begin{aligned}
& \lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{-}}-\frac{h}{h}=-1=f_{l}^{\prime}(0) \\
& \lim _{h \rightarrow 0^{+}} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0^{+}} \frac{|h|}{h}=\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1=f_{r}^{\prime}(0)
\end{aligned}
$$

\Longrightarrow The function f is differentiable on the right and on the left at $x_{0}=0$ and moreover $f_{r}^{\prime}(0)=1$ and

$$
f_{l}^{\prime}(0)=-1, \text { so } f_{l}^{\prime}(0) \neq f_{r}^{\prime}(0) \Longrightarrow f \text { is not differentiable at } x_{0}=0
$$

5.1.1 Geometrical interpretation

The figure below shows the graph of a function $y=f(x)$:
The ratio $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\tan (\theta)$ is the slope of the straight line joining point $A\left(x_{0}, f\left(x_{0}\right)\right)$ to point $B\left(x_{0}+h, f\left(x_{0}+h\right)\right)$ on the graph. When $h \rightarrow 0$, this line tends towards the tangent $(A C)$ to the curve at a point $A\left(x_{0}, f\left(x_{0}\right)\right)$. So we get:

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\tan (\alpha)=\frac{C D}{A D}
$$

is the slope of the tangent to the curve at point $A\left(x_{0}, f\left(x_{0}\right)\right)$.

Figure 5.1: Geometrical Interpretation of Differentiability at a point x_{0}
Remark 5.2 According to the figure above, the equation of the tangent to the curve $y=f(x)$ at the point $A\left(x_{0}, f\left(x_{0}\right)\right)$ is $y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

Proposition 5.2

Let f be a function differentiable at a point x_{0}, then f is continuous at x_{0}.

Proof:

We have: $\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=\lim _{x \rightarrow x_{0}}\left(\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right)\left(x-x_{0}\right)$
Since f is differentiable at x_{0} we get:
$\lim _{x \rightarrow x_{0}}\left(f(x)-f\left(x_{0}\right)\right)=\lim _{x \rightarrow x_{0}} f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 \Longrightarrow f$ is continuous at x_{0}
Remark 5.3 The opposite of this theorem is incorrect. A function can be continuous at a point x_{0} without being differentiable at the same point. For example, the function $x \mapsto|x|$ is continuous at $x_{0}=0$ but not differentiable at the same point.

5.2 Differential on an interval. Derivative function.

Definition 5.3

Let f be a function defined on an open interval I. We say that f is differentiable on I if: it is differentiable at any point on I. The function defined on I by: $x \mapsto f^{\prime}(x)$ is called the derivative function or simply the derivative of the function f and is denoted by f^{\prime} ou $\frac{d f}{d x}$.

Remark 5.4 let f be a function defined on an interval I and $a, b \in \mathbb{R} \cup\{+\infty,-\infty\}$ then:

- We say that f is differentiable on $I=[a, b]$ iff: it is differentiable on the open interval $] a, b[$ and differentiable on the right at a and on the left at b.
- We say that f is differentiable on $I=[a, b[$ if: it is differentiable on the open interval $] a, b[$ and differentiable on the right at a.
- We say that f is differentiable on $I=] a, b]$ if: it is differentiable on the open interval $] a, b[$ and differentiable on the left at b.

5.3 Operations on differentiable functions

Proposition 5.3: (At a point)

Let f, g be two functions differentiable at x_{0}, then we have:

- $f+g$ is differentiable at x_{0} et $(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$
- $f \cdot g$ is differentiable at x_{0} et $(f \cdot g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot g\left(x_{0}\right)+f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right)$
- If we have: $f\left(x_{0}\right) \neq 0$, alors $\frac{1}{f}$ is differentiable at x_{0} et $\left(\frac{1}{f}\right)^{\prime}\left(x_{0}\right)=-\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)^{2}}$
- If we have: $g\left(x_{0}\right) \neq 0$, then $\frac{f}{g}$ is differentiable at x_{0} and

$$
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) \cdot g\left(x_{0}\right)-f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}
$$

