Chapter

Limits and continuous functions

Contents

4.1	Ove	rview concepts:	2
	4.1.1	Real function of one real variable	2
	4.1.2	The Graph of a function	2
	4.1.3	Operations on Functions	3
	4.1.4	Monotonicity, parity and periodicity	4
	4.1.5	Bounded functions	7
	4.1.6	The composition of two functions	9
4.2	Lim	its of Functions	10
	4.2.1	Limite finie en un point x_0	10
	4.2.2	Left and Right-Hand Limits	12
	4.2.3	Infinite limit of a function at x_0	14
	4.2.4	Finite limit of a function at $-\infty$ and $+\infty$	15
	4.2.5	Infinite limit of a function at $+\infty$ and $-\infty$	16
	4.2.6	Relationship between limits and sequences	16
	4.2.7	Limits operations	18
	4.2.8	Limit of Composite Functions	19
	4.2.9	Finding Limits: Properties of Limits	20
4.3	Con	tinuous Functions	21
	4.3.1	Continuity at a point x_0	21
	4.3.2	Left and right continuity at a point $x_0 \ldots \ldots \ldots \ldots \ldots \ldots$	21
	4.3.3	Continuous extension to a point	23
	4.3.4	Operations on continuous functions at x_0	23
	4.3.5	The sequential continuity theorem	24
	4.3.6	Continuity over an interval	25
	4.3.7	Uniform continuity	26
	4.3.8	Theorems about continuous functions	27
	4.3.9	Monotonic functions and continuity	32

4.1 Overview concepts:

In this chapter we are going to study real functions of one real variables, or simply functions which are defined on a non-empty part \mathbb{E} of \mathbb{R} to \mathbb{R} with ($\mathbb{E} \subset \mathbb{R}$; or $\mathbb{E} = \mathbb{R}$).

4.1.1 Real function of one real variable

Definition 4.1

Any application from \mathbb{E} to \mathbb{R} is called a numerical function. If $\mathbb{E} \subset \mathbb{R}$, we say that f is a numerical function of a real variable, or a real function of a real variable. We write;

$$\begin{array}{cccc} f: & \mathbb{E} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f(x) \end{array}$$

 \mathbb{E} is called the domain of definition of f and is denoted by D_f .

Example 4.1

For example, the function defined by:

$$\begin{array}{rccc} f: & \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{1}{x} \end{array}$$

is a numerical function of one real variable. In this case the domain of definition of f is $D_f = \mathbb{R}^*$.

4.1.2 The Graph of a function

Definition 4.2

Let $f: D_f \longrightarrow \mathbb{R}$ be a numerical function of a real variable, the Graph of f is a set of ordered pairs of the form (x, f(x)). And denote it by Γ_f i.e.

$$\Gamma_f = \{(x, f(x)) | x \in D_f\} \subset \mathbb{R}^2$$

Remark 4.1 Γ_f is a subset of \mathbb{R}^2 , i.e $\Gamma_f \subset \mathbb{R}^2$

Example 4.2

The graph of $f(x) = \frac{1}{x}$ is shown below

4.1.3 Operations on Functions

Definition 4.3: (The sum and product of two functions)

Let $f: D \longrightarrow \mathbb{R}$ and $g: D \longrightarrow \mathbb{R}$ two functions defined on D to \mathbb{R}

• The sum of f and g is the function defined by f + g:

$$\begin{array}{rccc} f+g: & D & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & (f+g)(x) = f(x) + g(x) \end{array}$$

• The product of f and g is the function defined by f.g:

$$\begin{array}{rccc} f.g: & D & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & (f.g)(x) = f(x).g(x) \end{array}$$

• Let $\lambda \in \mathbb{R}$, the function λf is defined by:

$$\begin{array}{rrrr} \lambda.f: & D & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & (\lambda.f)(x) = \lambda.f(x) \end{array}$$

Figure 4.2: Graph of the sum of two functions f + g

4.1.4 Monotonicity, parity and periodicity

Definition 4.4

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function.

• The function f is said to be increasing on D_f iff:

 $\forall x, y \in D_f; \ x \leq y \implies f(x) \leq f(y)$

• The function f is said to be strictly increasing on D_f iff:

 $\forall x, y \in D_f; x < y \implies f(x) < f(y)$

• The function f is said to be decreasing on D_f iff:

$$\forall x, y \in D_f; \ x \le y \implies f(x) \ge f(y)$$

• The function f is said to be strictly decreasing on D_f iff:

$$\forall x, y \in D_f; \ x < y \implies f(x) > f(y)$$

• The function f is said to be a constant function on D_f iff:

$$\exists a \in \mathbb{R}, \forall x, y \in D_f; f(x) = f(y) = a$$

- The function f is said to be monotonic on D_f if it is either increasing or decreasing on D_f
- The function f is said to be strictly monotonic on D_f if it is either strictly increasing or strictly decreasing on D_f

Example 4.3

- 1. The \sqrt{x} function is strictly increasing on $[0, +\infty[$.
- 2. The function $\exp(x)$ is strictly increasing on \mathbb{R} and $\ln(x)$ is strictly increasing on $]0, +\infty[$.
- 3. The function $\lfloor x \rfloor$ is increasing on \mathbb{R} .
- 4. The function |x| is neither increasing nor decreasing on \mathbb{R} .

Figure 4.3: The functions $\exp(x), \sqrt{x}$ and $\ln(x)$ (The function |x| on the right)

Figure 4.4: The integer part function

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function.

Graphical interpretation:

- The graphical representation of an even function has the y-axis as the axis of symmetry.
- The graphical representation of an odd function has the origin of the coordinate system as the centre of symmetry.

Example 4.4

1. Since:

$$\begin{cases} \forall x \in D_f = \mathbb{R} \implies -x \in D_f \\ \forall x \in D_f; f(-x) = (-x)^2 = x^2 = f(x), \end{cases}$$

then the function $f(x) = x^2$ is even.

2. Since:

$$\begin{cases} D_f = \mathbb{R} \\ \forall x \in D_f; f(-x) = -x^3 = -f(x), \end{cases}$$

then the function $f(x) = x^3$ is odd.

Figure 4.5: The function x^2 and x^3

Let $f: D_f \longleftarrow \mathbb{R}$ be a real function. We say that a function f is periodic, with period $p \in \mathbb{R}^*_+$, if

 $\begin{cases} \forall x \in \mathbb{R}; \ x \in D_f \implies x + p \in D_f \\ \forall x \in D_f; \ f(x + p) = f(x) \end{cases}$

Graphical interpretation:

• If f is a periodic function with period p, then the graph of f is invariant by the translation of vector $\overrightarrow{p i}$.

Figure 4.6: $\sin(x)$ is 2π -periodic

4.1.5 Bounded functions

Definition 4.7

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function.

• If there exists $m \in \mathbb{R}$ such that: $m \leq f(x)$ for all $x \in D_f$, then the function f is said to be bounded from below by m. i.e

 $\exists m \in \mathbb{R}, \forall x \in D_f; m \leq f(x) \Leftrightarrow \text{the function f is bounded from below}$

• If there exists $M \in \mathbb{R}$ such that: $f(x) \leq M$ for all $x \in D_f$, then the function f is said to be bounded from above by M. i.e

 $\exists M \in \mathbb{R}, \forall x \in D_f; f(x) \leq M \Leftrightarrow \text{the function f is bounded from above}$

• If there exists $M, m \in \mathbb{R}$ such that: $m \leq f(x) \leq M$ for all $x \in D_f$, then the function f is said to be bounded. i.e

 $\exists M, m \in \mathbb{R}, \forall x \in D_f; m \leq f(x) \leq M \Leftrightarrow \text{the function f is bounded}$

Remark 4.2 Also, we can say that f is bounded on D_f iff: $\exists M \in \mathbb{R}_+, \forall x \in D_f; |f(x)| \leq M$.

