
Chapter 3

Sequences of real numbers

3.1 Definitions and examples

Definition 1
A sequence of real numbers is a real-valued function whose domain is the set of natural numbers N
or an infinite subset N1 ⊂ N to the real numbers i.e:

u : N −→ R
n 7−→ u(n) or

u : N1 −→ R
n 7−→ u(n)

Notations:

• For n ∈ N, u(n) is denoted by un and is called the general term or n-th term of the sequence.

• The sequence u is denoted by (un)n∈N or (un)n∈N1 .

Example 1

1 The sequence (un)n∈N∗ defined by: un =
1
n

, starts with u1 = 1, and u2 =
1
2

, u3 =
1
3

,......

2 The recurrent sequence defined by:

u1 = 1

un = 1+
1

un−1

starts with u1 = 1, and u2 = 2, u3 =

3
2

,....

Remark

The ways in which a sequence can be defined.

• By an explicit definition of the general term of the sequence (un) i.e.: Express un in terms of n.

For example, un =
2n+1
n+7

.

• By a recurrence formula, i.e. a relationship that links any term in the sequence to the one that
precedes it. In this case, to calculate un, you need to calculate all the terms that precede it. For
example :
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3.2. BOUNDED SEQUENCES

{
u0 = 2
un+1 = 3un −1

3.2 Bounded sequences

Definition 2

Let (un)n∈N be a real sequence.

• A sequence (un)n∈N is bounded from above iff: ∃M ∈ R,∀n ∈ N;un ≤ M

• A sequence (un)n∈N is bounded from below iff: ∃m ∈ R,∀n ∈ N;m ≤ un

• A sequence (un)n∈N is bounded iff: it is bounded from above and bounded from below which
means :

∃M ∈ R+,∀n ∈ N; |un| ≤ M

3.3 Increasing and decreasing sequences

Definition 3

Let (un)n∈N be a sequence

• (un)n∈N is an increasing sequence iff: ∀n ∈ N;un ≤ un+1

• (un)n∈N is a strictly increasing sequence iff: ∀n ∈ N;un < un+1

• (un)n∈N is a decreasing sequence iff: ∀n ∈ N;un ≥ un+1

• (un)n∈N is a strictly decreasing sequence iff: ∀n ∈ N;un > un+1

• (un)n∈N is monotonic if it is increasing or decreasing.

• (un)n is strictly monotonic if it is strictly increasing or strictly decreasing.

• (un)n∈N is a constant sequence iff ∀n ∈ N; un+1 = un

3.4 Finite and infinite limit of a numerical sequence

Definition 4: Convergent sequences

Let (un)n∈N be a real sequence. We say that the sequence (un)n∈N converges to l iff:

∀ε > 0, ∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ |un − l| ≤ ε

In this case, we say that the sequence (un)n∈N is convergent to the limit l and we note lim
n→+∞

un = l

Common Core in Math-Inf, Batna 2-University. 2/12 2023-2024



3.4. FINITE AND INFINITE LIMIT OF A NUMERICAL SEQUENCE

Remark

|un − l| ≤ ε ⇔ l − ε ≤ un ≤ l + ε ⇔ un ∈ [l − ε, l + ε]

The above definition means that for any strictly positive real ε , there exists an integer n0 (rank) such
that: all terms un0,un0+1,un0+2.... are in the interval [l − ε, l + ε].

Example 2

• The sequence un =
n

n+1
converges to 1

Using the definition of convergence, we show that lim
n→+∞

un = 1

Let ε > 0 we have:

|un −1| ≤ ε

⇔ | n
n+1

−1| ≤ ε

⇔ | n
n+1

−1| ≤ ε

⇔ |1− 1
n+1

−1| ≤ ε

⇔ 1
n+1

≤ ε

⇔ 1
ε
−1 ≤ n

By setting n0 = ⌊1
ε
⌋> 1

ε
−1, we obtain :

∀ε > 0, ∃n0 ∈ N(n0 = ⌊1
ε
⌋), ∀n ∈ N; n ≥ n0 =⇒ |un −1| ≤ ε

=⇒ (un)n∈N converges to l = 1
Using Maple, we get the following graph:

Figure 3.1: ε = 0.1
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3.4. FINITE AND INFINITE LIMIT OF A NUMERICAL SEQUENCE

