Chapter 3

Sequences of real numbers

3.1 Definitions and examples

Definition 1

A sequence of real numbers is a real-valued function whose domain is the set of natural numbers \mathbb{N} or an infinite subset $\mathscr{N}_{1} \subset \mathbb{N}$ to the real numbers i.e:

$$
\begin{aligned}
u: \mathbb{N} & \longrightarrow \mathbb{R} \\
n & \longmapsto u(n)
\end{aligned} \quad \text { or } \quad u: \begin{array}{clll}
& & & \mathscr{N}_{1} \\
& & \longmapsto & \mathbb{R} \\
& \longmapsto u(n)
\end{array}
$$

Notations:

- For $n \in \mathbb{N}, u(n)$ is denoted by u_{n} and is called the general term or n-th term of the sequence.
- The sequence u is denoted by $\left(u_{n}\right)_{n \in \mathbb{N}}$ or $\left(u_{n}\right)_{n \in \mathscr{N}_{1}}$.

Example 1

1 The sequence $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ defined by: $u_{n}=\frac{1}{n}$, starts with $u_{1}=1$, and $u_{2}=\frac{1}{2}, u_{3}=\frac{1}{3}, \ldots \ldots$.
(2) The recurrent sequence defined by: $\left\{\begin{array}{l}u_{1}=1 \\ u_{n}=1+\frac{1}{u_{n-1}}\end{array}\right.$ starts with $u_{1}=1$, and $u_{2}=2, u_{3}=$ $\frac{3}{2}, \ldots$.

Remark

The ways in which a sequence can be defined.

- By an explicit definition of the general term of the sequence $\left(u_{n}\right)$ i.e.: Express u_{n} in terms of n. For example, $u_{n}=\frac{2 n+1}{n+7}$.
- By a recurrence formula, i.e. a relationship that links any term in the sequence to the one that precedes it. In this case, to calculate u_{n}, you need to calculate all the terms that precede it. For example :

$$
\left\{\begin{array}{l}
u_{0}=2 \\
u_{n+1}=3 u_{n}-1
\end{array}\right.
$$

3.2 Bounded sequences

Definition 2

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence.

- A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded from above iff: $\exists M \in \mathbb{R}, \forall n \in \mathbb{N} ; u_{n} \leq M$
- A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded from below iff: $\exists m \in \mathbb{R}, \forall n \in \mathbb{N} ; m \leq u_{n}$
- A sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded iff: it is bounded from above and bounded from below which means :

$$
\exists M \in \mathbb{R}_{+}, \forall n \in \mathbb{N} ;\left|u_{n}\right| \leq M
$$

3.3 Increasing and decreasing sequences

Definition 3

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence

- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence iff: $\forall n \in \mathbb{N} ; u_{n} \leq u_{n+1}$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a strictly increasing sequence iff: $\forall n \in \mathbb{N} ; u_{n}<u_{n+1}$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a decreasing sequence iff: $\forall n \in \mathbb{N} ; u_{n} \geq u_{n+1}$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a strictly decreasing sequence iff: $\forall n \in \mathbb{N} ; u_{n}>u_{n+1}$
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is monotonic if it is increasing or decreasing.
- $\left(u_{n}\right)_{n}$ is strictly monotonic if it is strictly increasing or strictly decreasing.
- $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a constant sequence iff $\forall n \in \mathbb{N} ; u_{n+1}=u_{n}$

3.4 Finite and infinite limit of a numerical sequence

Definition 4: Convergent sequences

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence. We say that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to l iff:

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow\left|u_{n}-l\right| \leq \varepsilon
$$

In this case, we say that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent to the limit l and we note $\lim _{n \rightarrow+\infty} u_{n}=l$

Remark

$$
\left|u_{n}-l\right| \leq \varepsilon \Leftrightarrow l-\varepsilon \leq u_{n} \leq l+\varepsilon \Leftrightarrow u_{n} \in[l-\varepsilon, l+\varepsilon]
$$

The above definition means that for any strictly positive real ε, there exists an integer n_{0} (rank) such that: all terms $u_{n_{0}}, u_{n_{0}+1}, u_{n_{0}+2} \ldots$. are in the interval $[l-\varepsilon, l+\varepsilon]$.

