Chapter 3

Sequences of real numbers

3.1 Definitions and examples

Definition 1

A sequence of real numbers is a real-valued function whose domain is the set of natural numbers \mathbb{N} or an infinite subset $\mathcal{N}_1 \subset \mathbb{N}$ to the real numbers i.e:

 $u : \mathbb{N} \longrightarrow \mathbb{R}$ or $u : \mathscr{N}_1 \longrightarrow \mathbb{R}$ $n \longmapsto u(n)$ or $n \longmapsto u(n)$

Notations:

- For $n \in \mathbb{N}$, u(n) is denoted by u_n and is called the general term or n-th term of the sequence.
- The sequence *u* is denoted by $(u_n)_{n \in \mathbb{N}}$ or $(u_n)_{n \in \mathcal{N}_1}$.

Remark

The ways in which a sequence can be defined.

- By an explicit definition of the general term of the sequence (u_n) i.e.: Express u_n in terms of n. For example, $u_n = \frac{2n+1}{n+7}$.
- By a recurrence formula, i.e. a relationship that links any term in the sequence to the one that precedes it. In this case, to calculate u_n , you need to calculate all the terms that precede it. For example :

$$\begin{cases} u_0 = 2\\ u_{n+1} = 3u_n - 1 \end{cases}$$

3.2 Bounded sequences

Definition 2

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence.

- A sequence $(u_n)_{n\in\mathbb{N}}$ is bounded from above iff: $\exists M\in\mathbb{R}, \forall n\in\mathbb{N}; u_n\leq M$
- A sequence $(u_n)_{n\in\mathbb{N}}$ is bounded from below iff: $\exists m \in \mathbb{R}, \forall n \in \mathbb{N}; m \leq u_n$
- A sequence (u_n)_{n∈ℕ} is bounded iff: it is bounded from above and bounded from below which means :

$$\exists M \in \mathbb{R}_+, \forall n \in \mathbb{N}; |u_n| \leq M$$

3.3 Increasing and decreasing sequences

Definition 3

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence

- $(u_n)_{n \in \mathbb{N}}$ is an increasing sequence iff: $\forall n \in \mathbb{N}; u_n \leq u_{n+1}$
- $(u_n)_{n \in \mathbb{N}}$ is a strictly increasing sequence iff: $\forall n \in \mathbb{N}; u_n < u_{n+1}$
- $(u_n)_{n \in \mathbb{N}}$ is a decreasing sequence iff: $\forall n \in \mathbb{N}; u_n \ge u_{n+1}$
- $(u_n)_{n \in \mathbb{N}}$ is a strictly decreasing sequence iff: $\forall n \in \mathbb{N}; u_n > u_{n+1}$
- $(u_n)_{n \in \mathbb{N}}$ is monotonic if it is increasing or decreasing.
- $(u_n)_n$ is strictly monotonic if it is strictly increasing or strictly decreasing.
- $(u_n)_{n \in \mathbb{N}}$ is a constant sequence iff $\forall n \in \mathbb{N}$; $u_{n+1} = u_n$

3.4 Finite and infinite limit of a numerical sequence

Definition 4: Convergent sequences

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence. We say that the sequence $(u_n)_{n \in \mathbb{N}}$ converges to l iff:

 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_0 \implies |u_n - l| \le \varepsilon$

In this case, we say that the sequence $(u_n)_{n \in \mathbb{N}}$ is convergent to the limit *l* and we note $\lim_{n \to +\infty} u_n = l$

Remark

$$|u_n - l| \le \varepsilon \Leftrightarrow l - \varepsilon \le u_n \le l + \varepsilon \Leftrightarrow u_n \in [l - \varepsilon, l + \varepsilon]$$

The above definition means that for any strictly positive real ε , there exists an integer n_0 (rank) such that: all terms $u_{n_0}, u_{n_0+1}, u_{n_0+2}, \dots$ are in the interval $[l - \varepsilon, l + \varepsilon]$.