Figure 4.7: The bounded fom below function (in the left) and The bounded from above function (in the right)

Figure 4.8: bounded function

Let $f: D \longrightarrow \mathbb{R}$ and $g: D \longrightarrow \mathbb{R}$ tow functions. We can write:

- $f \leq g$ iff: $\forall x \in D; f(x) \leq g(x)$
- f < g iff: $\forall x \in D; f(x) < g(x)$
- f = g iff: $\forall x \in D; f(x) = g(x)$

Rappel:-

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function. Recall that $f(D_f)$ is the set of all values of f denoted by:

$$f(D_f) = \{f(x)/x \in D_f\}$$

Let's put:

$$\begin{cases} \sup_{x \in D_f} (f(x)) = \sup(f(D_f)) \\ \inf_{x \in D_f} (f(x)) = \inf(f(D_f)) \end{cases}$$

• The smallest upper bound of f on D_f is called $\sup_{x \in D_f} (f(x))$ and is denoted by :

$$\sup_{x \in D_f} f = \sup_{x \in D_f} (f(x))$$

• The greatest lower bound of f on D_f is called $\inf_{x \in D_f} (f(x))$ and is denoted by :

$$\inf_{x \in D_f} f = \inf_{x \in D_f} (f(x))$$

Proposition 4.1

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function, then we have the following equivalences:

- f is bounded from above on D_f . $\Leftrightarrow \sup_{x \in D_f} f \in \mathbb{R}$ and we write : $\sup_{x \in D_f} f < +\infty$.
- f is bounded from below on D_f . $\Leftrightarrow \inf_{x \in D_f} f \in \mathbb{R}$ and we write : $\inf_{x \in D_f} f > -\infty$.
- f is bounded on D_f . $\Leftrightarrow \sup_{x \in D_f} f$, $\inf_{x \in D_f} f \in \mathbb{R}$ and we write : $\sup_{x \in D_f} f < +\infty$ and $\inf_{x \in D_f} f > -\infty$.

•
$$M = \sup_{x \in D_f} (f(x)) \Leftrightarrow \begin{cases} \forall x \in D_f; \ f(x) \le M \\ \forall \varepsilon > 0, \exists x_0 \in D_f; \ M - \varepsilon < f(x_0) \end{cases}$$

•
$$m = \inf_{x \in D_f} (f(x)) \Leftrightarrow \begin{cases} \forall x \in D_f; \ m \le f(x) \\ \forall \varepsilon > 0, \exists x_0 \in D_f; \ f(x_0) < m + \varepsilon \end{cases}$$

4.1.6 The composition of two functions

Definition 4.10

Consider $f: D_f \longrightarrow \mathbb{R}$ and $g: D_g \longrightarrow \mathbb{R}$ be two functions such that: $f(D_f) \subset D_g$. Then the composition of f and g, denoted by $g \circ f$ is defined as the function:

$$\forall x \in D_f; \ (g \circ f)(x) = g(f(x))$$

The below figure shows the representation of composite functions:

Example 4.5

Let f and g be two functions defined by:

$$\begin{array}{cccc} f: & \mathbb{R} & \longrightarrow \mathbb{R} & g: & [-1, +\infty[& \longrightarrow \mathbb{R} \\ & x & \longmapsto x^2 + 1 & & x & \longmapsto \sqrt{x+1} \end{array}$$

We have $f(\mathbb{R}) = [1, +\infty[\implies f(D_f) \subset D_g$ So $g \circ f$ defined as follows:

$$\forall x \in \mathbb{R}; \ (g \circ f)(x) = g(f(x)) = \sqrt{x^2 + 2}$$

4.2 Limits of Functions

4.2.1 Limite finie en un point x_0

Definition 4.11

Let $f : D_f \longrightarrow \mathbb{R}$ be a real function, x_0 and l two numbers (with $x_0 \in D_f$ or $x_0 \notin D_f$). We say that f(x) tends to l when x tends to x_0 iff:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ |x - x_0| < \delta \implies |f(x) - l| < \varepsilon$

and we write $\lim_{x \to x_0} f(x) = l$

Remark 4.3

- 1. Inequality $|x x_0| < \delta \iff x \in]x_0 \delta, x_0 + \delta[$.
- 2. Inequality $|f(x) l| < \varepsilon \iff f(x) \in]l \varepsilon, l + \varepsilon[$.
- 3. We can replace inequality "<" by " \leq " in the definition.

Graphical interpretation:

For any interval of type $J = [l - \varepsilon, l + \varepsilon]$ with $\varepsilon > 0$, we can find an interval of type $I = [x_0 - \delta, x_0 + \delta]$, such that the graphical representation of f restricted to I is included in J.

Figure 4.9:

Example 4.6

Show that $\lim_{x \to 2} (4x + 1) = 9$. Let $\varepsilon > 0$, we have: $|(4x + 1) - 9| \le \varepsilon \Leftrightarrow |4x - 8| \le \varepsilon \Leftrightarrow 4|x - 2| \le \varepsilon \Leftrightarrow |x - 2| \le \frac{\varepsilon}{4}$ Let's put $\delta = \frac{\varepsilon}{4}$ we obtain: $\forall \varepsilon > 0, \exists \delta > 0(\delta = \frac{\varepsilon}{4}), \forall x \in \mathbb{R}; |x - 2| \le \delta \implies |(4x + 1) - 9| \le \varepsilon$ $\implies \lim_{x \to 2} (4x + 1) = 9$

Proposition 4.2

If a function f has a limit at x_0 , then this limit is unique.

Proof 1

By contradiction, suppose that, f has two distinct limits l_1 and l_2 . $(l_1 \neq l_2)$ en x_0 . By setting: $\varepsilon = \frac{1}{3}|l_1 - l_2| > 0$ because $l_1 \neq l_2$. We have:

$$\begin{cases} \lim_{x \to x_0} f(x) = l_1 \\ et \\ \lim_{x \to x_0} f(x) = l_2 \end{cases}$$
$$\implies \begin{cases} \exists \delta_1(\varepsilon) > 0, \forall x \in D_f; \ |x - x_0| \le \delta_1 \implies |f(x) - l_1| \le \varepsilon \\ et \\ \exists \delta_2(\varepsilon) > 0, \forall x \in D_f; \ |x - x_0| \le \delta_2 \implies |f(x) - l_2| \le \varepsilon \end{cases}$$

By choosing: $\delta = \min(\delta_1, \delta_2)$ we get:

$$\begin{cases} \forall x \in D_f; \ |x - x_0| \le \delta \implies |f(x) - l_1| \le \varepsilon \\ and \\ \forall x \in D_f; \ |x - x_0| \le \delta \implies |f(x) - l_2| \le \varepsilon \end{cases}$$

$$\implies \forall x \in D_f; \ |x - x_0| \le \delta \implies |f(x) - l_1| + |f(x) - l_2| \le 2\varepsilon \tag{4.1}$$

According to the triangle inequality we have:

$$|l_1 - l_2| = |l_1 - f(x) + f(x) - l_2| \le |f(x) - l_1| + |f(x) - l_2|$$
(4.2)

(3.1) and (3.2)
$$\implies |l_1 - l_2| \le 2\varepsilon \implies |l_1 - l_2| \le \frac{2}{3}|l_1 - l_2| \implies 1 \le \frac{2}{3}$$

So we end up with a contradiction, this means that f admits a unique limit at point x_0 .

4.2.2 Left and Right-Hand Limits

Definition 4.12

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function, x_0 and l be two real numbers. (with $x_0 \in D_f$ or $x_0 \notin D_f$).

