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Chapter 04 Limits and continuous functions

4.1 Overview concepts:

In this chapter we are going to study real functions of one real variables, or simply functions
which are defined on a non-empty part E of R to R with (E C R; or E =R).

4.1.1 Real function of one real variable

Definition 4.1

Any application from E to R is called a numerical function.

If E C R, we say that f is a numerical function of a real variable, or a real function of a
real variable.

We write;

f: E — R
x — f(z)

E is called the domain of definition of f and is denoted by Djy.

Example 4.1

For example, the function defined by:

f:r R* — R

r

SR

is a numerical function of one real variable. In this case the domain of definition of f is
Dy =R*.

4.1.2 The Graph of a function

Definition 4.2

Let f : Dy — R be a numerical function of a real variable, the Graph of f is a set of
ordered pairs of the form (z, f(x)). And denote it by I'; i.e:

Ty ={(z, f(z))/x € Ds} C R

Remark 4.1 T'; is a subset of R?, i.e 'y C R?

Example 4.2

1
The graph of f(z) = — is shown below
T




Chapter 04 Limits and continuous functions

1
Figure 4.1: Graph of f(z) = —
x

4.1.3 Operations on Functions

Definition 4.3: (The sum and product of two functions)

Let f: D — R and g: D — R two functions defined on D to R
o The sum of f and g is the function defined by f + g:

f+9: D — R
v o— (f+9)(@) = fz)+g(x)

e The product of f and g is the function defined by f.g:

fg: D — R
r — ([.9)(z)=f(2).9(z)

o Let A € R, the function \.f is defined by:

\f: D — R
r — (A f)(x) =\ f(2)
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Figure 4.2: Graph of the sum of two functions f + g

4.1.4 Monotonicity, parity and periodicity

Definition 4.4

Let f: Dy — R be a real function.

« The function f is said to be increasing on Dy iff:

Vo,y € Dp; o <y = f(z) < f(y)

« The function f is said to be strictly increasing on Dy iff:

Ve,y € Dg; x <y = f(z) < f(y)

e The function f is said to be decreasing on D iff:

Va,y € Dy o <y = f(x) > f(y)

o The function f is said to be strictly decreasing on Dy iff:

Va,y € Dy x <y = f(z) > f(y)

« The function f is said to be a constant function on Dy iff:

Ja € R,Va,y € Dy; f(x) = f(y) =a

« The function f is said to be monotonic on Dy if it is either increasing or decreasing
on Dy

« The function f is said to be strictly monotonic on Dy if it is either strictly increasing
or strictly decreasing on Dy
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Example 4.3

1. The y/x function is strictly increasing on [0, +o0.

2. The function exp(x) is strictly increasing on R and In(z) is strictly increasing on
10, +o0l.

3. The function |x] is increasing on R.

4. The function |x| is neither increasing nor decreasing on R.

Figure 4.3: The functions exp(x),/z and In(z) (The function |z| on the right)

Figure 4.4: The integer part function
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Definition 4.5

Let f: Dy — R be a real function.

V$€R;$6Df - —LUGDf

o We say that f is even iff:
{Vm € Dy: f(—z) = f(x)

VZ‘ER;ZL’GDJI — —IGDf

* We say that f is odd iff: {Vx €Dy: f(—x)=—f(z)

Graphical interpretation:
o The graphical representation of an even function has the y-axis as the axis of symmetry.

o The graphical representation of an odd function has the origin of the coordinate system
as the centre of symmetry.

Example 4.4

1. Since:

VxGDf:R EESS —xGDf
Vo € Dy; f(—z) = (—2)* = 2% = f(a),

then the function f(x) = z? is even.

2. Since:

D; =R
Vo € Dy; f(—x) = —2° = — f(x),
then the function f(z) = 2% is odd.

49 4
3 3 3
f(x)=x S(x) =x
y 29 2
1 1
"
4 3 2 1 0 1 2 3 4 -4 3 2 1 0 1 2 3 4
-1 1
2 ]
| .
-3 -3 Le point-(0,0)
x=0 estun axe de symétrie estun centre de symétrie
|
¢ -4 -4

Figure 4.5: The function z? and 23
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Definition 4.6

Let f: Dy <— R be a real function.
We say that a function f is periodic, with period p € R, if

\V/$€R; I’GDf — m+pEDf
Vz € Dy; f(x+p) = f(z)

Graphical interpretation:

o« If fisa peri_o)dic function with period p, then the graph of f is invariant by the translation
of vector p 7 .

o2
T
LI

LA
Uik

iy

2mi

<;
<;

¢ Y

Figure 4.6: sin(z) is 2m-periodic

4.1.5 Bounded functions

Definition 4.7

Let f: Dy — R be a real function.