Example 2

• The sequence $u_n = \frac{n}{n+1}$ converges to 1

Using the definition of convergence, we show that $\lim_{n \to +\infty} u_n = 1$ Let $\varepsilon > 0$ we have:

$$|u_n - 1| \le \varepsilon$$

$$\Leftrightarrow |\frac{n}{n+1} - 1| \le \varepsilon$$

$$\Leftrightarrow |\frac{n}{n+1} - 1| \le \varepsilon$$

$$\Leftrightarrow |1 - \frac{1}{n+1} - 1| \le \varepsilon$$

$$\Leftrightarrow \frac{1}{n+1} \le \varepsilon$$

$$\Leftrightarrow \frac{1}{\varepsilon} - 1 \le n$$

By setting
$$n_0 = \lfloor \frac{1}{\varepsilon} \rfloor > \frac{1}{\varepsilon} - 1$$
, we obtain :
 $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \ (n_0 = \lfloor \frac{1}{\varepsilon} \rfloor), \forall n \in \mathbb{N}; n \ge n_0 \implies |u_n - 1| \le \varepsilon$
 $\implies (u_n)_{n \in \mathbb{N}}$ converges to $l = 1$
Using Maple, we get the following graph:

Figure 3.1: $\varepsilon = 0.1$

3.4. FINITE AND INFINITE LIMIT OF A NUMERICAL SEQUENCE

Definition 6: divergent sequences

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. We say that the sequence $(u_n)_{n \in \mathbb{N}}$ is divergent if it is not convergent, i.e

$$\forall l \in \mathbb{R}, \exists \varepsilon > 0, \forall n_0 \in \mathbb{N}, \exists n \in \mathbb{N}; (n \ge n_0) \land (|u_n - l| > \varepsilon)$$

Remark

here are two types of divergence

1 Divergence of infinite type: in this case the sequence converges to $+\infty$ or $-\infty$. For example the sequence with general term $u_n = 2n + 4$.

2 Divergence of type limit does not exist: in this case the sequence has no finite or infinite limit.

For example, the sequence with general term $u_n = (-1)^n$

Proof:

We will show that the sequence $(-1)^n$ does not have a finite or infinite limit.

1 By contradiction, suppose that: $\lim_{n \to +\infty} (-1)^n = l/l \in \mathbb{R}$. According to the convergence definition with $\varepsilon = \frac{1}{4}$ we get:

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_0 \implies u_n \in [l - \frac{1}{4}, l + \frac{1}{4}]$$
$$\implies -1, 1 \in [l - \frac{1}{4}, l + \frac{1}{4}]$$
$$\implies \begin{cases} l - \frac{1}{4} \le 1 \le l + \frac{1}{4} \\ l - \frac{1}{4} \le -1 \le l + \frac{1}{4} \end{cases}$$
$$\implies \begin{cases} l - \frac{1}{4} \le 1 \le l + \frac{1}{4} \\ -l - \frac{1}{4} \le 1 \le -l + \frac{1}{4} \end{cases}$$
$$\implies \begin{cases} -l - \frac{1}{4} \le 1 \le -l + \frac{1}{4} \\ -l - \frac{1}{4} \le 1 \le -l + \frac{1}{4} \end{cases}$$

It's a contradiction.

2 By contradiction, suppose that: $\lim_{n \to +\infty} (-1)^n = +\infty$. According to the convergence definition with A = 4 we get:

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_0 \implies u_n \ge 4$$
$$\implies u_n \in [4, +\infty[\implies -1, 1 \in [4, +\infty[$$

It's a contradiction.

3 We use the same method for the case: $\lim_{n \to +\infty} (-1)^n = -\infty$

Proposition 1:

If a sequence of real numbers $(u_n)_{n \in \mathbb{N}}$ has a limit, then this limit is unique.

Proof:

By contradiction Suppose that:; $\begin{cases} \lim_{n \to +\infty} u_n = l_1 \\ \lim_{n \to +\infty} u_n = l_2 \end{cases}$ Taking $\varepsilon = \frac{|l_1 - l_2|}{4}$ with $l_1 \neq l_2$ which implies $\begin{cases} \exists n_1 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_1 \implies |u_n - l_1| \le \varepsilon \\ \exists n_2 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_2 \implies |u_n - l_2| \le \varepsilon \end{cases}$ =