Example 2

- The sequence $u_{n}=\frac{n}{n+1}$ converges to 1

Using the definition of convergence, we show that $\lim _{n \rightarrow+\infty} u_{n}=1$
Let $\varepsilon>0$ we have:

$$
\begin{gathered}
\left|u_{n}-1\right| \leq \varepsilon \\
\Leftrightarrow\left|\frac{n}{n+1}-1\right| \leq \varepsilon \\
\Leftrightarrow\left|\frac{n}{n+1}-1\right| \leq \varepsilon \\
\Leftrightarrow\left|1-\frac{1}{n+1}-1\right| \leq \varepsilon \\
\Leftrightarrow \frac{1}{n+1} \leq \varepsilon \\
\Leftrightarrow \frac{1}{\varepsilon}-1 \leq n
\end{gathered}
$$

By setting $n_{0}=\left\lfloor\frac{1}{\varepsilon}\right\rfloor>\frac{1}{\varepsilon}-1$, we obtain :
$\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}\left(n_{0}=\left\lfloor\frac{1}{\varepsilon}\right\rfloor\right), \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow\left|u_{n}-1\right| \leq \varepsilon$
$\Longrightarrow\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to $l=1$
Using Maple, we get the following graph:

Figure 3.1: $\varepsilon=0.1$

3.4. FINITE AND INFINITE LIMIT OF A NUMERICAL SEQUENCE

Definition 5

1 We say that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ tends to $+\infty$ as n tends to infinity and we note $\lim _{n \rightarrow+\infty} u_{n}=+\infty$ iff:

$$
\forall A>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow u_{n} \geq A
$$

2 We say that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ tends to $-\infty$ as n tends to infinity and we note $\lim _{n \rightarrow+\infty} u_{n}=-\infty$ iff:

$$
\forall A>0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow u_{n} \leq-A
$$

Example 3

- Let be the following sequences :

$$
\left\{\begin{array}{l}
u_{n}=2 n+1 \\
v_{n}=-3 n+4
\end{array}\right.
$$

We show that $\lim _{n \rightarrow+\infty} u_{n}=+\infty$ and $\lim _{n \rightarrow+\infty} v_{n}=-\infty$
1 Let $A>0$ on a:

$$
\begin{aligned}
& u_{n} \geq A \\
\Leftrightarrow & 2 n+1 \geq A \\
\Leftrightarrow & 2 n \geq A-1 \\
\Leftrightarrow & 2 n \geq \frac{A-1}{2}
\end{aligned}
$$

Let's put $n_{0}=\left[\frac{A-1}{2}\right]+1>\frac{A-1}{2}$
$\Longrightarrow\left(\forall A>0, \exists n_{0} \in \mathbb{N}\left(n_{0}=\left[\frac{A-1}{2}\right]+1\right), \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow u_{n} \geq A\right)$
2 The same method used for the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$

Definition 6: divergent sequences

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is divergent if it is not convergent, i.e

$$
\forall l \in \mathbb{R}, \exists \varepsilon>0, \forall n_{0} \in \mathbb{N}, \exists n \in \mathbb{N} ;\left(n \geq n_{0}\right) \wedge\left(\left|u_{n}-l\right|>\varepsilon\right)
$$

Remark

here are two types of divergence
1 Divergence of infinite type: in this case the sequence converges to $+\infty$ or $-\infty$. For example the sequence with general term $u_{n}=2 n+4$.

2 Divergence of type limit does not exist: in this case the sequence has no finite or infinite limit.

For example, the sequence with general term $u_{n}=(-1)^{n}$

Proof:

We will show that the sequence $(-1)^{n}$ does not have a finite or infinite limit.
1 By contradiction, suppose that: $\lim _{n \rightarrow+\infty}(-1)^{n}=l / l \in \mathbb{R}$. According to the convergence definition with $\varepsilon=\frac{1}{4}$ we get:

$$
\left.\left.\begin{array}{rl}
\exists n_{0} \in \mathbb{N}, \forall n & \in \mathbb{N} ; n \geq n_{0} \Longrightarrow u_{n} \in\left[l-\frac{1}{4}, l+\frac{1}{4}\right] \\
& \Longrightarrow-1,1 \in\left[l-\frac{1}{4}, l+\frac{1}{4}\right]
\end{array}\right] \begin{array}{l}
l-\frac{1}{4} \leq 1 \leq l+\frac{1}{4} \\
l-\frac{1}{4} \leq-1 \leq l+\frac{1}{4}
\end{array}\right] \begin{aligned}
& l-\frac{1}{4} \leq 1 \leq l+\frac{1}{4} \\
& \\
& \Longrightarrow \\
& \\
&
\end{aligned} \begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
-\frac{1}{4} \leq 1 \leq-l+\frac{1}{4} \\
-\frac{1}{2} \leq 2 \leq \frac{1}{2}
\end{array}\right.
\end{aligned}
$$