o If there exists m € R such that: m < f(z) for all € Dy, then the function f is
said to be bounded from below by m. i.e

dm € R,Vz € Dy; m < f(x) < the function f is bounded from below

o If there exists M € R such that: f(z) < M for all x € Dy, then the function f is
said to be bounded from above by M. i.e

dM € R,Vx € Dy; f(x) < M < the function f is bounded from above

o If there exists M, m € R such that: m < f(z) < M for all z € Dy, then the
function f is said to be bounded. i.e

dM,m € R,Vz € Dg; m < f(x) < M < the function f is bounded

Remark 4.2 Also, we can say that f is bounded on Dy iff: AM € Ry, Vx € Dy; |f(z)| < M.
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m

¢ 4] 4

Figure 4.7: The bounded fom below function (in the left) and The bounded from above function
(in the right)

q \/ Tl v :
o

_44

Figure 4.8: bounded function

Definition 4.8

Let f: D — R and g : D — R tow functions. We can write:

e f<gifft: Vo€ D; f(z) < g(z)
o f<ygiff: Ve D; f(x) <gx)
e [=gift: Vo e D; f(z) = g(x)

Rappel:-
Let f: Dy — R be a real function. Recall that f(Dy) is the set of all values of f denoted by:

f(Dy) ={f(x)/x € Dy}

Let’s put:
xseugf(f () = sup(f(Dy))
xiengf(f(w)) = inf(f(Dy))
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Definition 4.9

 The smallest upper bound of f on Dy is called sup (f(z)) and is denoted by :
xGDf

sup f = sup (f(z))

LIZEDf CCEDf

« The greatest lower bound of f on Dy is called iGDDf (f(x)) and is denoted by :
z€Dy

inf f = inf (f(2))

CEEDf CEEDf

Proposition 4.1

Let f: Dy — R be a real function, then we have the following equivalences:

« f is bounded from above on Dy. < sup f € R and we write : sup f < +o00.
CCEDf l‘eDf

« f is bounded from below on Dy. < ing f € R and we write : ian f > —o0.
zeDy z€Dy

o f is bounded on D;. < supf, inf f € R and we write : sup f < +oo and
zeDy €Dy z€Dy

inf f > —oo0.
CCEDf

C M= () e {1 00 T S

z€D; Ve > 0,3x¢ € Dp; M —e < f(x0)
Ve € Dy m <
e m= inf (f(z)) & v€Dyim < flz)
zeDj Ve > 0,3x¢ € Dy; f(xg) <m+e¢

4.1.6 The composition of two functions

Definition 4.10

Consider f: Dy — R and g : D, — R be two functions such that: f(Dy) C D,. Then
the composition of f and g, denoted by g o f is defined as the function:

Vo € Dy; (go f)(z) = g(f(z))

The below figure shows the representation of composite functions:

f g
Df—>Dg—>]R

]
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Example 4.5

Let f and g be two functions defined by:

f: R —R g: [-1,400o] — R
r —r2+1 r — Vr+1

We have f(R) = [1,+o0] = f(Dy) C D,
So g o f defined as follows:

Ve € R; (go f)(x) = g(f(x)) = Va? +2

4.2 Limits of Functions

4.2.1 Limite finie en un point z,

Definition 4.11

Let f: Dy — R be a real function, xy and [ two numbers (with xy € D or zg ¢ Dy).
We say that f(z) tends to [ when x tends to z iff:

Ve > 0,30 >0,Vx € Dy; |[x —xo| <9 = |f(z) =] <¢

and we write :rli_g:lo flz)=1

Remark 4.3
1. Inequality |x — xo| < 0 <= x €]zg — J, 20 + 0].
2. Inequality |f(z) — 1| <e <= f(x) €|l —e,l +¢].

3. We can replace inequality "<” by "<7” in the definition.

Graphical interpretation:

For any interval of type J =]l — ¢,l + €[ with € > 0, we can find an interval of type I =

|zo — 0,29 + &[, such that the graphical representation of f restricted to I is included in J.

xj-d %t
—_t—

-4 -3 -2 -1 0 1 % 2 3 4

Figure 4.9:



Chapter 04 Limits and continuous functions

Example 4.6

Show that li_)ng(élas +1)=09.
Let € > 0, we have:

[(dz+1) -9 <ecee|dr—8|<ceedlr-2<ce|jr—2/<

= ™

€
Let’s put 6 = 1 we obtain:

Ve>0,35>0(5:i),VweR;|x—2|§5 — |4z +1) -9/ <e

— lim(4dx+1)=9

r—2

Proposition 4.2

If a function f has a limit at xg, then this limit is unique.

By contradiction, suppose that, f has two distinct limits [; and lo. ({1 # l3) en .