Proposition 5.4: (On an interval)

Let f and g be two functions differentiable on an open interval I then:

- $f+g$ is differentiable on I and $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $f . g$ is differentiable on I and $(f . g)^{\prime}=f^{\prime} . g+f . g^{\prime}$
- If $f \neq 0$ on $I, \frac{1}{f}$ is differentiable on I and $\left(\frac{1}{f}\right)^{\prime}=-\frac{f^{\prime}}{f^{2}}$
- If $g \neq 0$ on $I, \frac{f}{g}$ is differentiable on I and

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}
$$

Proposition 5.5: Differentiability and composition

Let $f: I \longrightarrow \mathbb{R}$ and $g: J \longrightarrow \mathbb{R}$ be two functions where I and J are two open intervals such that: $f(I) \subset J$

- Differentiability at a point: If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$, then $g \circ f$ is differentiable at x_{0} and $(g \circ f)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot g^{\prime}\left(f\left(x_{0}\right)\right)$
- differentiability on an interval: If f is differentiable on I and g is differentiable on J, then $g \circ f$ is differentiable on I and $(g \circ f)^{\prime}=f^{\prime} .\left(g^{\prime} \circ f\right)$

Proposition 5.6: Differentiability and inverse function

Let $f: I \longrightarrow J$ be a bijective and differentiable function at $x_{0} \in I$. Then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ if and only if $f^{\prime}\left(x_{0}\right) \neq 0$ and in this case: $\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}$.

Proposition 5.7

Let $f: I \longrightarrow J$ be a bijective and differentiable function on I. If $f^{\prime} \neq 0$ on I, then f^{-1} is differentiable on J and we have $:\left(f^{-1}\right)^{\prime}=\frac{1}{f^{\prime} \circ f^{-1}}$

5.4 Mean value Theorem

Theorem 5.1: (Rolle's theorem)

Let f be a function defined on $[a, b]$. If we have:

1. f is continuous on $[a, b]$.
2. f is differentiable on $] a, b[$
3. $f(a)=f(b)$
then there exists a real number $c \in] a, b\left[\right.$ such that $f^{\prime}(c)=0$

Figure 5.2: Geometrical interpretation of Rolle's theorem

Theorem 5.2: (Mean value Theorem)

Let f be a function defined on $[a, b]$, if we have:

1. f is continuous on $[a, b]$.
2. f is differentiable on $] a, b[$
then there exists a real number $c \in] a, b[$ such that:

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

Figure 5.3: Geometrical interpretation of the mean value theorem

Consequence:(second form of the mean value theorem)

Let f be a function defined on $I, h>0$ and $x_{0} \in I$ such that $x_{0}+h \in I$, then if we have:

1. f is continuous on $\left[x_{0}, x_{0}+h\right]$.
2. f is derivable on $] x_{0}, x_{0}+h[$
then there exists a $\theta \in] 0,1[$ such that:

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}+\theta . h\right) h
$$

Example 5.3

By using the mean value theorem, show that:

$$
\forall x>0 ; \sin (x) \leq x
$$

By putting $f(t)=t-\sin (t)$ we get:
$\forall x>0$ we have: $\left\{\begin{array}{l}f \text { is continuous on }[0, x] \\ \text { and } \\ f \text { is differentiable on }] 0, x[\end{array}\right.$
According to the mean value theorem, there exists $c \in] 0, x[$ such that:

$$
f(x)-f(0)=f^{\prime}(c)(x-0)
$$

$$
\begin{gathered}
\Longleftrightarrow x-\sin (x)=(1-\cos (c)) x \Longleftrightarrow \sin (x)=\cos (c) x \\
\Longrightarrow \sin (x) \leq x(\text { as } \cos (c) \leq 1)
\end{gathered}
$$

Theorem 5.3: Generalized mean value theorem

Let f and g be two real functions defined on $[a, b]$ such that:

1. f and g are continuous on $[a, b]$.
2. f and g are differentiable on $] a, b[$.