Definition 5

1 We say that the sequence (un)n∈N tends to +∞ as n tends to infinity and we note lim
n→+∞

un =+∞

iff:
∀A > 0, ∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ un ≥ A

2 We say that the sequence (un)n∈N tends to −∞ as n tends to infinity and we note lim
n→+∞

un =−∞

iff:
∀A > 0, ∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ un ≤−A

Example 3

• Let be the following sequences : {
un = 2n+1
vn =−3n+4

We show that lim
n→+∞

un =+∞ and lim
n→+∞

vn =−∞

1 Let A > 0 on a:

un ≥ A
⇔ 2n+1 ≥ A
⇔ 2n ≥ A−1

⇔ 2n ≥ A−1
2

Let’s put n0 = [
A−1

2
]+1 >

A−1
2

=⇒ (∀A > 0, ∃n0 ∈ N(n0 = [
A−1

2
]+1), ∀n ∈ N; n ≥ n0 =⇒ un ≥ A)

2 The same method used for the sequence (vn)n∈N

Definition 6: divergent sequences

Let (un)n∈N be a sequence of real numbers. We say that the sequence (un)n∈N is divergent if it is not
convergent, i.e

∀l ∈ R, ∃ε > 0, ∀n0 ∈ N, ∃n ∈ N; (n ≥ n0)∧ (|un − l|> ε)

Remark

here are two types of divergence

1 Divergence of infinite type: in this case the sequence converges to +∞ or −∞. For example the
sequence with general term un = 2n+4.

2 Divergence of type limit does not exist: in this case the sequence has no finite or infinite limit.
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3.4. FINITE AND INFINITE LIMIT OF A NUMERICAL SEQUENCE

For example, the sequence with general term un = (−1)n

Proof:
We will show that the sequence (−1)n does not have a finite or infinite limit.

1 By contradiction, suppose that: lim
n→+∞

(−1)n = l /l ∈ R. According to the convergence definition with

ε =
1
4

we get:

∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ un ∈ [l − 1
4
, l +

1
4
]

=⇒ −1,1 ∈ [l − 1
4
, l +

1
4
]

=⇒


l − 1

4
≤ 1 ≤ l +

1
4

l − 1
4
≤−1 ≤ l +

1
4

=⇒


l − 1

4
≤ 1 ≤ l +

1
4

−l − 1
4
≤ 1 ≤−l +

1
4

=⇒
{
−1

2
≤ 2 ≤ 1

2
It’s a contradiction.

2 By contradiction, suppose that: lim
n→+∞

(−1)n =+∞. According to the convergence definition with

A = 4 we get:
∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ un ≥ 4

=⇒ un ∈ [4,+∞[ =⇒ −1,1 ∈ [4,+∞[

It’s a contradiction.

3 We use the same method for the case: lim
n→+∞

(−1)n =−∞

Proposition 1:
If a sequence of real numbers (un)n∈N has a limit, then this limit is unique.

Proof:

By contradiction

Suppose that:;

 lim
n→+∞

un = l1

lim
n→+∞

un = l2

Taking ε =
|l1 − l2|

4
with l1 ̸= l2 which implies{

∃n1 ∈ N, ∀n ∈ N; n ≥ n1 =⇒ |un − l1| ≤ ε

∃n2 ∈ N, ∀n ∈ N; n ≥ n2 =⇒ |un − l2| ≤ ε
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3.5. FINDING LIMITS: PROPERTIES OF LIMITS

Putting n0 = max(n1,n2)

=⇒ (∀n ∈ N; n ≥ n0 =⇒ |un − l1|+ |un − l2| ≤ 2ε)

With n ≥ n0 we get

|l1 − l2| ≤ |un − l1|+ |un − l2| ≤ 2ε

=⇒ |11 − l2| ≤ 2ε

=⇒ |11 − l2|
4

≤ ε

2
=⇒ ε ≤ ε

2
it’s a contradiction

Proposition 2
If (un)n∈N is a convergent sequence, then (un)n∈N is a bounded sequence.

Proof:

We’ll show the following implication:

(un)n∈N is a convergent sequence =⇒ (un)n∈N is bounded

Suppose that (un)n∈N is convergent, then for ε = 1 we have:

∃n0 ∈ N, ∀n ∈ N; n ≥ n0 =⇒ |un − l| ≤ 1
=⇒ m = l −1 ≤ un ≤ l +1 = M

So the set {un0,un0+1, .......} is bounded.
On the other hand A = {u0.....,un0−2,un0−1} is bounded (because Card(A) < +∞). Then the set of values
of (un) is: {u0.....,un0−2,un0−1,un0,un0+1, .......} is bounded, this means (un) is bounded.