1
By setting: ¢ = §|l1 — ly| > 0 because Iy # .

We have:
b /) =
et
tm, f(@) = ts
01(e) > 0,Vz € Dy; |z —xo| <01 = |f(z) — | <¢

- et
3(52(8) > O,VZ' € Df; |$ — ZL‘Q| <y — |f(l‘) — lg| <e

By choosing: § = min(dy, dy) we get:

Vo € Dy v — x| <0 = [f(z) — | <¢
and
Vo € Dy |z —a| <0 = |f(x) =] <e

= Vo € Dy; |[v—zo| <0 = |f(x) = L]+ |f(z) =] < 2¢ (4.1)

According to the triangle inequality we have:
= b =l = f(x) + f(2) = L] < |f(z) = L]+ [f(2) = (4.2)
2 2
(31) and (32) — “1 — lz| <2 = ‘ll — lg‘ < §|l1 — lg‘ = 1< g

So we end up with a contradiction, this means that f admits a unique limit at
point xg.

11
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4.2.2 Left and Right-Hand Limits

Definition 4.12

Let f: Dy — R be a real function, zy and [ be two real numbers. (with zq € Dy or
zo ¢ Dy).

o We say that [ is the left limit of the function f at a point xg iff:
Ve>0,30 >0,V € Dy; g —0 <z <z9g = |f(x)—1I|<e

and we write: lim f(z) =lor lim f(x)=1
xi)zo T—xy

o We say that [ is the right limit of the function f at a point z iff:

Ve>0,30 >0,V € Dy; xp<x<x0+0 = |f(x) -1 <e

and we write: lim flz)=1lor lim f(x)=1

—"sx0 T—T)
Example 4.7

o prove that: lim zcos(1) =0
z—0+t z

We have: ] ]

- < =) <

o cos()] < foleos( )] < [
(a5 cos( )] < 1)
cos(—
s
1
= \xcos(5)| < |z| (4.3)
Let e >0, withd =e. fwehave: 0 <2 <d & 0<zr<e = |z[]<¢
(3.3) = |zcos(l)| <e.
So, Ve >0,30 >0(0=¢),VzeR; 0 <z < = |zcos(2)| <e¢
= lim xcos(2) =0
z—0+t z

o Show that lir(I)l z cos(1) = 0 (Using the same technique as above)
z—0~

12
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0.5

-0.54

_14

Figure 4.10: Graph of the function z cos(2)

Theorem 4.1

Let f: Dy — R be a real function, x¢,! € R (with 2y € Dy or x9 ¢ D). The following
propositions are equivalent

1. xlirglo flz)=1
2. lim f(x)= lim f(z)=1
(E;l’o T—X0
Result:
If we have: lim f(x)# lim f(z) then lim f(z) doesn’t exist.
ccim:o xim’o o

Example 4.8

Let’s consider the function f(x) = m We have:
x
x
1 = lim —— = -1
S )=y
I = lim © =
MRS = g

—> lim f(x)# lim f(x) then lim f(x) doesn’t exist.
z—0t z—0

z—0~

13
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4.2.3 Infinite limit of a function at x,.

Definition 4.13

Let f: Dy — R be a real function and =y € R (with g € Dy or x¢ ¢ Dy)

o It is said that f tends to 400 when x tends to x iff:
VA>0,30 >0,V € Dy; |zt —20| <0 = f(x)> A
and we write xhjg:lo f(z) = +o0
o It is said that f tends to —oo when x tends to x iff:
VA> 0,30 >0,Ve € Dy; |z —x9] <0 = f(z) < -A

and we write Jgrgslo f(z) = —o0

Example 4.9

1
Show that lim — = +o0
z—0 132

Let A > 0 we have:

Lsder<lor_loosse L (:)||<1
= < — &t — TE|——,—F— r| < —
x? A A~ A VA ~ VA
1 1
Putting(;:ﬁthen‘v’xGDf; || <60 = EZA
1 1 .1
— VA>O,E|5>O((5:ﬁ),VxGDf; 2| <6 = ?214 therforeglglg%ﬁz—i-oo

1
Figure 4.11: The graph of a function —
x

14
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4.2.4 Finite limit of a function at —oo and +oo

Definition 4.14

« Let f be a function defined on an interval of type | — 00, a] (i.e | — 00, a] C Dy)
We say that f tends to [ (I € R) when x tends to —oo iff:

Ve >0,3B >0,Vr € Dy; < —B = |f(z) —|<¢
and we write lim flz)=1

« Let f be a function defined on an interval of type [a, +o0[ (i.e. [a, +00[C Dy).
We say that f tends to [ (I € R) when x tends to +oo iff:

Ve >0,3B > 0,Vx € Dy; v > B = |f(z) —l|<c¢

and we write lim f(z) =1

T—+00
Example 4.10

prove that lim

=1 Let € > 0, we have:

T—+00 1 +
T 1 1
—1’§5<:>“§5<:>|x+1|2
z+1 r+1 €
1
r+1>-— x> -—1
€ €
= or <~ or
1 1
r+1< —— r<—-1-—-
€ €
1 . T
Weset B=-—1,ifx > B = —1‘35
€ r+1
So,Ve >0,3B>0(B=-—-1),Vx€ Dy; > B = ’ —I‘SS
€ r+1
= lim =
z—+oo x4+ 1

Figure 4.12: The graph of a function
x

15
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4.2.5 Infinite limit of a function at +oco and —oo

Definition 4.15

« Let f be a function defined on an interval of type [a,+o0[ (i.e. [a,+00[C D). We
say that f tends to +0o0 when x tends to +oo if:

VA>0,3B>0,Ve € Df; x > B = f(z) > A

and we write: lim f(z) = 400
r—+00

o Let f be a function defined on an interval of type | — 00, a] (i.e. | — 00, a] C Dy)
. We say that f tends to 400 when z tends to —oo if:

VA>0,3B>0,Vr € Dy; s <—-B = f(z) > A

and we write: lim f(x) = +o0

e Let f be a function defined on an interval of type [a, +o0[ (i.e. [a,+o0[C Dy)
We say that f tends to —oo when x tends to +oo if:

VA>0,3B>0,Vr € Ds; x > B = f(z) < —-A

and we write: xggloo flz) = —o0
« Let f be a function defined on an interval of type | — 00, a] (i.e. | — 00, a] C Dy)

We say that f tends to —oco when z tends to —oo if:
VA>0,3B >0,V € Dy; x < —B = f(z) < —-A

and we write: lim flz) = -0

Notation: Let R denote the set defined by:
R =RU {400, —00}

R is called the extended real line.

4.2.6 Relationship between limits and sequences

Theorem 4.2

Let f: Dy — R be a real function, zg € R (with zg € Dy or 29 ¢ D;) and | € R. The
following properties are equivalent:

1. lim f(x)=1

Tr—rx0

2. For any sequence (%,)nen in Dy such that: Vn € N;z, # z, and 1_1}1;{1 Tp = Xo,
n o0

then we have n1~1>IJIrloo flzn) =1

16
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« First, we prove implication (1 = 2).
Let € > 0,
0. > 0,Vx € Dy; |[v — x| < 6. = |[f(x) 1] <e

(As Jim () =1
0: >0 = Ing(d:) e N,VneN; n>ng = |z, —x0| <6

(Because lim x, = x¢)
n—+o0o

(3.4) et (35) = |f(z,) =1l <c¢
= Ve>0,Ing e N,VneN; n>ny = |f(z,) 1| <e

= lim_fe) =1

» Next, we prove the implication (2 = 1) by contradiction proof,

converges to [ and lim f(z) £ 1.
T—T0

Vn € N*; | f(z,,) — [| > €), which contradicts our hypothesis.

(4.4)

(4.5)

we assume that for any sequence (z,,)n,eny C Dy that converges to zg we have f(x,)

xli_)rgclo (x) #1 < 3 >0,¥0 > 0,3z" € Dy; 2" —z| <OA|f(z") =1 >¢ (4.6)
1
We set: 0 = g/n e N*
1
(3.6) = Vn e N*, 3z, € Dy; (|z, — x| < ﬁ> A(f(xn) =1 >¢)
So we have found a sequence (z,,)nen+ C Dy that converges to .
(since VYn € Nz, — zo] < ﬁ) et f(x,) doesn’t converge to [ (as

Remark 4.4 If there are two sequences (Tn)nen, (Yn)nen of Dy such that:

lim x, = xg
n—+o00
and A nl_lgloo flzn) # nETOO f(yn)

lim vy, = xg
n——+oo

Then lim f(x) doesn’t exist.
T—To

17
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Example 4.11

R — R
Let f . 1
r > sin(s)
1 1
We have lim sin() doesn’t exist because: If we set z, = — et y, = ————
z—0 v nmw 5+ 2nm
The sequences (T, )nen+, (Yn)nen+ in R* and nl_l)gloo Ty = nl_i}rfoo Yn =0
nl_lgloo flz,) = nETw sin(nm) =0
On the other hand, we have: et
. o o _
S ) =l _sin(G + 2nm) =1
= nl_lgloo flxn) # nl—1>r-|I-1<>o f(Yn)
= lim f(z) doesn’t exist.
T—T0
4.2.7 Limits operations
Proposition 4.3: (The limit of sum of two or more functions)
Let f,g be two functions and x5 € R. Then we have:
Jim f(z) | lim g(z) | lim (f(z) + g(2))
ll eR lQ eR ll + l2
L eR +oo +oo
+00 +00 +00
—00 —00 —00
400 —00 Indeterminate form
—00 +00 Indeterminate form
Let f, g be two functions and x5 € R. Then we have:
lim g(x)
oo Iy >0 o <0 0 +oo oo
lim f(x)
T—x()
1 >0 lim fx)g(xz) =1l1l2 l1lo 0 +oo —o00
T—x()
11 <0 I1lg 1o 0 —oo +o0
0 0 0 0 Indeterminate form Indeterminate form
“+o0 “+oo —o0 Indeterminate form “+o0 —o00
—oo —oo +oo Indeterminate form —o0 “+oo