Putting $n_0 = \max(n_1, n_2)$

$$\Rightarrow (\forall n \in \mathbb{N}; n \ge n_0 \implies |u_n - l_1| + |u_n - l_2| \le 2\varepsilon)$$

With $n \ge n_0$ we get

$$|l_1 - l_2| \le |u_n - l_1| + |u_n - l_2| \le 2\varepsilon$$

$$\implies |l_1 - l_2| \le 2\varepsilon$$

$$\implies \frac{|l_1 - l_2|}{4} \le \frac{\varepsilon}{2}$$

$$\implies \varepsilon \le \frac{\varepsilon}{2} \quad \text{it's a contradiction}$$

Proposition 2

If $(u_n)_{n \in \mathbb{N}}$ is a convergent sequence, then $(u_n)_{n \in \mathbb{N}}$ is a bounded sequence.

Proof:

We'll show the following implication:

 $(u_n)_{n\in\mathbb{N}}$ is a convergent sequence $\implies (u_n)_{n\in\mathbb{N}}$ is bounded

Suppose that $(u_n)_{n \in \mathbb{N}}$ is convergent, then for $\varepsilon = 1$ we have:

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_0 \implies |u_n - l| \le 1$$
$$\implies m = l - 1 \le u_n \le l + 1 = M$$

So the set $\{u_{n_0}, u_{n_0+1},\}$ is bounded.

On the other hand $A = \{u_0, \dots, u_{n_0-2}, u_{n_0-1}\}$ is bounded (because $Card(A) < +\infty$). Then the set of values of (u_n) is: $\{u_0, \dots, u_{n_0-2}, u_{n_0-1}, u_{n_0}, u_{n_0+1}, \dots\}$ is bounded, this means (u_n) is bounded.

3.5 Finding Limits: Properties of Limits

Theorem 1

Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ two convergent sequences with: $\lim_{n \to +\infty} u_n = l$ and $\lim_{n \to +\infty} v_n = l'$. The properties of limits are summarized as follows:

1
$$\lim_{n \to +\infty} \lambda u_n = \lambda l$$
 with $\lambda \in \mathbb{R}$
2 $\lim_{n \to +\infty} (u_n + v_n) = l + l'$
3 $\lim_{n \to +\infty} u_n v_n = ll'$
4 If $u_n \neq 0$ for $n \ge n_0$ and $l \ne 0$ then $\lim_{n \to +\infty} \frac{1}{u_n} = \frac{1}{l}$
5 If $v_n \ne 0$ for $n \ge n_0$ and $l' \ne 0$ then $\lim_{n \to +\infty} \frac{u_n}{v_n} = \frac{l}{l'}$

Remark

 $\lim_{n \to +\infty} u_n = l \implies \lim_{n \to +\infty} |u_n| = |l|.$ Be careful the reverse is not true. For example, if we take the sequence $u_n = (-1)^n$ we have $\lim_{n \to +\infty} |u_n| = 1$ but $\lim_{n \to +\infty} u_n$ doesn't exist.

Proposition 3: Infinite limit's operations

Let $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ two sequences with: $\lim_{n\to+\infty} u_n = +\infty$ and $\lim_{n\to+\infty} v_n = +\infty$ then:

 $\lim_{n \to +\infty} (u_n + v_n) = +\infty$

 $\boxed{2} \text{ If } \forall n \ge n_0, u_n \ne 0 \text{ then } \lim_{n \to +\infty} \frac{1}{u_n} = 0$

3.6 Limits and inequalities

Theorem 2

1 Let $(u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}$ be two convergent sequences, then:

If $\exists n_0 \in \mathbb{N}, \forall n \ge n_0; u_n \le v_n$ this implies $\lim_{n \to +\infty} u_n \le \lim_{n \to +\infty} v_n$

2 If, we have $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ two sequences which verify:- $\begin{cases} \exists n_0 \in \mathbb{N}, \forall n \ge n_0; u_n \le v_n \\ \text{and} \\ \lim_{n \to +\infty} u_n = +\infty \end{cases}$ this implies $\lim_{n \to +\infty} v_n = +\infty$

3 Squeeze Theorem : If $(u_n)_{n \in \mathbb{N}}$, $(v_n)_{n \in \mathbb{N}}$ and $(w_n)_{n \in \mathbb{N}}$ three sequences with:

$$\begin{cases} \exists n_0 \in \mathbb{N}, \forall n \ge n_0; u_n \le v_n \le w_n \\ \text{and} \\ \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l \end{cases}$$

then the sequence $(v_n)_{n\in\mathbb{N}}$ is convergent and $\lim_{n\to+\infty}v_n=l$

3.7 Convergence theorems

Theorem 3: Convergence of monotonic sequences

- If a sequence of real numbers is increasing and bounded from above, then it converges.
- If a sequence of real numbers is decreasing and bounded from below, then it converges.