Then there exists a real number $c \in] a, b[$ such that:

$$
(f(b)-f(a)) g^{\prime}(c)=(g(b)-g(a)) f^{\prime}(c)
$$

Proposition 5.8: (Variations of a function)

Let f be a continuous function on $[a, b]$ and differentiable on $] a, b[$, we have:

1. If $f^{\prime}(x)>0$ on $] a, b[$, then f is strictly increasing on $[a, b]$.
2. If $f^{\prime}(x) \geq 0$ on $] a, b[$, then f is increasing on $[a, b]$.

3 . If $f^{\prime}(x)<0$ on $] a, b[$, then f is strictly decreasing on $[a, b]$.
4. If $f^{\prime}(x) \leq 0$ on $] a, b[$, then f is decreasing on $[a, b]$.
5. If $f^{\prime}(x)=0$ on $] a, b[$, then f is constant on $[a, b]$.

5.4.1 L'Hôpital's rules

Theorem 5.4: (First rule of L'Hôpital)

Let f and g be two continuous functions on I (where I is a neighborhood of x_{0}), differentiable on $I-\left\{x_{0}\right\}$ and satisfying the following conditions:

1. $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=0$
2. $\forall x \in I-\left\{x_{0}\right\} ; g^{\prime}(x) \neq 0$

Then:

$$
\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l \Longrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l
$$

Example 5.4

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=1
$$

Remark 5.5 The converse is generally false. For example: $f(x)=x^{2} \cos \left(\frac{1}{x}\right), g(x)=x$.
We have: $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)=0$. While $\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow 0}\left(2 x \cos \left(\frac{1}{x}\right)+\sin \left(\frac{1}{x}\right)\right)$ does not exist (since: $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist)

Remark 5.6 Also, the Hopital's rules is true when $x \rightarrow \pm \infty$

Theorem 5.5: (Second rule of L'Hôpital)

Let f and g be two functions defined on I (where I is a neighborhood of x_{0}), differentiable on $I-\left\{x_{0}\right\}$ and satisfying the following conditions:

1. $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)= \pm \infty$
2. $\forall x \in I-\left\{x_{0}\right\} ; g^{\prime}(x) \neq 0$

Then:

$$
\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=l \Longrightarrow \lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=l
$$

Example 5.5

$$
\lim _{x \rightarrow+\infty} \frac{x^{n}}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{n x^{n-1}}{e^{x}}=\lim _{x \rightarrow+\infty} \frac{n(n-1) x^{n-2}}{e^{x}}=\ldots \ldots \ldots=\lim _{x \rightarrow+\infty} \frac{n!x^{0}}{e^{x}}=0
$$

5.5 Higher Order Derivatives

Definition 5.4

Let f be a function differentiable on I, then f^{\prime} is called the 1st-order derivative of f; if f^{\prime} is differentiable on I, then its derivative is called the 2nd-order derivative of f and is denoted by $f^{\prime \prime}$ or $f^{(2)}$. Recursively, we define the derivative of order n of f as follows:

$$
\left\{\begin{array}{l}
f^{(0)}=f \\
\left(f^{(n-1)}\right)^{\prime}=f^{(n)}
\end{array}\right.
$$

Another notations used are: $D_{n} f, \frac{d^{n} f}{d x^{n}}$ for $f^{(n)}$

Example 5.6

$$
\sin ^{(n)}(x)=\sin \left(x+n \frac{\pi}{2}\right) \quad \text { and } \quad \cos ^{(n)}(x)=\cos \left(x+n \frac{\pi}{2}\right)
$$

Definition 5.5: (Class Functions: C^{n})

Let n be a non-zero natural number. A function f defined on I is said to be of class C^{n} or n times continuously differentiable if it is n times differentiable and $f^{(n)}$ is continuous on I, and we note $f \in C^{n}(I)$.

Remark 5.7 A function f is said to be "of class C^{0} " if it is continuous on I.