3.5 Finding Limits: Properties of Limits

Theorem 1
Let (un)n∈N and (vn)n∈N two convergent sequences with: lim

n→+∞
un = l and lim

n→+∞
vn = l′. The

properties of limits are summarized as follows:

1 lim
n→+∞

λun = λ l with λ ∈ R

2 lim
n→+∞

(un + vn) = l + l′

3 lim
n→+∞

unvn = ll′

4 If un ̸= 0 for n ≥ n0 and l ̸= 0 then lim
n→+∞

1
un

=
1
l

5 If vn ̸= 0 for n ≥ n0 and l′ ̸= 0 then lim
n→+∞

un

vn
=

l
l′
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3.6. LIMITS AND INEQUALITIES

Remark

lim
n→+∞

un = l =⇒ lim
n→+∞

|un| = |l|. Be careful the reverse is not true. For example, if we take the

sequence un = (−1)n we have lim
n→+∞

|un|= 1 but lim
n→+∞

un doesn’t exist.

Proposition 3: Infinite limit’s operations
Let (un)n∈N, (vn)n∈N two sequences with: lim

n→+∞
un =+∞ and lim

n→+∞
vn =+∞ then:

1 lim
n→+∞

(un + vn) = +∞

2 If ∀n ≥ n0, un ̸= 0 then lim
n→+∞

1
un

= 0

3.6 Limits and inequalities

Theorem 2

1 Let (un)n∈N,(vn)n∈N be two convergent sequences, then:

If ∃n0 ∈ N,∀n ≥ n0; un ≤ vn this implies lim
n→+∞

un ≤ lim
n→+∞

vn

2 If, we have (un)n∈N and (vn)n∈N two sequences which verify:-


∃n0 ∈ N,∀n ≥ n0; un ≤ vn

and
lim

n→+∞
un =+∞

this implies lim
n→+∞

vn =+∞

3 Squeeze Theorem : If (un)n∈N, (vn)n∈N and (wn)n∈N three sequences with:
∃n0 ∈ N,∀n ≥ n0; un ≤ vn ≤ wn

and
lim

n→+∞
un = lim

n→+∞
wn = l

then the sequence (vn)n∈N is convergent and lim
n→+∞

vn = l

3.7 Convergence theorems

Theorem 3: Convergence of monotonic sequences

• If a sequence of real numbers is increasing and bounded from above, then it converges.

• If a sequence of real numbers is decreasing and bounded from below, then it converges.
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3.7. CONVERGENCE THEOREMS

Example 4

Let (un)n∈N be a numerical sequence defined by:

u0 = 1

un+1 =
1+u2

n
2

.

1 Prove that ∀n ∈ N; un ≤ 1

2 Deduce that the sequence (un)n∈N is convergent.

• by using proof by induction, we have for n = 0, u0 =
1
2
≤ 1 so the proposition is true. Let’s

assume that the proposition is true for k ∈ {1, ...,n} and we’ll show that un+1 ≤ 1. According
to the assumption we have:

un ≤ 1 =⇒ u2
n ≤ 1 =⇒ 1+u2

n ≤ 2 =⇒ 1+u2
n

2
≤ 1 =⇒ un+1 ≤ 1

So, assertion ∀n ∈ N; un ≤ 1 is true.

• On a ∀n ∈ N;un+1 −un =
1+u2

n
2

−un =
(un −1)2

2
≥ 0

• Since (un)n∈N is increasing and bounded from above so (un)n∈N is convergent.

Definition 7: Adjacent sequences

Let (un)n∈N and (vn)n∈N be two real sequences. We say that (un)n∈N and (vn)n∈N are adjacent iff:

(un)n∈N is increasing
and

(vn)n∈N is decreasing
and

lim
n→+∞

(un − vn) = 0

Theorem 4:
If the sequences (un)n∈N and (vn)n∈N are adjacent then they converge to the same limit.

Example 5

The sequences un =
n
∑

k=1

1
k2 and vn = un +

2
n

are adjacent :

• un+1 −un =
n+1
∑

k=1

1
k2 −

n
∑

k=1

1
k2 =

1
(n+1)2 ≥ 0 =⇒ (un)n∈N is increasing

• vn+1 − vn =
1

(n+1)2 +
2

n+1
− 2

n
=− (n+2)

n(n+1)2 ≤ 0 =⇒ (vn)n∈N is decreasing
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3.7. CONVERGENCE THEOREMS

• lim
n→+∞

(un − vn) = lim
n→+∞

(−2
n
) = 0

Therefore the sequences (un)n∈N and (vn)n∈N are convergent to the same limits.