• We say that l is the left limit of the function f at a point x_0 iff:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ x_0 - \delta \le x < x_0 \implies |f(x) - l| \le \varepsilon$$

and we write: $\lim_{x \to x_0} f(x) = l$ or $\lim_{x \to x_0^-} f(x) = l$

• We say that l is the right limit of the function f at a point x_0 iff:

 $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ x_0 < x \le x_0 + \delta \implies |f(x) - l| \le \varepsilon$

and we write: $\lim_{x \to x_0} f(x) = l$ or $\lim_{x \to x_0^+} f(x) = l$

Example 4.7

- prove that: $\lim_{x \to 0^+} x \cos(\frac{1}{x}) = 0$ We have: $|x \cos(\frac{1}{x})| \le |x| |\cos(\frac{1}{x})| \le |x|$ (as $|\cos(\frac{1}{x})| \le 1$) $\implies |x \cos(\frac{1}{x})| \le |x|$ (4.3) Let $\varepsilon > 0$, with $\delta = \varepsilon$. If we have: $0 < x \le \delta \Leftrightarrow 0 < x \le \varepsilon \implies |x| \le \varepsilon$ (3.3) $\implies |x \cos(\frac{1}{x})| \le \varepsilon$. So, $\forall \varepsilon > 0, \exists \delta > 0$ ($\delta = \varepsilon$), $\forall x \in \mathbb{R}^*$; $0 < x \le \delta \implies |x \cos(\frac{1}{x})| \le \varepsilon$ $\implies \lim_{x \to 0^+} x \cos(\frac{1}{x}) = 0$
- Show that $\lim_{x\to 0^-} x\cos(\frac{1}{x}) = 0$ (Using the same technique as above)

Figure 4.10: Graph of the function $x \cos(\frac{1}{x})$

Theorem 4.1

Let $f : D_f \longrightarrow \mathbb{R}$ be a real function, $x_0, l \in \mathbb{R}$ (with $x_0 \in D_f$ or $x_0 \notin D_f$). The following propositions are equivalent

1. $\lim_{x \to x_0} f(x) = l$

2.
$$\lim_{x \stackrel{<}{\longrightarrow} x_0} f(x) = \lim_{x \stackrel{>}{\longrightarrow} x_0} f(x) = l$$

Result:

If we have: $\lim_{x \to x_0} f(x) \neq \lim_{x \to x_0} f(x)$ then $\lim_{x \to x_0} f(x)$ doesn't exist.

Example 4.8

Let's consider the function $f(x) = \frac{|x|}{x}$. We have:

$$\begin{cases} \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} -\frac{x}{x} = -1\\ \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \frac{x}{x} = 1 \end{cases}$$

 $\Rightarrow \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x) \text{ then } \lim_{x \to 0} f(x) \text{ doesn't exist.}$

4.2.3 Infinite limit of a function at x_0 .

Definition 4.13

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function and $x_0 \in \mathbb{R}$ (with $x_0 \in D_f$ or $x_0 \notin D_f$)

• It is said that f tends to $+\infty$ when x tends to x_0 iff:

$$\forall A > 0, \exists \delta > 0, \forall x \in D_f; \ |x - x_0| \le \delta \implies f(x) \ge A$$

and we write $\lim_{x \to x_0} f(x) = +\infty$

• It is said that f tends to $-\infty$ when x tends to x_0 iff:

$$\forall A > 0, \exists \delta > 0, \forall x \in D_f; \ |x - x_0| \le \delta \implies f(x) \le -A$$

and we write $\lim_{x \to x_0} f(x) = -\infty$

Example 4.9

Show that
$$\lim_{x \to 0} \frac{1}{x^2} = +\infty$$

Let $A > 0$ we have:
$$\frac{1}{x^2} \ge A \Leftrightarrow x^2 \le \frac{1}{A} \Leftrightarrow x^2 - \frac{1}{A} \le 0 \Leftrightarrow x \in \left[-\frac{1}{\sqrt{A}}, \frac{1}{\sqrt{A}}\right] \Leftrightarrow |x| \le \frac{1}{\sqrt{A}}$$
Putting $\delta = \frac{1}{\sqrt{A}}$ then $\forall x \in D_f$; $|x| \le \delta \implies \frac{1}{x^2} \ge A$
$$\implies \forall A > 0, \exists \delta > 0 \ (\delta = \frac{1}{\sqrt{A}}), \forall x \in D_f; \ |x| \le \delta \implies \frac{1}{x^2} \ge A \quad \text{therfore } \lim_{x \to 0} \frac{1}{x^2} = +\infty$$

Figure 4.11: The graph of a function $\frac{1}{x^2}$

4.2.4 Finite limit of a function at $-\infty$ and $+\infty$

Definition 4.14

• Let f be a function defined on an interval of type $] - \infty, a]$ (i.e $] - \infty, a] \subset D_f$) We say that f tends to $l \ (l \in \mathbb{R})$ when x tends to $-\infty$ iff:

$$\forall \varepsilon > 0, \exists B > 0, \forall x \in D_f; \ x \le -B \implies |f(x) - l| \le \varepsilon$$

and we write $\lim_{x \to -\infty} f(x) = l$

• Let f be a function defined on an interval of type $[a, +\infty[$ (i.e. $[a, +\infty[\subset D_f)$). We say that f tends to $l \ (l \in \mathbb{R})$ when x tends to $+\infty$ iff:

$$\forall \varepsilon > 0, \exists B > 0, \forall x \in D_f; \ x \ge B \implies |f(x) - l| \le \varepsilon$$

and we write $\lim_{x \to +\infty} f(x) = l$

Example 4.10

prove that $\lim_{x \to +\infty} \frac{x}{x+1} = 1 \text{ Let } \varepsilon > 0, \text{ we have:}$ $\left| \frac{x}{x+1} - 1 \right| \le \varepsilon \Leftrightarrow \left| \frac{1}{x+1} \right| \le \varepsilon \Leftrightarrow |x+1| \ge \frac{1}{\varepsilon}$ $\Leftrightarrow \begin{cases} x+1 \ge \frac{1}{\varepsilon} \\ or \\ x+1 \le -\frac{1}{\varepsilon} \end{cases} \Leftrightarrow \begin{cases} x \ge \frac{1}{\varepsilon} - 1 \\ or \\ x \le -1 - \frac{1}{\varepsilon} \end{cases}$ We set $B = \frac{1}{\varepsilon} - 1, \text{ if } x \ge B \implies \left| \frac{x}{x+1} - 1 \right| \le \varepsilon$ So, $\forall \varepsilon > 0, \exists B > 0 \ (B = \frac{1}{\varepsilon} - 1), \forall x \in D_f; x \ge B \implies \left| \frac{x}{x+1} - 1 \right| \le \varepsilon$ $\implies \lim_{x \to +\infty} \frac{x}{x+1} = 1.$

Figure 4.12: The graph of a function $\frac{x}{x+1}$

4.2.5 Infinite limit of a function at $+\infty$ and $-\infty$

Definition 4.15

• Let f be a function defined on an interval of type $[a, +\infty[$ (i.e. $[a, +\infty[\subset D_f)$). We say that f tends to $+\infty$ when x tends to $+\infty$ if:

$$\forall A > 0, \exists B > 0, \forall x \in D_f; \ x \ge B \implies f(x) \ge A$$

and we write: $\lim_{x \to +\infty} f(x) = +\infty$

• Let f be a function defined on an interval of type $] - \infty, a]$ (i.e. $] - \infty, a] \subset D_f$). . We say that f tends to $+\infty$ when x tends to $-\infty$ if:

$$\forall A > 0, \exists B > 0, \forall x \in D_f; \ x \le -B \implies f(x) \ge A$$

and we write: $\lim_{x \to -\infty} f(x) = +\infty$

• Let f be a function defined on an interval of type $[a, +\infty[$ (i.e. $[a, +\infty[\subset D_f)$) We say that f tends to $-\infty$ when x tends to $+\infty$ if:

$$\forall A > 0, \exists B > 0, \forall x \in D_f; x \ge B \implies f(x) \le -A$$

and we write: $\lim_{x \to +\infty} f(x) = -\infty$

• Let f be a function defined on an interval of type $] - \infty, a]$ (i.e. $] - \infty, a] \subset D_f$) We say that f tends to $-\infty$ when x tends to $-\infty$ if:

$$\forall A > 0, \exists B > 0, \forall x \in D_f; x \leq -B \implies f(x) \leq -A$$

and we write: $\lim_{x \to -\infty} f(x) = -\infty$

Notation: Let $\overline{\mathbb{R}}$ denote the set defined by:

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$$

 $\overline{\mathbb{R}}$ is called the extended real line.