It's a contradiction.
2 By contradiction, suppose that: $\lim _{n \rightarrow+\infty}(-1)^{n}=+\infty$. According to the convergence definition with $A=4$ we get:

$$
\begin{aligned}
& \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow u_{n} \geq 4 \\
& \Longrightarrow u_{n} \in[4,+\infty[\Longrightarrow-1,1 \in[4,+\infty[
\end{aligned}
$$

It's a contradiction.
3 We use the same method for the case: $\lim _{n \rightarrow+\infty}(-1)^{n}=-\infty$

Proposition 1:

If a sequence of real numbers $\left(u_{n}\right)_{n \in \mathbb{N}}$ has a limit, then this limit is unique.

Proof:

By contradiction
Suppose that:; $\left\{\begin{array}{l}\lim _{n \rightarrow+\infty} u_{n}=l_{1} \\ \lim _{n \rightarrow+\infty} u_{n}=l_{2}\end{array}\right.$
Taking $\varepsilon=\frac{\left|l_{1}-l_{2}\right|}{4}$ with $l_{1} \neq l_{2}$ which implies

$$
\left\{\begin{array}{l}
\exists n_{1} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{1} \Longrightarrow\left|u_{n}-l_{1}\right| \leq \varepsilon \\
\exists n_{2} \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{2} \Longrightarrow\left|u_{n}-l_{2}\right| \leq \varepsilon
\end{array}\right.
$$

Putting $n_{0}=\max \left(n_{1}, n_{2}\right)$

$$
\Longrightarrow\left(\forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow\left|u_{n}-l_{1}\right|+\left|u_{n}-l_{2}\right| \leq 2 \varepsilon\right)
$$

With $n \geq n_{0}$ we get

$$
\begin{aligned}
\left|l_{1}-l_{2}\right| & \leq\left|u_{n}-l_{1}\right|+\left|u_{n}-l_{2}\right| \leq 2 \varepsilon \\
& \Longrightarrow\left|1_{1}-l_{2}\right| \leq 2 \varepsilon \\
& \Longrightarrow \frac{\left|1_{1}-l_{2}\right|}{4} \leq \frac{\varepsilon}{2} \\
\Longrightarrow \varepsilon & \leq \frac{\varepsilon}{2} \quad \text { it's a contradiction }
\end{aligned}
$$

Proposition 2

If $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence, then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a bounded sequence.

Proof:

We'll show the following implication:

$$
\left(u_{n}\right)_{n \in \mathbb{N}} \text { is a convergent sequence } \Longrightarrow\left(u_{n}\right)_{n \in \mathbb{N}} \text { is bounded }
$$

Suppose that $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent, then for $\varepsilon=1$ we have:

$$
\begin{aligned}
\exists n_{0} & \in \mathbb{N}, \forall n \in \mathbb{N} ; n \geq n_{0} \Longrightarrow\left|u_{n}-l\right| \leq 1 \\
& \Longrightarrow m=l-1 \leq u_{n} \leq l+1=M
\end{aligned}
$$

So the set $\left\{u_{n_{0}}, u_{n_{0}+1}, \ldots \ldots.\right\}$ is bounded.
On the other hand $A=\left\{u_{0} \ldots . ., u_{n_{0}-2}, u_{n_{0}-1}\right\}$ is bounded (because $\operatorname{Card}(A)<+\infty$). Then the set of values of $\left(u_{n}\right)$ is: $\left\{u_{0} \ldots ., u_{n_{0}-2}, u_{n_{0}-1}, u_{n_{0}}, u_{n_{0}+1}, \ldots \ldots.\right\}$ is bounded, this means $\left(u_{n}\right)$ is bounded.