‘

Figure 3.2: (un) and (vn) are adjacent

Definition 8: Cauchy sequence

Let (un)n∈N be a sequence of real numbers.
(un)n∈N is called a Cauchy sequence in R iff:

∀ε > 0,∃n0 ∈ N,∀p,q ∈ N; p,q ≥ n0 =⇒ |up −uq| ≤ ε

Remark

|up −uq| ≤ ε ⇔ the distance between up, and uq is less than ε .
So the definition above means that:- for any strictly positive real ε , there exists n0 (rank), such that
the distance between each two terms up,uq (with p,q ≥ n0) is less than ε .

Using Maple, we obtain the following graph of a Cauchy sequence:
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3.8. SUBSEQUENCE

‘

Figure 3.3: un =
cos(n)+ sin(n)+n

n
, ε = 0.08

Example 6

• un =
1
n

is a Cauchy sequence

Let p,q ∈ N∗ with p ≤ q then we have:

|up −uq|=
∣∣∣∣1

p
− 1

q

∣∣∣∣≤ ∣∣∣∣1
p

∣∣∣∣+ ∣∣∣∣1q
∣∣∣∣ according to the triangular inequality

=⇒ |up −uq| ≤
2
p

( because:
1
q
≤ 1

p
)

Let ε > 0, we put n0 =

[
2
ε

]
+1 >

2
ε

So, ∀ε > 0, ∃n0 ∈ N∗, ∀p,q ∈ N∗; p,q ≥ n0 =⇒ |up −uq| ≤ ε

Theorem 5:
Let (un)n∈N be a real sequence then:
(un)n∈N is a Cauchy sequence ⇐⇒ (un)n∈N is convergent

3.8 Subsequence

Definition 9
The sequence (uφ(n))n∈N is a subsequence of the sequence (un)n∈N if φ : N −→ N is a strictly
increasing sequence of of natural numbers.
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3.8. SUBSEQUENCE

Example 7

1 un = (−1)n −→


u2n = (−1)2n = 1

u2n+1 = (−1)2n+1 =−1
(u2n)n∈N and (u2n+1)n∈N are subsequences taken from (un)n∈N

2 vn = cos(nπ

3 )−→ v3n = cos(nπ) = (−1)n

(v3n)n∈N is a sub-sequence of (vn)n∈N

Proposition 4:
Let (un)n∈N be a sequence of real numbers:

1 If lim
n→+∞

un = l, then for any subsequence (uφ(n))n∈N; lim
n→+∞

uφ(n) = l

2 If (un)n∈N admits a divergent subsequence then (un)n∈N is divergent

3 If (un)n∈N has two subsequences converging to distinct limits then (un)n∈N is divergent.

Example 8

the sequence with general term un = (−1)n is divergent:
We have: 

u2n = 1
and

u2n+1 =−1
=⇒


lim

n→+∞
u2n = 1

and
lim

n→+∞
u2n+1 =−1

So,(u2n)n∈N and (u2n+1)n∈N are two subsequences of (un)n∈N which converge to distinct limits,
therefore (un)n∈N is divergent.

Theorem 6: Bolzano-Weierstrass Property

Every bounded sequence has a convergent sub-sequence.

Definition 9: Cluster Points of the sequence

A cluster Point of a numerical sequence (un)n∈N is any scalar which is the limit of a subsequence of
(un)n∈N.

Example 9

• Let’s consider the sequence (un)n∈N defined by: un = cos(nπ

2 )
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3.9. LIMIT INFERIOR AND LIMIT SUPERIOR



u4n = cos(2nπ) = 1 =⇒ lim
n→+∞

u4n = 1

u4n+1 = cos(π

2 ) = 0 =⇒ lim
n→+∞

u4n+1 = 0

u4n+2 = cos(π) =−1 =⇒ lim
n→+∞

u4n+2 =−1

u4n+3 = cos(3π

2 ) = 0 =⇒ lim
n→+∞

u4n+3 = 0

So the sequence (un)n∈N is divergent. The numbers 1,−1,0 are the cluster points of the sequence
(un)n∈N.

3.9 Limit inferior and limit superior

Definition 10
Let (un)n∈N be a sequence of real numbers.
Denoting by S = The set of cluster points of the sequence (un)n∈N.
We define the limit superior (resp. inferior) of (un)n∈N as

limsupun = supS

liminfun = infS

Example 10

Let (un)n∈N defined by: un = (−1)n

The set of all cluster points of the sequence (un)n∈N is S = {1,−1}
so, limsupun = 1, and liminfun =−1
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