4.2.6 Relationship between limits and sequences

Theorem 4.2

Let $f : D_f \longrightarrow \mathbb{R}$ be a real function, $x_0 \in \mathbb{R}$ (with $x_0 \in D_f$ or $x_0 \notin D_f$) and $l \in \mathbb{R}$. The following properties are equivalent:

- 1. $\lim_{x \to x_0} f(x) = l$
- 2. For any sequence $(x_n)_{n \in \mathbb{N}}$ in D_f such that: $\forall n \in \mathbb{N}; x_n \neq x_0$ and $\lim_{n \to +\infty} x_n = x_0$, then we have $\lim_{n \to +\infty} f(x_n) = l$

Proof	2

• First, we prove implication
$$(1 \implies 2)$$
.
Let $\varepsilon > 0$,
 $\exists \delta_{\varepsilon} > 0, \forall x \in D_{f}; |x - x_{0}| \le \delta_{\varepsilon} \implies |f(x) - l| \le \varepsilon$ (4.4)
 $(As \lim_{x \to x_{0}} f(x) = l)$
 $\delta_{\varepsilon} > 0 \implies \exists n_{0}(\delta_{\varepsilon}) \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_{0} \implies |x_{n} - x_{0}| \le \delta_{\varepsilon}$ (4.5)
(Because $\lim_{n \to +\infty} x_{n} = x_{0}$)
 (3.4) et $(3.5) \implies |f(x_{n}) - l| \le \varepsilon$
 $\implies \forall \varepsilon > 0, \exists n_{0} \in \mathbb{N}, \forall n \in \mathbb{N}; n \ge n_{0} \implies |f(x_{n}) - l| \le \varepsilon$
 $\implies \lim_{n \to +\infty} f(x_{n}) = l$
• Next, we prove the implication $(2 \implies 1)$ by contradiction proof,
we assume that for any sequence $(x_{n})_{n\in\mathbb{N}} \subset D_{f}$ that converges to x_{0} we have $f(x_{n})$
converges to l and $\lim_{x \to x_{0}} f(x) \ne l$.
 $\lim_{x \to x_{0}} f(x) \ne l \Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0, \exists x^{*} \in D_{f}; |x^{*} - x| \le \delta \land |f(x^{*}) - l| \ge \varepsilon$ (4.6)
We set: $\delta = \frac{1}{n}/n \in \mathbb{N}^{*}$
 $(3.6) \implies \forall n \in \mathbb{N}^{*}, \exists x_{n} \in D_{f}; (|x_{n} - x_{0}| \le \frac{1}{n}) \land (|f(x_{n}) - l| > \varepsilon)$
So we have found a sequence $(x_{n})_{n\in\mathbb{N}^{*}} \subset D_{f}$ that converges to x_{0} .
 $(since \forall n \in \mathbb{N}^{*}; |x_{n} - x_{0}| \le \frac{1}{n})$ et $f(x_{n})$ doesn't converge to l (as
 $\forall n \in \mathbb{N}^{*}; |f(x_{n}) - l| > \varepsilon)$, which contradicts our hypothesis.

Remark 4.4 If there are two sequences $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ of D_f such that:

$$\begin{cases} \lim_{n \to +\infty} x_n = x_0 \\ and & \wedge \lim_{n \to +\infty} f(x_n) \neq \lim_{n \to +\infty} f(y_n) \\ \lim_{n \to +\infty} y_n = x_0 \end{cases}$$

Then $\lim_{x \to x_0} f(x)$ doesn't exist.

Example 4.11

Let $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ $x \longmapsto \sin(\frac{1}{x})$ We have $\lim_{x \to 0} \sin(\frac{1}{x})$ doesn't exist because: If we set $x_n = \frac{1}{n\pi}$ et $y_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$ The sequences $(x_n)_{n \in \mathbb{N}^*}$, $(y_n)_{n \in \mathbb{N}^*}$ in \mathbb{R}^* and $\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = 0$ On the other hand, we have: $\begin{cases} \lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin(n\pi) = 0 \\ et \\ \lim_{n \to +\infty} f(y_n) = \lim_{n \to +\infty} \sin(\frac{\pi}{2} + 2n\pi) = 1 \end{cases}$ $\implies \lim_{n \to +\infty} f(x_n) \neq \lim_{n \to +\infty} f(y_n)$ $\implies \lim_{x \to x_0} f(x)$ doesn't exist.

4.2.7 Limits operations

Proposition 4.3: (The	e limit of s	sum of two	o or more functions)				
Let f, g be two functions and $x_0 \in \overline{\mathbb{R}}$. Then we have:							
	$\lim_{x \to x_0} f(x)$	$\lim_{x \to x_0} g(x)$	$\lim_{x \to x_0} (f(x) + g(x))$				
	$l_1 \in \mathbb{R}$	$l_2 \in \mathbb{R}$	$l_1 + l_2$				
	$l_1 \in \mathbb{R}$	$\pm\infty$	$\pm\infty$				
	$+\infty$	$+\infty$	$+\infty$				
	$-\infty$	$-\infty$	$-\infty$				
	$+\infty$	$-\infty$	Indeterminate form				
	$-\infty$	$+\infty$	Indeterminate form				

Proposition 4.4: (The limit of product of two or more functions)

Let f, g be two functions and $x_0 \in \overline{\mathbb{R}}$. Then we have:

$\lim_{\substack{x \to x_0 \\ x \to x_0}} g(x)$	$l_2 > 0$	$l_2 < 0$	0	+∞	$-\infty$
$l_1 > 0$	$\lim_{x \to x_0} fx)g(x) = l_1 l_2$	$l_{1}l_{2}$	0	$+\infty$	$-\infty$
$l_1 < 0$	$l_{1}l_{2}$	$l_{1}l_{2}$	0	$-\infty$	$+\infty$
0	0	0	0	Indeterminate form	Indeterminate form
$+\infty$	$+\infty$	$-\infty$	Indeterminate form	$+\infty$	$-\infty$
$-\infty$	$-\infty$	$+\infty$	Indeterminate form	$-\infty$	$+\infty$

Proposition 4.5: (The	limit of quo	tient	of two function	ons)			
Let f, g be two function	s defined on	D with	$f(x) \neq 0 \text{ on } h$	$D \text{ and } x_0 \in \overline{\mathbb{R}}.$	Ther	n we h	ıave
$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x)$	$l_{2} > 0$	$l_{2} < 0$	0+	0-	$+\infty$	$-\infty$	
$l_1 > 0$	$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$	$\frac{l_1}{l_2}$	$+\infty$	$-\infty$	0	0	
$l_1 < 0$	$\frac{l_1}{l_2}$	$\frac{l_1}{l_2}$	$-\infty$	$+\infty$	0	0	
0+	0	0	Indeterminate form	Indeterminate form	0	0	
0-	0	0	Indeterminate form	Indeterminate form	0	0	
$+\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	IF	IF	
$-\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	IF	IF	

Remark 4.5 According to the previous propositions, the indeterminate forms are: $+\infty - \infty, \frac{\infty}{\infty}, \frac{0}{0}$. Also we can deduce the other forms which are: $0^0, \infty^0, 1^\infty$

4.2.8 Limit of Composite Functions

Proposition 4.6

Let $f: D_f \longrightarrow \mathbb{R}, g: D_g \longrightarrow \mathbb{R}$ and $x_0, y_0, l \in \overline{\mathbb{R}}$. If we have: $\begin{cases} \lim_{x \to x_0} f(x) = y_0 \\ et \\ \lim_{x \to y_0} g(x) = l \end{cases}$ then $\lim_{x \to x_0} (f \circ g)(x) = l$