18
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Proposition 4.5: (The limit of quotient of two functions)

Let f, g be two functions defined on D with g(z) # 0 on D and xy € R. Then we have:
lim g(x)
roro la >0 o <0 ot 0~ +oo —o0
lim f(x)
T—=x(
11 >0 im 2@ _ b b +oo S 0 0
Tz g(x) la lo
l1 1y
1 <0 — — —o0 +oo 0 0
lo lo
ot 0 0 Indeterminate form Indeterminate form 0 0
(O 0 0 Indeterminate form Indeterminate form 0 0
+oo “+o00 —o0 “+oo —o0 IF IF
o oo +oo0 —o +oo IF IF

Remark 4.5 According to the previous propositions, the indeterminate forms are:
oo 0
—. Also we can deduce the other forms which are: 0°, oo®, 1%

+00 — 00, ;, 0

4.2.8 Limit of Composite Functions

Proposition 4.6

Let f: Dy — R, g: D, — R and x, yo,! € R.
Aim f(z) = yo
If we have: et then lim (fog)x)=1
T—To
Jim g(x) =1
Example 4.12
Let ’ " —1 and 7° Ry — R

r

X

lim f(z) = lim <e$ — 1) =

x—0 z—0 x

We have: et

lim g(z) = lim In(z) = 0

r—1
Then lig(l)(go f)(z) =limIn <e ) =0

z—0 x
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4.2.9

Proposition 4.7

1.

Finding Limits: Properties of Limits

If we have: lim f (x) = [ then there exists o > 0 such that the function f is
T—T0

bounded on |xy — «, g + .

If we have: f(z) < g(z) in the neighbourhood of xy and lim fz) =1, lim g(x) =
T—x0 T—T0
lQ then ll S lg.

. The Squeeze Theorem: Let f,g,h be three functions with the following property

f(z) < g(x) < h(x) in the neighbourhood of .
If we have: :rlgglo flz) = zli_}rg() h(x) = [ then zli_}rg() glx) =1

Let f, g two functions which verify f(x) < g(z) in the neighbourhood of x

lim f(z) = 400 then lim g(z) = +oo
T—T0

If we have: ¢ ©7%°
lim g(z) = —oo then lim f(x) = —c0
T—T0 T—x0

Let f be a bounded function in the neighborhood of zy and g a function verifying
lim g(x) = 0 then lim f(z)g(z) = 0.
T—T0 T—x0

Definition 4.16: (important definition)

Let f: Dy — R be a real function. We say that f is defined in the neighborhood of zg
iff: there exists an interval of the following type I =]zy — ¢, 20 + €[ such that: [ C Dy.
(I is an interval with center xy and radius ¢).
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Chapter 04 Limits and continuous functions

4.3 Continuous Functions

4.3.1 Continuity at a point x

Definition 4.17

the point xg iff:
lim f(z) = f(zo)

Tr—xQ

ie Ve>0,36 >0,V €Dy |z —z9| <6 = |f(x) — flxg)] <€

Let f be a function defined in the neighborhood of xy. We say that f is continuous at

Example 4.13

Let f be a function defined by:

Show that f is continuous at zy = 0.
1. Dy =R = f is defined in the neighbourhood of zy, = 0.

2. We'll show that lig(l) f(x)=0.
We have: ]
Vo € R*; |z sin(—[< |z]
x

If we choose 6 = ¢ (with e > 0), we find:
1
Ve>0,30>0(0=¢),Vz €R; [2] <6 = [rsin(|<e
T

= lin% f(z) =0 = f is continuous at
z—

4.3.2 Left and right continuity at a point z

Definition 4.18

« Let f be a function defined on an interval of kind [z¢, x¢ + h[ with A > 0
(i.e.;[xo, xo + h[C Dy). A function f is right continuous at a point z iff:

lim  f(z) = f(zo)

xiﬁco
& Ve>0,30 >0,Ve € Dy; mg<a<zo+6 = |f(z) — f(m)| <e

« Let f be a function defined on an interval of kind [z — h, o[ with A > 0
(i.e.;[wo — h,zo[C Dy). A function f is left continuous at a point z iff:

lim f(z) = f(wo)

Tr—>rx0

&Ve>0,30 >0,V € Dy; zg—0 <z <zg = |f(x) — f(20)] <€
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Chapter 04 Limits and continuous functions

Example 4.14

Let f be a function defined by:

sin(x)

fla)=q ol

1 siz=0

siz#0

1. We'll study the right continuity of f at g =0

« We have Dy =R = f is defined in the right of o =0

sin(z) . sin(z) _ 1)

e lim

xiﬂ] |'T| _xi>0

x
So f is right continuous at z.
2. The continuity of f at the left of zy = 0.