Example 4

Let $(u_n)_{n \in \mathbb{N}}$ be a numerical sequence defined by: $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{1 + u_n^2}{2} \end{cases}$

1 Prove that $\forall n \in \mathbb{N}$; $u_n \leq 1$

2 Deduce that the sequence $(u_n)_{n \in \mathbb{N}}$ is convergent.

• by using proof by induction, we have for n = 0, $u_0 = \frac{1}{2} \le 1$ so the proposition is true. Let's assume that the proposition is true for $k \in \{1, ..., n\}$ and we'll show that $u_{n+1} \le 1$. According to the assumption we have:

$$u_n \le 1 \implies u_n^2 \le 1 \implies 1 + u_n^2 \le 2 \implies \frac{1 + u_n^2}{2} \le 1 \implies u_{n+1} \le 1$$

So, assertion $\forall n \in \mathbb{N}$; $u_n \leq 1$ is true.

• On a
$$\forall n \in \mathbb{N}$$
; $u_{n+1} - u_n = \frac{1 + u_n^2}{2} - u_n = \frac{(u_n - 1)^2}{2} \ge 0$

• Since $(u_n)_{n\in\mathbb{N}}$ is increasing and bounded from above so $(u_n)_{n\in\mathbb{N}}$ is convergent.

Definition 7: Adjacent sequences

Let $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ be two real sequences. We say that $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent iff:

 $\begin{cases} (u_n)_{n \in \mathbb{N}} & \text{is increasing} \\ \text{and} \\ (v_n)_{n \in \mathbb{N}} & \text{is decreasing} \\ \text{and} \\ \lim_{n \to +\infty} (u_n - v_n) = 0 \end{cases}$

Theorem 4:

If the sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are adjacent then they converge to the same limit.

Example 5
The sequences
$$u_n = \sum_{k=1}^n \frac{1}{k^2}$$
 and $v_n = u_n + \frac{2}{n}$ are adjacent :
• $u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^n \frac{1}{k^2} = \frac{1}{(n+1)^2} \ge 0 \implies (u_n)_{n \in \mathbb{N}}$ is increasing
• $v_{n+1} - v_n = \frac{1}{(n+1)^2} + \frac{2}{n+1} - \frac{2}{n} = -\frac{(n+2)}{n(n+1)^2} \le 0 \implies (v_n)_{n \in \mathbb{N}}$ is decreasing

•
$$\lim_{n \to +\infty} (u_n - v_n) = \lim_{n \to +\infty} (-\frac{2}{n}) = 0$$

Therefore the sequences $(u_n)_{n \in \mathbb{N}}$ and $(v_n)_{n \in \mathbb{N}}$ are convergent to the same limits.

Figure 3.2: (u_n) and (v_n) are adjacent

Definition 8: Cauchy sequence

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. $(u_n)_{n \in \mathbb{N}}$ is called a Cauchy sequence in \mathbb{R} iff:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall p, q \in \mathbb{N}; p, q \ge n_0 \implies |u_p - u_q| \le \varepsilon$$

Remark

 $|u_p - u_q| \le \varepsilon \Leftrightarrow$ the distance between u_p , and u_q is less than ε . So the definition above means that:- for any strictly positive real ε , there exists n_0 (rank), such that the distance between each two terms u_p, u_q (with $p, q \ge n_0$) is less than ε .