Example 4.12

$$f: \mathbb{R}^*_+ \longrightarrow \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \longrightarrow \mathbb{R}_+$$
Let
$$x \longmapsto \frac{e^x - 1}{x} \text{ and } g: \mathbb{R}^*_+ \longrightarrow \mathbb{R}_+$$

$$x \longmapsto \ln(x)$$
We have:
$$\begin{cases} \lim_{x \to 0} f(x) = \lim_{x \to 0} \left(\frac{e^x - 1}{x}\right) = 1 \\ et \\ \lim_{x \to 1} g(x) = \lim_{x \to 1} \ln(x) = 0 \\ \text{Then } \lim_{x \to 0} (g \circ f)(x) = \lim_{x \to 0} \ln\left(\frac{e^x - 1}{x}\right) = 0 \end{cases}$$

4.2.9 Finding Limits: Properties of Limits

Proposition 4.7

- 1. If we have: $\lim_{x \to x_0} f(x) = l$ then there exists $\alpha > 0$ such that the function f is bounded on $[x_0 \alpha, x_0 + \alpha]$.
- 2. If we have: $f(x) \leq g(x)$ in the neighbourhood of x_0 and $\lim_{x \to x_0} f(x) = l_1$, $\lim_{x \to x_0} g(x) = l_2$ then $l_1 \leq l_2$.
- 3. The Squeeze Theorem: Let f, g, h be three functions with the following property $f(x) \leq g(x) \leq h(x)$ in the neighbourhood of x_0 .

If we have: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = l$ then $\lim_{x \to x_0} g(x) = l$

4. Let f, g two functions which verify $f(x) \leq g(x)$ in the neighbourhood of x_0

If we have:
$$\begin{cases} \lim_{x \to x_0} f(x) = +\infty \text{ then } \lim_{x \to x_0} g(x) = +\infty \\ \lim_{x \to x_0} g(x) = -\infty \text{ then } \lim_{x \to x_0} f(x) = -\infty \end{cases}$$

5. Let f be a bounded function in the neighborhood of x_0 and g a function verifying $\lim_{x \to x_0} g(x) = 0$ then $\lim_{x \to x_0} f(x)g(x) = 0$.

Definition 4.16: (important definition)

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function. We say that f is defined in the neighborhood of x_0 iff: there exists an interval of the following type $I =]x_0 - \varepsilon, x_0 + \varepsilon[$ such that: $I \subset D_f$. (I is an interval with center x_0 and radius ε).

4.3 Continuous Functions

4.3.1 Continuity at a point x_0

Definition 4.17

Let f be a function defined in the neighborhood of x_0 . We say that f is continuous at the point x_0 iff:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

i.e $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; |x - x_0| \le \delta \implies |f(x) - f(x_0)| \le \varepsilon$

Example 4.13

Let f be a function defined by:

$$f(x) = \begin{cases} x \sin(\frac{1}{x^2}), & \text{si } x \neq 0\\ 0 & \text{si } x = 0 \end{cases}$$

Show that f is continuous at $x_0 = 0$.

- 1. $D_f = \mathbb{R} \implies f$ is defined in the neighbourhood of $x_0 = 0$.
- 2. We'll show that $\lim_{x\to 0} f(x) = 0$. We have:

$$\begin{aligned} \forall x \in \mathbb{R}^*; \ |x \sin(\frac{1}{x^2}| \le |x| \\ \text{If we choose } \delta &= \varepsilon \text{ (with } \varepsilon > 0 \text{), we find:} \\ \forall \varepsilon > 0, \exists \delta > 0 \ (\delta = \varepsilon), \forall x \in \mathbb{R}; \ |x| \le \delta \implies |x \sin(\frac{1}{x^2}| \le \varepsilon \end{aligned}$$

$$\Rightarrow \lim_{x \to 0} f(x) = 0 \implies f \text{ is continuous at } x_0$$

4.3.2 Left and right continuity at a point x_0

=

Definition 4.18

• Let f be a function defined on an interval of kind $[x_0, x_0 + h]$ with h > 0(i.e.; $[x_0, x_0 + h] \subset D_f$). A function f is right continuous at a point x_0 iff:

$$\lim_{x \xrightarrow{>} x_0} f(x) = f(x_0)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ x_0 \le x < x_0 + \delta \implies |f(x) - f(x_0)| \le \varepsilon$$

• Let f be a function defined on an interval of kind $[x_0 - h, x_0]$ with h > 0(i.e.; $[x_0 - h, x_0] \subset D_f$). A function f is left continuous at a point x_0 iff:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ x_0 - \delta < x \le x_0 \implies |f(x) - f(x_0)| \le \varepsilon$$

Example 4.14

Let f be a function defined by:

$$f(x) = \begin{cases} \frac{\sin(x)}{|x|}, & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

1. We'll study the right continuity of f at $x_0 = 0$

• We have $D_f = \mathbb{R} \implies f$ is defined in the right of $x_0 = 0$

•
$$\lim_{x \to 0} \frac{\sin(x)}{|x|} = \lim_{x \to 0} \frac{\sin(x)}{x} = 1 = f(1)$$

So f is right continuous at x_0 .

- 2. The continuity of f at the left of $x_0 = 0$.
 - We have $D_f = \mathbb{R} \implies f$ is defined in the left of $x_0 = 0$.

•
$$\lim_{x \le 0} \frac{\sin(x)}{|x|} = \lim_{x \le 0} -\frac{\sin(x)}{x} = -1 \neq f(1)$$

So f is not left continuous at x_0 .

Figure 4.13: Graph of the function f

Theorem 4.3

Let f be a function defined in the neighborhood of x_0 . The following two propositions are equivalent:

- 1. f is left and right continuous at x_0 .
- 2. f is continuous at x_0 .

Remark 4.6 Our example (3.13) shows that f is right continuous at $x_0 = 0$ and is not left continuous at $x_0 = 0$. which implies that f is not continuous at $x_0 = 0$.

4.3.3 Continuous extension to a point

Definition 4.19

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function and $x_0 \in \mathbb{R}$ Such that: $x_0 \notin D_f$. If $\lim_{x \to x_0} f(x) = l \in \mathbb{R}$.exists, but $f(x_0)$ is not defined, we define a new function:

$$\tilde{f}: D_f \cup \{x_0\} \longrightarrow \mathbb{R}
x \longmapsto \tilde{f}(x) = \begin{cases} f(x) & \text{if } x \neq x_0 \\ l & \text{if } x = x_0 \end{cases}$$

which is continuous at x_0 . It is called the continuous extension of f to x_0 .

Example 4.15

Let

$$\begin{array}{rccc} f: & \mathbb{R}^* & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \frac{\sin(x)}{x} \end{array}$$

Can we extend the function f to be continuous at $x_0 = 0$.

We have: $\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{\sin(x)}{x} = 1 \implies f$ has a finite limit at $x_0 = 0$ So f is extendable by continuity at $x_0 = 0$ and the extension by continuity of f at $x_0 = 0$ is defined by: $\tilde{f}: \mathbb{R} \longrightarrow \mathbb{R}$

:
$$\mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \tilde{f}(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$

4.3.4 Operations on continuous functions at x_0

Theorem 4.4

Let f, g be two continuous functions at a point $x_0 \in \mathbb{R}$ and $\lambda \in \mathbb{R}$. Then:

- 1. The function |f| is continuous at x_0 .
- 2. The functions λf , f + g and fg are continuous at x_0 .
- 3. If $g(x_0) \neq 0$ then $\frac{f}{g}$ is continuous at x_0 .