3.5 Finding Limits: Properties of Limits

Theorem 1

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ two convergent sequences with: $\lim _{n \rightarrow+\infty} u_{n}=l$ and $\lim _{n \rightarrow+\infty} v_{n}=l^{\prime}$. The properties of limits are summarized as follows:
$1 \lim _{n \rightarrow+\infty} \lambda u_{n}=\lambda l$ with $\lambda \in \mathbb{R}$
$2 \lim _{n \rightarrow+\infty}\left(u_{n}+v_{n}\right)=l+l^{\prime}$
$3 \lim _{n \rightarrow+\infty} u_{n} v_{n}=l l^{\prime}$
4 If $u_{n} \neq 0$ for $n \geq n_{0}$ and $l \neq 0$ then $\lim _{n \rightarrow+\infty} \frac{1}{u_{n}}=\frac{1}{l}$
5 If $v_{n} \neq 0$ for $n \geq n_{0}$ and $l^{\prime} \neq 0$ then $\lim _{n \rightarrow+\infty} \frac{u_{n}}{v_{n}}=\frac{l}{l^{\prime}}$

Remark

$\lim _{n \rightarrow+\infty} u_{n}=l \Longrightarrow \lim _{n \rightarrow+\infty}\left|u_{n}\right|=|l|$. Be careful the reverse is not true. For example, if we take the sequence $u_{n}=(-1)^{n}$ we have $\lim _{n \rightarrow+\infty}\left|u_{n}\right|=1$ but $\lim _{n \rightarrow+\infty} u_{n}$ doesn't exist.

Proposition 3: Infinite limit's operations

Let $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}}$ two sequences with: $\lim _{n \rightarrow+\infty} u_{n}=+\infty$ and $\lim _{n \rightarrow+\infty} v_{n}=+\infty$ then:
$1 \lim _{n \rightarrow+\infty}\left(u_{n}+v_{n}\right)=+\infty$
2 If $\forall n \geq n_{0}, u_{n} \neq 0$ then $\lim _{n \rightarrow+\infty} \frac{1}{u_{n}}=0$

3.6 Limits and inequalities

Theorem 2

1 Let $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}}$ be two convergent sequences, then:

$$
\text { If } \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0} ; u_{n} \leq v_{n} \quad \text { this implies } \lim _{n \rightarrow+\infty} u_{n} \leq \lim _{n \rightarrow+\infty} v_{n}
$$

2 If, we have $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ two sequences which verify:- $\left\{\begin{array}{l}\exists n_{0} \in \mathbb{N}, \forall n \geq n_{0} ; u_{n} \leq v_{n} \\ \text { and } \\ \lim _{n \rightarrow+\infty} u_{n}=+\infty\end{array}\right.$ this implies $\lim _{n \rightarrow+\infty} v_{n}=+\infty$

03 Squeeze Theorem : If $\left(u_{n}\right)_{n \in \mathbb{N}},\left(v_{n}\right)_{n \in \mathbb{N}}$ and $\left(w_{n}\right)_{n \in \mathbb{N}}$ three sequences with:

$$
\left\{\begin{array}{l}
\exists n_{0} \in \mathbb{N}, \forall n \geq n_{0} ; u_{n} \leq v_{n} \leq w_{n} \\
\quad \text { and } \\
\lim _{n \rightarrow+\infty} u_{n}=\lim _{n \rightarrow+\infty} w_{n}=l
\end{array}\right.
$$

then the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is convergent and $\lim _{n \rightarrow+\infty} v_{n}=l$

3.7 Convergence theorems

Theorem 3: Convergence of monotonic sequences

- If a sequence of real numbers is increasing and bounded from above, then it converges.
- If a sequence of real numbers is decreasing and bounded from below, then it converges.

Example 4

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a numerical sequence defined by: $\left\{\begin{array}{l}u_{0}=1 \\ u_{n+1}=\frac{1+u_{n}^{2}}{2}\end{array}\right.$.
1 Prove that $\forall n \in \mathbb{N} ; u_{n} \leq 1$
2 Deduce that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent.

- by using proof by induction, we have for $n=0, u_{0}=\frac{1}{2} \leq 1$ so the proposition is true. Let's assume that the proposition is true for $k \in\{1, \ldots, n\}$ and we'll show that $u_{n+1} \leq 1$. According to the assumption we have:

$$
u_{n} \leq 1 \Longrightarrow u_{n}^{2} \leq 1 \Longrightarrow 1+u_{n}^{2} \leq 2 \Longrightarrow \frac{1+u_{n}^{2}}{2} \leq 1 \Longrightarrow u_{n+1} \leq 1
$$

So, assertion $\forall n \in \mathbb{N} ; u_{n} \leq 1$ is true.