« We have Dy = R = f is defined in the left of 2y = 0.

sint) 14 ()

e lim = lim —M
xiﬂ) ‘.T’ xi>0 'y

So f is not left continuous at xg.

Figure 4.13: Graph of the function f

Theorem 4.3

are equivalent:
1. f is left and right continuous at xg.

2. f is continuous at x.

Let f be a function defined in the neighborhood of xy3. The following two propositions

Remark 4.6 Our example (3.13) shows that f is right continuous at xo = 0 and is not left

continuous at xog = 0. which implies that f is not continuous at ro = 0.
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4.3.3 Continuous extension to a point

Definition 4.19

Let f: Dy — R be a real function and =y € R Such that: 2o ¢ Dy. If lim f(x) =1 €

T—rT0
R.exists, but f(zo) is not defined, we define a new function:

f: Dju{zm} — R

o f(x):{f(w) if = # g

) if x = x

which is continuous at xy. It is called the continuous extension of f to xg.

Example 4.15

Let
fi R — R

sin(x)

r

T

Can we extend the function f to be continuous at zy = 0.

sin () =1 = f has a finite limit at 29 = 0

We have: lir% f(z) = lin%)
g r—r
So f is extendable by continuity at xy = 0 and the extension by continuity of f at zy =0

is defined by: .

f: R — R
sin(z)

ifx#£0
1 ifzx=0

T — f(x):

4.3.4 Operations on continuous functions at z

Theorem 4.4

Let f, g be two continuous functions at a point o € R and A € R. Then:
1. The function |f| is continuous at .

2. The functions Af, f + g and fg are continuous at xg.

3. If g(xg) # 0 then f is continuous at .
g
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Proposition 4.8

Let f: Dy — R and g : D, — R be two functions such that: f(Dy) C D,.

If we have:

f is defined in a neighborhood of xy and continuous at xg
et

g is defined in a neighborhood of yy = f(xg) and continuous at ¥

Then (g o f)(x) is continuous at .

4.3.5 The sequential continuity theorem

Theorem 4.5

Let f: Dy — R be a real function. The following two statements are equivalent:
1. f is continuous at xg.

2. for each sequence (x,,)neny C Dy such that z, — zo, then f(z,) — f(xo).

The proof of this theorem follows from theorem (3.2)

Proposition 4.9

Let f: Dy — R be a real function and zy € Dy.
If f is continuous at zo and f(xg) # 0 then there exists a neighborhood (V) of zy such
that:

VeeV; f(x)#0
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We have f is continuous at z so,

1. f is defined in a neighborhood of xg

< 3n > 0 such that: I =|zg — 1,20 + n[C Dy (4.7)

2. lim f(x) = f(zo)

Tr—x0

& Ve>0,30 >0,Ve € Dy; |x —x9] <6 = |f(z) — f(zo)| < ¢ (4.8)

If we put: € = 3| f(xo)| then:

35> 0,V € Dys |o— o] <6 —> |f(&) = f(wo)] g;f(xo)\

(3.7) = B >0V el: |z—z0| <6 = |f(x) — flwo)| < ;\f(x0)|

— Vi € Infay — 5,20+ 1l 17(2) — f(ao)| < 510 (1.9

Let’s put : V = IN|xg — §, 29 + J], then V is a neighborhood of z.
On the other hand, according to the triangular inequality, we have:

[ (o) = | f (@) < [[f(wo)| = |F ()] < [f (o) = f2)] < ;!f(l‘o)l

(39) = Vo € V| f(@)] - ()] < 51/ @)

1
—> V€ Vi 1f(@)] 2 51 (ao)] £0
So there is a neighbourhood V of xy such that: Vo € V; f(z) # 0.

4.3.6 Continuity over an interval

Definition 4.20

1. f is said to be continuous on an open interval of type |a, b[ iff: it is continuous at
any point on the interval ]a, b].

2. f is said to be continuous on an interval of type [a, 8] iff: it is continuous on |a, b]
and continuous to the right of a and to the left of b.

3. f is said to be continuous on an interval of type ]a,b] iff: it is continuous on |a, b
and continuous to the left of b.

4. f is said to be continuous on an interval of type [a, b[ iff: it is continuous on |a, b]
and continuous to the right of a.
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4.3.7 Uniform continuity

Definition 4.21

Let f: Dy — R be a real function. We say that f is uniformly continuous on D iff:

Ve >0,3(e) > 0,Vz,y € Dy; |z —y| < d(e) = |f(x)— f(y)| <e

Remark 4.7 Note that uniform continuity is a property of the function over the set Dy, while
continuity can be defined at a point xy € Dy. The number 6 depends only on € in the case of

uniform continuity, but in the case of continuity at a point xo, d depends on € and x.