Proposition 4.8 Let $f: D_f \longrightarrow \mathbb{R}$ and $g: D_g \longrightarrow \mathbb{R}$ be two functions such that: $f(D_f) \subset D_g$. If we have: $\begin{cases}
f \text{ is defined in a neighborhood of } x_0 \text{ and continuous at } x_0 \\
et \\
g \text{ is defined in a neighborhood of } y_0 = f(x_0) \text{ and continuous at } y_0 \\
\text{Then } (g \circ f)(x) \text{ is continuous at } x_0.
\end{cases}$

4.3.5 The sequential continuity theorem

Theorem 4.5

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function. The following two statements are equivalent:

- 1. f is continuous at x_0 .
- 2. for each sequence $(x_n)_{n\in\mathbb{N}}\subset D_f$ such that $x_n\to x_0$, then $f(x_n)\to f(x_0)$.

Proof 3

The proof of this theorem follows from theorem (3.2)

Proposition 4.9

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function and $x_0 \in D_f$. If f is continuous at x_0 and $f(x_0) \neq 0$ then there exists a neighborhood (\mathcal{V}) of x_0 such that:

 $\forall x \in \mathcal{V}; \ f(x) \neq 0$

Proof 4

We have f is continuous at x_0 so,

1. f is defined in a neighborhood of x_0

$$\Leftrightarrow \exists \eta > 0 \text{ such that: } I =]x_0 - \eta, x_0 + \eta [\subset D_f$$
(4.7)

2.
$$\lim_{x \to x_0} f(x) = f(x_0)$$
$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0, \forall x \in D_f; \ |x - x_0| \le \delta \implies |f(x) - f(x_0)| \le \varepsilon$$
(4.8)

If we put: $\varepsilon = \frac{1}{2}|f(x_0)|$ then:

$$\exists \delta > 0, \forall x \in D_f; \ |x - x_0| \le \delta \implies |f(x) - f(x_0)| \le \frac{1}{2} |f(x_0)|$$

$$(3.7) \implies \exists \delta > 0, \forall x \in I; \ |x - x_0| \le \delta \implies |f(x) - f(x_0)| \le \frac{1}{2} |f(x_0)|$$

$$\implies \forall x \in I \cap]x_0 - \eta, x_0 + \eta[; \ |f(x) - f(x_0)| \le \frac{1}{2} |f(x_0)|$$

$$(4.9)$$

Let's put : $\mathcal{V} = I \cap [x_0 - \delta, x_0 + \delta[$, then \mathcal{V} is a neighborhood of x_0 . On the other hand, according to the triangular inequality, we have:

$$|f(x_0)| - |f(x)| \le ||f(x_0)| - |f(x)|| \le |f(x_0) - f(x)| \le \frac{1}{2} |f(x_0)|$$

$$(3.9) \implies \forall x \in \mathcal{V}; |f(x_0)| - |f(x)| \le \frac{1}{2} |f(x_0)|$$

$$\implies \forall x \in \mathcal{V}; |f(x)| \ge \frac{1}{2}|f(x_0)| \ne 0$$

So there is a neighbourhood \mathcal{V} of x_0 such that: $\forall x \in \mathcal{V}; f(x) \neq 0$.

4.3.6 Continuity over an interval

Definition 4.20

- 1. f is said to be continuous on an open interval of type]a, b[iff: it is continuous at any point on the interval]a, b[.
- 2. f is said to be continuous on an interval of type [a, b] iff: it is continuous on]a, b[and continuous to the right of a and to the left of b.
- 3. f is said to be continuous on an interval of type]a, b] iff: it is continuous on]a, b[and continuous to the left of b.
- 4. f is said to be continuous on an interval of type [a, b[iff: it is continuous on]a, b[and continuous to the right of a.

4.3.7 Uniform continuity

Definition 4.21

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function. We say that f is uniformly continuous on D_f iff:

 $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0, \forall x, y \in D_f; \ |x - y| \le \delta(\varepsilon) \implies |f(x) - f(y)| \le \varepsilon$

Remark 4.7 Note that uniform continuity is a property of the function over the set D_f , while continuity can be defined at a point $x_0 \in D_f$. The number δ depends only on ε in the case of uniform continuity, but in the case of continuity at a point x_0 , δ depends on ε and x_0 .

Example 4.16

Show that the function $f(x) = \sqrt{x}$ is uniformly continuous on \mathbb{R}_+ . **Solution:** Step 01: In this step, we'll show that: $\forall x, y \in \mathbb{R}_+ : \sqrt{x+y} \le \sqrt{x} + \sqrt{y} \text{ and } |\sqrt{x} - \sqrt{y}| \le \sqrt{|x-y|}$

- 1. Let $x, y \in \mathbb{R}_+$ we have: $0 \le 2\sqrt{x}\sqrt{y} \Leftrightarrow x + y \le x + 2\sqrt{x}\sqrt{y} + y \Leftrightarrow x + y \le (\sqrt{x} + \sqrt{y})^2 \Leftrightarrow \sqrt{x + y} \le |\sqrt{x} + \sqrt{y}| = \sqrt{x} + \sqrt{y}$ So $\forall x, y \in \mathbb{R}_+$; $\sqrt{x + y} \le \sqrt{x} + \sqrt{y}$.
- 2. Let $x, y \in \mathbb{R}_+$ we have:

$$\begin{aligned} x - y) &\leq |x - y| \implies y + (x - y) \leq y + |x - y| \\ \implies \sqrt{x} \leq \sqrt{y + |x - y|} \leq \sqrt{y} + \sqrt{|x - y|} \\ \implies \sqrt{x} - \sqrt{y} \leq \sqrt{|x - y|} \end{aligned}$$
(4.10)

on the other hand, we have:

$$(y-x) \leq |y-x| \implies x + (y-x) \leq x + |x-y|$$
$$\implies \sqrt{y} \leq \sqrt{x + |x-y|} \leq \sqrt{x} + \sqrt{|x-y|}$$
$$\implies -\sqrt{|x-y|} \leq \sqrt{x} - \sqrt{y}$$
(4.11)
(3.10) et (3.11) \implies \forall x, y \in \mathbb{R}_+; |\sqrt{x} - \sqrt{y}| \leq \sqrt{|x-y|}

Step 02:

In this step we will show the uniform continuity of the function $f(x) = \sqrt{x}$ Let $\varepsilon > 0$ and $x, y \in \mathbb{R}_+$ we have:

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{|x - y|}$$

Let's put $\delta = \varepsilon^2$ then:

$$|x-y| \le \delta \implies \sqrt{|x-y|} \le \varepsilon \implies |\sqrt{x} - \sqrt{y}| \le \varepsilon$$

$$\implies \forall \varepsilon > 0, \exists \delta > 0 \ (\delta = \varepsilon^2), \forall x, y \in \mathbb{R}_+; \ |x - y| \le \delta \implies |\sqrt{x} - \sqrt{y}| \le \varepsilon$$

therefore, $f(x) = \sqrt{x}$ is uniformly continuous on \mathbb{R}_+ .