- On a $\forall n \in \mathbb{N} ; u_{n+1}-u_{n}=\frac{1+u_{n}^{2}}{2}-u_{n}=\frac{\left(u_{n}-1\right)^{2}}{2} \geq 0$
- Since $\left(u_{n}\right)_{n \in \mathbb{N}}$ is increasing and bounded from above so $\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent.

Definition 7: Adjacent sequences

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ be two real sequences. We say that $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent iff:

$$
\left\{\begin{array}{c}
\left(u_{n}\right)_{n \in \mathbb{N}} \quad \text { is increasing } \\
\text { and } \\
\left(v_{n}\right)_{n \in \mathbb{N}} \text { is decreasing } \\
\text { and } \\
\lim _{n \rightarrow+\infty}\left(u_{n}-v_{n}\right)=0
\end{array}\right.
$$

Theorem 4:

If the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are adjacent then they converge to the same limit.

Example 5

The sequences $u_{n}=\sum_{k=1}^{n} \frac{1}{k^{2}}$ and $v_{n}=u_{n}+\frac{2}{n}$ are adjacent:

- $u_{n+1}-u_{n}=\sum_{k=1}^{n+1} \frac{1}{k^{2}}-\sum_{k=1}^{n} \frac{1}{k^{2}}=\frac{1}{(n+1)^{2}} \geq 0 \Longrightarrow\left(u_{n}\right)_{n \in \mathbb{N}}$ is increasing
- $v_{n+1}-v_{n}=\frac{1}{(n+1)^{2}}+\frac{2}{n+1}-\frac{2}{n}=-\frac{(n+2)}{n(n+1)^{2}} \leq 0 \Longrightarrow\left(v_{n}\right)_{n \in \mathbb{N}}$ is decreasing
- $\lim _{n \rightarrow+\infty}\left(u_{n}-v_{n}\right)=\lim _{n \rightarrow+\infty}\left(-\frac{2}{n}\right)=0$

Therefore the sequences $\left(u_{n}\right)_{n \in \mathbb{N}}$ and $\left(v_{n}\right)_{n \in \mathbb{N}}$ are convergent to the same limits.

Figure 3.2: $\left(u_{n}\right)$ and $\left(v_{n}\right)$ are adjacent

Definition 8: Cauchy sequence

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers.
$\left(u_{n}\right)_{n \in \mathbb{N}}$ is called a Cauchy sequence in \mathbb{R} iff:

$$
\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}, \forall p, q \in \mathbb{N} ; p, q \geq n_{0} \Longrightarrow\left|u_{p}-u_{q}\right| \leq \varepsilon
$$

Remark

$\left|u_{p}-u_{q}\right| \leq \varepsilon \Leftrightarrow$ the distance between u_{p}, and u_{q} is less than ε.
So the definition above means that:- for any strictly positive real ε, there exists n_{0} (rank), such that the distance between each two terms u_{p}, u_{q} (with $p, q \geq n_{0}$) is less than ε.

Using Maple, we obtain the following graph of a Cauchy sequence:

Figure 3.3: $u_{n}=\frac{\cos (n)+\sin (n)+n}{n}, \varepsilon=0.08$
Example 6

- $u_{n}=\frac{1}{n}$ is a Cauchy sequence

Let $p, q \in \mathbb{N}^{*}$ with $p \leq q$ then we have:

$$
\begin{gathered}
\left|u_{p}-u_{q}\right|=\left|\frac{1}{p}-\frac{1}{q}\right| \leq\left|\frac{1}{p}\right|+\left|\frac{1}{q}\right| \quad \text { according to the triangular inequality } \\
\Longrightarrow\left|u_{p}-u_{q}\right| \leq \frac{2}{p} \quad\left(\text { because: } \quad \frac{1}{q} \leq \frac{1}{p}\right)
\end{gathered}
$$

Let $\varepsilon>0$, we put $n_{0}=\left[\frac{2}{\varepsilon}\right]+1>\frac{2}{\varepsilon}$
So, $\forall \varepsilon>0, \exists n_{0} \in \mathbb{N}^{*}, \forall p, q \in \mathbb{N}^{*} ; p, q \geq n_{0} \Longrightarrow\left|u_{p}-u_{q}\right| \leq \varepsilon$

Theorem 5:

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a real sequence then:
$\left(u_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence $\Longleftrightarrow\left(u_{n}\right)_{n \in \mathbb{N}}$ is convergent

3.8 Subsequence

Definition 9

The sequence $\left(u_{\phi(n)}\right)_{n \in \mathbb{N}}$ is a subsequence of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ if $\phi: \mathbb{N} \longrightarrow \mathbb{N}$ is a strictly increasing sequence of of natural numbers.