Example 4.16

Show that the function f(x) = /z is uniformly continuous on R.
Solution: Step 01: In this step, we’ll show that:

Ve,y e Ry o +y <o+ yand [Vo— /fyl < \/lz —y|
1. Let z,y € Ry we have: 0 < 2yaz/ly & o +y < c+2/s/y+y & av+y <

(VE+vE) & VETG< IVE+ VIl = Vit 7
SoVa,y € Ry o +y < o+ \/y.

2. Let z,y € R, we have:

(z—y)<l|lz—yl = y+(x—y) <y+|z—y|

= Vo <\y+lz—yl <Vy+/lz—yl

— Vi-vi<lo—yl (4.10)

on the other hand, we have:

—2)<|y—2 = s+ y—2) <v+r—y

= Vy<\Jz+|z—y| <Vr+|r—y
= —\/lr—y| <V -y (4.11)
(3.10) et (3.11) = Va,y € Ry; |V — Y| < \/|z =y

Step 02:
In this step we will show the uniform continuity of the function f(z) = /x
Let € > 0 and z,y € R, we have:

Vz =yl < /lz =yl
Let’s put § = £2 then:
2 -yl <0 = ]z —yl<e = Vo -yl <e

= Ve>0,30>0(0=¢*)Vo,y e Ry; |z —y| <6 = |Vr—y| <e

therefore, f(x) = \/x is uniformly continuous on R,
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Example 4.17

Show that the function f(z) = z? is not uniformly continuous on R.
Solution:
f(x) = 2? is not uniformly continuous on R

&3 >0,¥>0,3r,y€R; |z —y| <A |22 — 3P| > ¢

Let’s put: e =1

Let 6 > 0, we will confirm the existence of z,y € R such that:|z —y| <6 A |22 — y?| > ¢

1
2 1

|22 — 2| > 14:)|x2—x2—x6—152| >1<:)|162+x5| > 1

1 1
Let’s take : y:x—|—§6 = r—y=-0 = |x—y|:§5§5

1 1 1 1
Ifwechoosez:5+i(5, theny:5+i(5+25:5+i5
1
—yl==0<§
=yl =3

|22 —y?| =1+ 62 > 1

1 3 1 v -yl <0
2? — | > 1

= f(z) = 2? is not uniformly continuous on R.

Proposition 4.10

Let f: Dy — R be a real function function, then we have the following implication:

f is uniformly continuous on Dy == f is continuous on Dy

Remark 4.8 The converse is false: a function can be continuous on Dy without being uniformly
continuous on D;. From example (3.16) we have: f(x) = x? is continuous on R but not

uniformly continuous on R.

4.3.8 Theorems about continuous functions

Theorem 4.6: (Heine’s theoem)

Every continuous function on an interval of type [a,b] is uniformly continuous on this
interval.
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In this theorem, we’ll show the following implication:

f is continuous on [a,b] = f is uniformly continuous on [a,b]. By contradiction, we
assume that f is continuous on [a, b] and not uniformly continuous on [a, b].

f is not uniformly continuous on [a, b] <

20, V6 > 0,3z, y € [a,0]; (| —y| < 0) A (1f(x) = f(y)] > €0)

1
Let’s put: 6 = — tq: n € N*
n

1
= Vn € N* 3z, y, € [a,b]; |z, —yn| < - N f(zn) — flyn)|> €0 (4.12)

So we have constructed two sequences (x,,)nen+ and (Y, )nen+ which are included in [a, b].
(Zn)nen+ C [a,b] = (Zn)nen+ is a bounded sequence.

According to bolzano weierstrass’s theorem, there exists a sub-sequence (¢(n))nen+ such
that: lim wy,) =1 with [ € [a,b].

n—-+0o
1
On the one hand we have: [24(m) — Ygm)| < ) — nl_igloo(%(n) — Yp(n)) = 0
L (2o = Yorm)) = 0
So | and = nl_lgloo ys(n) =1
i) = 5
f is continuous at | = In > 0,Vz,y € [a,b]; |z —y| <n = |f(z) — f()| < 30.