Example 4.17

Show that the function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} . Solution: $f(x) = x^2$ is not uniformly continuous on \mathbb{R} $\Leftrightarrow \exists \varepsilon > 0, \forall \delta > 0, \exists x, y \in \mathbb{R}; |x - y| \le \delta \land |x^2 - y^2| > \varepsilon$ Let's put: $\varepsilon = 1$ Let $\delta > 0$, we will confirm the existence of $x, y \in \mathbb{R}$ such that: $|x - y| \le \delta \land |x^2 - y^2| > \varepsilon$ Let's take : $y = x + \frac{1}{2}\delta \implies x - y = \frac{1}{2}\delta \implies |x - y| = \frac{1}{2}\delta \le \delta$ $|x^2 - y^2| > 1 \Leftrightarrow |x^2 - x^2 - x\delta - \frac{1}{4}\delta^2| > 1 \Leftrightarrow |\frac{1}{4}\delta^2 + x\delta| > 1$ If we choose $x = \frac{1}{\delta} + \frac{3}{4}\delta$, then $y = \frac{1}{\delta} + \frac{3}{4}\delta + \frac{1}{2}\delta = \frac{1}{\delta} + \frac{5}{4}\delta$ $\Longrightarrow \begin{cases} |x - y| = \frac{1}{2}\delta \le \delta \\ \land \\ |x^2 - y^2| = |1 + \delta^2| > 1 \end{cases}$ $\Rightarrow \exists \varepsilon > 0 \ (\varepsilon = 1), \forall \delta > 0, \exists x, y \in \mathbb{R} \ (x = \frac{1}{\delta} + \frac{3}{4}\delta, y = \frac{1}{\delta} + \frac{5}{4}\delta); \begin{cases} |x - y| \le \delta \\ \land \\ |x^2 - y^2| > 1 \end{cases}$ $\Rightarrow f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Proposition 4.10

Let $f: D_f \longrightarrow \mathbb{R}$ be a real function function, then we have the following implication: f is uniformly continuous on $D_f \implies f$ is continuous on D_f

Remark 4.8 The converse is false: a function can be continuous on D_f without being uniformly continuous on D_f . From example (3.16) we have: $f(x) = x^2$ is continuous on \mathbb{R} but not uniformly continuous on \mathbb{R} .

4.3.8 Theorems about continuous functions

Theorem 4.6: (Heine's theoem)

Every continuous function on an interval of type [a, b] is uniformly continuous on this interval.

Proof 5

In this theorem, we'll show the following implication:

f is continuous on $[a, b] \implies f$ is uniformly continuous on [a, b]. By contradiction, we assume that f is continuous on [a, b] and not uniformly continuous on [a, b]. f is not uniformly continuous on $[a, b] \Leftrightarrow$

$$\exists \varepsilon_0, \forall \delta > 0, \exists x, y \in [a, b]; (|x - y| \le \delta) \land (|f(x) - f(y)| > \varepsilon_0)$$

Let's put: $\delta = \frac{1}{n}$ tq: $n \in \mathbb{N}^*$

$$\implies \forall n \in \mathbb{N}^*, \exists x_n, y_n \in [a, b]; \ |x_n - y_n| \le \frac{1}{n} \land |f(x_n) - f(y_n)| > \varepsilon_0 \tag{4.12}$$

So we have constructed two sequences $(x_n)_{n \in \mathbb{N}^*}$ and $(y_n)_{n \in \mathbb{N}^*}$ which are included in [a, b]. $(x_n)_{n \in \mathbb{N}^*} \subset [a, b] \implies (x_n)_{n \in \mathbb{N}^*}$ is a bounded sequence.

According to bolzano weierstrass's theorem, there exists a sub-sequence $(x_{\phi(n)})_{n \in \mathbb{N}^*}$ such that: $\lim_{n \to +\infty} x_{\phi(n)} = l$ with $l \in [a, b]$.

On the one hand we have:
$$|x_{\phi(n)} - y_{\phi(n)}| \leq \frac{1}{\phi(n)} \implies \lim_{n \to +\infty} (x_{\phi(n)} - y_{\phi(n)}) = 0$$

So $\begin{cases} \lim_{n \to +\infty} (x_{\phi(n)} - y_{\phi(n)}) = 0 \\ \text{and} \implies \lim_{n \to +\infty} y_{\phi}(n) = l \end{cases} \implies \lim_{n \to +\infty} y_{\phi}(n) = l \end{cases}$

f is continuous at $l \implies \exists \eta > 0, \forall x, y \in [a, b]; |x - y| \le \eta \implies |f(x) - f(l)| \le \frac{\varepsilon_0}{3}$. The sequences $(x_{\phi}(n))_{n \in \mathbb{N}^*}$ and $(y_{\phi}(n))_{n \in \mathbb{N}^*}$ converges to l

$$\implies \begin{cases} \exists n_0 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*; \ n \ge n_0 \implies |x_{\phi(n)} - l| \le \eta \implies |f(x_{\phi(n)}) - f(l)| \le \frac{\varepsilon_0}{3} \\ \text{and} \\ \exists n_1 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*; \ n \ge n_1 \implies |y_{\phi(n)} - l| \le \eta \implies |f(y_{\phi(n)}) - f(l)| \le \frac{\varepsilon_0}{3} \end{cases}$$

If we put: $n^* = \max(n_0, n_1)$ we get:

$$\exists n^* \in \mathbb{N}^*, \forall n \in \mathbb{N}^*; \ n \ge n^* \implies |f(x_{\phi(n)}) - f(l)| + |f(y_{\phi(n)}) - f(l)| \le \frac{2\varepsilon_0}{3}$$

According to the triangular inequality we have:

$$|f(x_{\phi(n)}) - f(y_{\phi(n)})| \leq |f(x_{\phi(n)}) - f(l)| + |f(y_{\phi(n)}) - f(l)| \leq \frac{2\varepsilon_0}{2}$$

$$\implies \forall n \geq n^* \text{ we have: } |f(x_{\phi(n)}) - f(y_{\phi(n)})| \leq \frac{2\varepsilon_0}{2}$$
(4.13)
(3.12) and (3.13)
$$\implies \forall n \geq n^*; \varepsilon_0 < |f(x_{\phi(n)}) - f(y_{\phi(n)})| \leq \frac{2\varepsilon_0}{2}$$

$$\implies \varepsilon_0 < \frac{2\varepsilon_0}{2} \text{ is a contradiction}$$

so the multiplication (f is continuous on $[a, b] \implies f$ is uniformly continuous on [a, b]) is true.

0

Theorem 4.7: (Weirstrass's theorem)

Let f be a continuous function on [a, b], then:

$$f$$
 is bounded on $[a, b]$
and
 $\exists x_1, x_2 \in [a, b]$ tq: $f(x_1) = \min_{x \in [a, b]} (f(x))$ and $f(x_2) = \max_{x \in [a, b]} (f(x))$

(i.e. f is bounded and reaches its bounds on [a, b].)

Figure 4.14: A continuous function on [a, b]

Proof 6

1. Let's assume that f is not bounded on $[a, b] \Leftrightarrow$

$$\forall n \in \mathbb{N}^*, \exists x_n \in [a, b] \text{ tq: } |f(x_n)| > n \tag{4.14}$$

So we constructed a sequence $(x_n)_{n \in \mathbb{N}^*} \subset [a, b] \implies (x_n)_{n \in \mathbb{N}^*}$ is bounded. According to B.W's theorem there exists a sub-sequence $(x_{\phi(n)})_{n \in \mathbb{N}^*}$ of $(x_n)_{n \in \mathbb{N}^*}$ such that:

$$\lim_{n \to +\infty} x_{\phi(n)} = l \text{ avec } l \in [a, b]$$

 $l \in [a, b] \implies f \text{ is continuous at } l \implies \lim_{n \to +\infty} f(x_{\phi(n)}) = f(l) \in \mathbb{R}$ (3.14) $\implies \forall n \in \mathbb{N}^*; \ |f(x_{\phi(n)}| > \phi(n) \implies \lim_{n \to +\infty} f(x_{\phi(n)}) = +\infty \text{ is a contradiction}$ $\implies f \text{ is bounded.}$

$$m = \inf_{x \in [a,b]} (f(x)) = \inf(f([a,b]))$$

and

2. We put $\left\{ \right.$

$$M = \sup_{x \in [a,b]} (f(x)) = \sup(f([a,b]))$$

From the definition of sup and inf we have:

$$\forall \varepsilon > 0, \begin{cases} \exists x^* \in [a, b]; \ f(x^*) < m + \varepsilon \\ \text{and} \\ \exists y^* \in [a, b]; \ M - \varepsilon < f(y^*) \end{cases}$$

Let's put: $\varepsilon = \frac{1}{n} / n \in \mathbb{N}^*$, we get:

$$\forall n \in \mathbb{N}^*; \begin{cases} \exists x_n \in [a, b]; \ f(x_n) < m + \frac{1}{n} \\ \text{and} \\ \exists y_n \in [a, b]; \ M < f(y_n) + \frac{1}{n} \end{cases}$$