Definition 5.6: (Class Functions: C^{∞})

A function f is said to be of class C^{∞} on I if it is in the class $C^{n} . \forall n \in \mathbb{N}$

5.5.1 n-th derivative of a product (Leibniz rule)

Theorem 5.6

Let f and g be two functions n times differentiable on I, then $f g$ is n times differentiable on I and we have:

$$
\begin{gathered}
\forall x \in I ;(f . g)^{n}(x)=\sum_{k=0}^{n} C_{n}^{k} f^{(n-k)}(x) g^{(k)}(x) \\
\text { with: } C_{n}^{k}=\frac{n!}{k!(n-k)!}
\end{gathered}
$$

Example 5.7

Compute $\left(x^{2} \sin (2 x)\right)^{(3)}$ According to Leibniz' formula, we have:

$$
\begin{aligned}
\left(x^{2} \sin (2 x)\right)^{(3)}= & \sum_{k=0}^{3} C_{3}^{k}\left(x^{2}\right)^{(3-k)}(\sin (2 x))^{(k)} \\
= & C_{3}^{0}\left(x^{2}\right)^{(3)}(\sin (2 x))^{(0)}+C_{3}^{1}\left(x^{2}\right)^{(2)}(\sin (2 x))^{(1)} \\
& +C_{3}^{2}\left(x^{2}\right)^{(1)}(\sin (2 x))^{(2)}+C_{3}^{3}\left(x^{2}\right)^{(0)}(\sin (2 x))^{(3)} \\
= & 12 \cos (2 x)-24 x \sin (2 x)-8 x^{2} \cos (2 x)
\end{aligned}
$$

5.6 Taylor's formulas

Theorem 5.7: (Taylor's formula with Lagrange remainder)

Let $x_{0} \in[a, b]$ et $f:[a, b] \longrightarrow \mathbb{R}$ be a function that checks:

1. $f \in C^{n}$ on $[a, b]$.
2. $f^{(n)}$ is differentiable on $] a, b[$.
then, $\forall x \in[a, b]$ (with $x \neq x_{0}$), $\exists c \in[a, b]$ such that:

$$
\begin{aligned}
f(x)= & f\left(x_{0}\right)+\frac{f^{(1)}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\ldots .+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} \\
& +\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
\end{aligned}
$$

This expression is the Taylor formula of order n with the Lagrange remainder

$$
R_{n}\left(x, x_{0}\right)=\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Theorem 5.8: (Taylor Mac-Laurin formula)
If we set $x_{0}=0$ in the Taylor-Lagrange formula, we obtain:
$\exists \theta \in] 0,1[$ such that:

$$
f(x)=f(0)+\frac{f^{(1)}(0)}{1!} x+\frac{f^{(2)}(0)}{2!} x^{2}+\ldots .+\frac{f^{(n)}(0)}{n!} x^{n}+\frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1}
$$

This is Taylor Mac-Laurin's formula.

Remark 5.8 In practice, the Taylor Mac-Laurin formula is used to calculate the approximate values.

Example 5.8

Show that for every $x \in \mathbb{R}_{+}$:

$$
x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
$$

Let $x \geq 0$, Applying the Taylor Mac-Laurin formula of order 2 to the function $f(x)=\ln (1+x)$, we find:

$$
\left.\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3(1+\theta x)^{3}} / \theta \in\right] 0,1[
$$

Since $x \geq 0$ then,

$$
\begin{gather*}
x-\frac{x^{2}}{2} \leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3(1+\theta x)^{3}} \\
\Longrightarrow x-\frac{x^{2}}{2} \leq \ln (1+x) \tag{5.1}
\end{gather*}
$$

On the other hand $\frac{x^{3}}{3(1+\theta x)^{3}} \leq \frac{x^{3}}{3}$

$$
\begin{gather*}
\Longrightarrow x-\frac{x^{2}}{2}+\frac{x^{3}}{3(1+\theta x)^{3}} \leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \\
\Longrightarrow \ln (1+x) \leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \tag{5.2}
\end{gather*}
$$

from (5.1) and (5.2) we get:

$$
x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x-\frac{x^{2}}{2}+\frac{x^{3}}{3}
$$