Using Maple, we obtain the following graph of a Cauchy sequence:

$$|p - q| |p| |q|$$

$$\implies |u_p - u_q| \le \frac{2}{p} \quad (\text{ because:} \quad \frac{1}{q} \le \frac{1}{p})$$
Let $\varepsilon > 0$, we put $n_0 = \left[\frac{2}{\varepsilon}\right] + 1 > \frac{2}{\varepsilon}$

So, $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*, \forall p, q \in \mathbb{N}^*; p, q \ge n_0 \implies |u_p - u_q| \le \varepsilon$

Theorem 5:

Let $(u_n)_{n \in \mathbb{N}}$ be a real sequence then: $(u_n)_{n \in \mathbb{N}}$ is a Cauchy sequence $\iff (u_n)_{n \in \mathbb{N}}$ is convergent

3.8 Subsequence

Definition 9

The sequence $(u_{\phi(n)})_{n \in \mathbb{N}}$ is a subsequence of the sequence $(u_n)_{n \in \mathbb{N}}$ if $\phi : \mathbb{N} \longrightarrow \mathbb{N}$ is a strictly increasing sequence of of natural numbers.

Proposition 4:

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of real numbers:

1 If $\lim_{n \to +\infty} u_n = l$, then for any subsequence $(u_{\phi(n)})_{n \in \mathbb{N}}$; $\lim_{n \to +\infty} u_{\phi(n)} = l$

2 If $(u_n)_{n \in \mathbb{N}}$ admits a divergent subsequence then $(u_n)_{n \in \mathbb{N}}$ is divergent

3 If $(u_n)_{n \in \mathbb{N}}$ has two subsequences converging to distinct limits then $(u_n)_{n \in \mathbb{N}}$ is divergent.

Example 8

the sequence with general term $u_n = (-1)^n$ is divergent: We have:

$$\begin{cases} u_{2n} = 1 \\ \text{and} \\ u_{2n+1} = -1 \end{cases} \implies \begin{cases} \lim_{n \to +\infty} u_{2n} = 1 \\ \text{and} \\ \lim_{n \to +\infty} u_{2n+1} = -1 \end{cases}$$

So, $(u_{2n})_{n\in\mathbb{N}}$ and $(u_{2n+1})_{n\in\mathbb{N}}$ are two subsequences of $(u_n)_{n\in\mathbb{N}}$ which converge to distinct limits, therefore $(u_n)_{n\in\mathbb{N}}$ is divergent.

Theorem 6: Bolzano-Weierstrass Property

Every bounded sequence has a convergent sub-sequence.

Definition 9: Cluster Points of the sequence

A cluster Point of a numerical sequence $(u_n)_{n \in \mathbb{N}}$ is any scalar which is the limit of a subsequence of $(u_n)_{n \in \mathbb{N}}$.

Example 9

• Let's consider the sequence $(u_n)_{n \in \mathbb{N}}$ defined by: $u_n = \cos(n\frac{\pi}{2})$

$$\begin{cases} u_{4n} = \cos(2n\pi) = 1 \implies \lim_{n \to +\infty} u_{4n} = 1 \\ u_{4n+1} = \cos(\frac{\pi}{2}) = 0 \implies \lim_{n \to +\infty} u_{4n+1} = 0 \\ u_{4n+2} = \cos(\pi) = -1 \implies \lim_{n \to +\infty} u_{4n+2} = -1 \\ u_{4n+3} = \cos(3\frac{\pi}{2}) = 0 \implies \lim_{n \to +\infty} u_{4n+3} = 0 \end{cases}$$

So the sequence $(u_n)_{n \in \mathbb{N}}$ is divergent. The numbers 1, -1, 0 are the cluster points of the sequence $(u_n)_{n \in \mathbb{N}}$.

3.9 Limit inferior and limit superior

Definition 10

Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of real numbers. Denoting by S = The set of cluster points of the sequence $(u_n)_{n \in \mathbb{N}}$. We define the limit superior (resp. inferior) of $(u_n)_{n \in \mathbb{N}}$ as

 $\begin{cases} \limsup u_n = \sup S \\ \liminf u_n = \inf S \end{cases}$

Example 10

Let $(u_n)_{n\in\mathbb{N}}$ defined by: $u_n = (-1)^n$ The set of all cluster points of the sequence $(u_n)_{n\in\mathbb{N}}$ is $S = \{1, -1\}$ so, $\limsup u_n = 1$, and $\liminf u_n = -1$