So we constructed two sequences $(x_n)_{n \in \mathbb{N}^*}$ and $(y_n)_{n \in \mathbb{N}^*}$ which are included in $[a, b] \implies (x_n)_{n \in \mathbb{N}^*}$ and $(y_n)_{n \in \mathbb{N}^*}$ are bounded. According to B.W's theorem we have:

$$\begin{cases} \exists (x_{\phi(n)})_{n \in \mathbb{N}^*} \text{ such that:} \lim_{n \to +\infty} x_{\phi(n)} = \alpha / \alpha \in [a, b] \\ \text{and} \\ \exists (y_{\sigma(n)})_{n \in \mathbb{N}^*} \text{ such tnat:} \lim_{n \to +\infty} y_{\sigma(n)} = \beta / \beta \in [a, b] \\ \alpha, \beta \in [a, b] \implies \begin{cases} f \text{ is continuous at } \alpha \implies \lim_{n \to +\infty} f(x_{\phi(n)}) = f(\alpha) \\ \text{and} \\ f \text{ is continuous at } \beta \implies \lim_{n \to +\infty} f(y_{\sigma(n)}) = f(\beta) \end{cases} \\ \implies \forall n \in \mathbb{N}^*; \begin{cases} f(x_{\phi(n)}) - \frac{1}{n} < m \le f(x_{\phi(n)}) \\ \text{and} \\ f(y_{\sigma(n)}) \le M < f(y_{\sigma(n)}) + \frac{1}{n} \\ q = f(\alpha) = \inf_{x \in [a, b]} (f(x)) = \min_{x \in [a, b]} (f(x)) \text{ with } \alpha \in [a, b]. \end{cases} \\ \text{and} M = f(\beta) = \sup_{x \in [a, b]} (f(x)) = \max_{x \in [a, b]} (f(x)) \text{ with } \beta \in [a, b]. \end{cases}$$

3(

Theorem 4.8: (Bolzano-Cauchy)

Let f be a continuous function on the interval [a, b] tq: $f(a) \cdot f(b) \leq 0$, then there exists at least $c \in [a, b]$ verifying f(c) = 0.

Proof 7

Assume that f(a) < 0 et f(b) > 0. Let's put: $F = \{x \in [a, b] / f(x) < 0\}$. Since $(F \subset [a, b])$, the set F is bounded above. According to the completeness axiom for the real numbers, we have: $\exists c \in \mathbb{R}$; $\sup(F) = c$ with $a \leq c \leq b$ (since $b \in \text{Upper}(F)$ and $a \in F$). 1. $c = \sup(F) \implies \forall \varepsilon > 0, \exists x^* \in F; \ c - \varepsilon < x^* \le c$ Let's take $\varepsilon = \frac{1}{n}$ $\implies \forall n \in \mathbb{N}^*, \exists x_n \in F; \ c - \frac{1}{n} < x_n \leq c$ (4.15)So we constructed a sequence $(x_n)_{n \in \mathbb{N}^*} \subset F$ According to (3.15) $\lim_{n \to +\infty} x_n = c$ (Squeeze theorem). f is continuous at $c \implies \lim_{n \to +\infty} f(x_n) = f(c)$. On the other hand, we have: $(x_n)_{n \in \mathbb{N}^*} \subset F \implies \forall n \in \mathbb{N}^*; f(x_n) \leq 0 \implies f(c) \leq 0$ 2. Let's consider the sequence $y_n = c + \frac{b-c}{n}/n \in \mathbb{N}^*$. We have: $y_{n+1} - y_n = -\frac{b-c}{n(n+1)} \le 0 \implies (y_n)_{n \in \mathbb{N}^*}$ is decreasing, then: $\forall n \in \mathbb{N}^*; \ c < y_n \leq y_1 = b$ $\implies (y_n)_{n \in \mathbb{N}^*}$ is a sequence in [a, b] which converges to c. f is continuous at $c \implies \lim_{n \to +\infty} f(y_n) = f(c).$

On the other hand, we have: $\forall n \in \mathbb{N}^*$; $c < y_n \implies f(y_n) > 0 \implies f(c) > 0$.

Finally, from (1) and (2) we get: $\exists c \in [a, b]; f(c) = 0$

f

Example 4.18

Let

$$: [0, 2\pi] \longrightarrow \mathbb{R}$$
$$x \longmapsto \sin(x) + (x-1)\cos(x)$$

1. The function f(x) is continuous on $[0, 2\pi]$ (since f is a sum of two continuous functions on $[0, 2\pi]$)

2. f(0) = -1 and $f(2\pi = 2\pi - 1 > 0 \implies f(0)f(2\pi) < 0$

According to B.C's theorem, there exists at least one real $c \in [0, 2\pi]$ such that: f(c) = 0

Figure 4.15: The graph of $f(x) = \sin(x) + (x - 1)\cos(x)$ on the interval $[0, 2\pi]$.

Theorem 4.9: (The Intermediate Value Theorem)

Let f be a continuous function on [a, b] we have:

- 1. If f(a) < f(b) then $\forall \gamma \in [f(a), f(b)], \exists c \in [a, b]$ such that: $f(c) = \gamma$
- 2. If f(b) < f(a) then $\forall \gamma \in [f(b), f(a)], \exists c \in [a, b]$ such that: $f(c) = \gamma$

Proposition 4.11

Let $f: I \longrightarrow \mathbb{R}$ be a continuous function on interval I (where I is an arbitrary interval). Then f(I) is an interval.

Proof 8

Let $y_1, y_2 \in f(I)$ such that: $y_1 < y_2 \implies \exists x_1, x_2 \in I$ such that: $y_1 = f(x_1) \land y_2 = f(x_2)$. Let's put: $a = \min(x_1, x_2)$ and $b = \max(x_1, x_2)$. We have: $a, b \in I$. Let $y \in [y_1, y_2] \implies \exists c \in [a, b]; f(c) = y$ (I.V.Th). We have: $[a, b] \subset I$ (as I is an interval) $\implies y = f(c) \in f(I)$. $\forall y_1, y_2 \in f(I), \forall y \in \mathbb{R}; y \in [y_1, y_2] \implies y \in f(I) \implies f(I)$ is an interval.

Remark 4.9 If f is a continuous function on [a, b] then, f([a, b]) = [m, M]with $m = \min_{x \in [a,b]} (f(x))$ and $M = \max_{x \in [a,b]} (f(x))$

4.3.9 Monotonic functions and continuity

Theorem 4.10

Let $f: I \longrightarrow \mathbb{R}$ be a function (*I* is an interval). If *f* is strictly monotone on the interval *I*, then *f* is injective on *I*.

Proof 9

Let's show that f is injective. consider $x_1, x_2 \in I$; $x_1 \neq x_2$

- 1. Si $x_1 < x_2$ et f is strictly increasing $\implies f(x_1) < f(x_2) \implies f(x_1) \neq f(x_2)$.
- 2. Si $x_1 < x_2$ et f is strictly decreasing

$$\implies f(x_1) > f(x_2) \implies f(x_1) \neq f(x_2)$$

The same technique is used for $x_1 > x_2$. So $\forall x_1, x_2 \in I$; $x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \implies f$ is injective.

Theorem 4.11

.

Let $f: I \longrightarrow \mathbb{R}$ be a function defined and monotone on interval I. Then the following two statements are equivalent

- 1. f is continuous on I.
- 2. f(I) is an interval.

Theorem 4.12: (bijection theorem)

Let $f: I \longrightarrow \mathbb{R}$ be a function. If f is strictly monotone and continuous on I, then

- 1. f is a bijection from I into J = f(I).
- 2. The inverse function $f^{-1}: J = f(I) \longrightarrow I$ is strictly monotonic and continuous on J (and varies in the same direction as f).