Example 7

(1) $u_{n}=(-1)^{n} \longrightarrow\left\{\begin{array}{l}u_{2 n}=(-1)^{2 n}=1 \\ u_{2 n+1}=(-1)^{2 n+1}=-1\end{array}\right.$
$\left(u_{2 n}\right)_{n \in \mathbb{N}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ are subsequences taken from $\left(u_{n}\right)_{n \in \mathbb{N}}$
$2 v_{n}=\cos \left(\frac{n \pi}{3}\right) \longrightarrow v_{3 n}=\cos (n \pi)=(-1)^{n}$
$\left(v_{3 n}\right)_{n \in \mathbb{N}}$ is a sub-sequence of $\left(v_{n}\right)_{n \in \mathbb{N}}$

Proposition 4:

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers:

1 If $\lim _{n \rightarrow+\infty} u_{n}=l$, then for any subsequence $\left(u_{\phi(n)}\right)_{n \in \mathbb{N}} ; \lim _{n \rightarrow+\infty} u_{\phi(n)}=l$
2 If $\left(u_{n}\right)_{n \in \mathbb{N}}$ admits a divergent subsequence then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is divergent
3 If $\left(u_{n}\right)_{n \in \mathbb{N}}$ has two subsequences converging to distinct limits then $\left(u_{n}\right)_{n \in \mathbb{N}}$ is divergent.

Example 8

the sequence with general term $u_{n}=(-1)^{n}$ is divergent:
We have:

$$
\left\{\begin{array} { l }
{ u _ { 2 n } = 1 } \\
{ \quad \text { and } } \\
{ u _ { 2 n + 1 } = - 1 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\lim _{n \rightarrow+\infty} u_{2 n}=1 \\
\text { and } \\
\lim _{n \rightarrow+\infty} u_{2 n+1}=-1
\end{array}\right.\right.
$$

So, $\left(u_{2 n}\right)_{n \in \mathbb{N}}$ and $\left(u_{2 n+1}\right)_{n \in \mathbb{N}}$ are two subsequences of $\left(u_{n}\right)_{n \in \mathbb{N}}$ which converge to distinct limits, therefore $\left(u_{n}\right)_{n \in \mathbb{N}}$ is divergent.

Theorem 6: Bolzano-Weierstrass Property

Every bounded sequence has a convergent sub-sequence.

Definition 9: Cluster Points of the sequence

A cluster Point of a numerical sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is any scalar which is the limit of a subsequence of $\left(u_{n}\right)_{n \in \mathbb{N}}$.

Example 9

- Let's consider the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by: $u_{n}=\cos \left(n \frac{\pi}{2}\right)$

$$
\left\{\begin{array}{l}
u_{4 n}=\cos (2 n \pi)=1 \Longrightarrow \lim _{n \rightarrow+\infty} u_{4 n}=1 \\
u_{4 n+1}=\cos \left(\frac{\pi}{2}\right)=0 \Longrightarrow \lim _{n \rightarrow+\infty} u_{4 n+1}=0 \\
u_{4 n+2}=\cos (\pi)=-1 \Longrightarrow \lim _{n \rightarrow+\infty} u_{4 n+2}=-1 \\
u_{4 n+3}=\cos \left(3 \frac{\pi}{2}\right)=0 \Longrightarrow \lim _{n \rightarrow+\infty} u_{4 n+3}=0
\end{array}\right.
$$

So the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is divergent. The numbers $1,-1,0$ are the cluster points of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.

3.9 Limit inferior and limit superior

Definition 10

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers.
Denoting by $S=$ The set of cluster points of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$.
We define the limit superior (resp. inferior) of $\left(u_{n}\right)_{n \in \mathbb{N}}$ as

$$
\left\{\begin{array}{l}
\limsup u_{n}=\sup S \\
\liminf u_{n}=\inf S
\end{array}\right.
$$

Example 10

Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ defined by: $u_{n}=(-1)^{n}$
The set of all cluster points of the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is $S=\{1,-1\}$
so, $\lim \sup u_{n}=1$, and $\liminf u_{n}=-1$