The sequences (24(n))nen+ and (ys(n))nen+ converges to !

dng e N*,Vn e Ns n>ng = |2y — | <0 = |[(2gm) — f(D)] < %0
== and
£
I €N Vne N n2n = [yom) — Ul <1 = [f(ysm) — FID] < 30
If we put: n* = max(ng,n1) we get:
x x x * 2e
" e N Vn e Ny n>n" = [f(zom) — (D] + [f(Ysm) — F(D] < ?0
According to the triangular inequality we have:
280
7o) — F )| < 7o) — SO+ | F o) — FD] < 22
. 2e
—> Vn > n" we have: |f(24m) — [ (Wom))| < 70 (4.13)
2e
(3.12) and (3.13) = Vn > n";50 < |f(@owm) — FWew)| < 70

2e0 . .
= gy < > is a contradiction

so the multiplication (f is continuous on [a,b] = f is uniformly continuous on [a, b))
is true.
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Theorem 4.7: (Weirstrass’s theorem)

Let f be a continuous function on [a, b], then:

f is bounded on [a, b]
and

Az, 29 € [a,b] tq:f(x1) = min (f(z)) and f(x2) = max (f(z))

z€[a,b] z€la,b]

(i.e. f is bounded and reaches its bounds on [a, b].)

Figure 4.14: A continuous function on [a, b]
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1. Let’s assume that f is not bounded on [a, b] <
Vn € N*, 3z, € [a,b] tq: |f(z,)| > n (4.14)

So we constructed a sequence (x,)pen+ C [a,0] = (2 )nen+ is bounded.
According to B.W’s theorem there exists a sub-sequence (Zg(n))nen+ Of (Z7)nen
such that:

nl—lgloo Tyn) = L avec | € [a, b]

l € la,b] = f is continuous at | = ngrfoof(x¢(n)) =f(l)eR
(3.14) = Yn e N*; |f(zg(mm)| > d(n) = ngrfoof(%(")) = 400 is a contradiction
—> [ is bounded.
m= it (1) = wi(f([o,b)
2. We put and
M = sup (f(x)) = sup(f([a,b]))

z€la,b]
From the definition of sup and inf we have:

dx* € [a,b]; f(z*) <m+e
Ve > 0, and
€ fa,b]; M —e < f(y")

1
Let’s put: ¢ = —/ n € N*, we get:
n

1
dx,, € [a,b]; f(z,) <m+ -
Vn € N*; and
1
Fyn € [a,0]; M < f(ya) +

So we constructed two sequences (Z,)pen+ and (Y,)nen+ which are included in
[a,b] = (Zn)nen+ and (Y, )nen+ are bounded. According to B.W’s theorem we

have:
(2 p(n) Jnen+ such that:nl_i&loo Ty =/ o € [a, b]
and
(Yo (n) Jnen- such tnat: nEIJIrloo Yon) = B/ B € [a,b]
f is continuous at « —> 1_1)1;{1 f(@gm)) = fla)
a, € [a,b] = and
f is continuous at f = Erf fWomy) = f(B)
1
f(@om) — = <m < fzsm)
n
— Vn € N and Passing to the limits we

f(ya(n)) <M< f(ya(n)) + l

obtain: m = f(a) = 2:gﬁlfb](f(av)) = wrél[zr}ﬂ(f(x)) witqbl a € [a,b].
) = max (f(x)) with g € [a, b]

and M = f(f) = Sl[lpl(f(x)
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Theorem 4.8: (Bolzano-Cauchy)

Let f be a continuous function on the interval [a,b] tq: f(a).f(b) < 0, then there exists
at least ¢ € [a, b] verifying f(c) = 0.

Assume that f(a) < 0et f(b) > 0. Let’s put: F = {x € [a,b]/f(x) <0}.

Since (F' C [a, b)), the set F' is bounded above.

According to the completeness axiom for the real numbers, we have: 3¢ € R; sup(F) = ¢
with a < ¢ <b (since b € Upper(F) and a € F)).

l.c=sup(F) = Ve>0, I € F; c—e<a*<c
Let’s take ¢ = —
n
. 1
= VneN dz,eF;c——<uz,<c (4.15)
n

So we constructed a sequence (z,)pens C F
According to (3.15) 1_131 x, = ¢ (Squeeze theorem).

f is continuous at ¢ = £r+n f(zn) = f(o).
On the other hand, we have: (x,)pens C F = Vn € N*; f(z,) <0 = f(c) <0

h—
2. Let’s consider the sequence y,, = ¢ + i /n € N*.
n
b—c

—— <0 = (Yn)nen+ is decreasing, then:

We have: yp11 — Y = —

VneN, e<y, <yp=0>

—> (Yn)nen+ is a sequence in [a, b] which converges to c.
f is continuous at ¢ = l_1>rJ£1 flyn) = fle).
n o0

On the other hand, we have: Vn € N*; ¢ <y, = f(y,) >0 = f(c) > 0.

Finally, from (1) and (2) we get: 3c € [a,b]; f(c) =0

Example 4.18

Let
f:[0,2nr] — R
x +—— sin(x) + (z — 1) cos(x)

1. The function f(z) is continuous on [0,27] (since f is a sum of two continuous
functions on [0, 27])

2. f(0O)=—land f2r=2r—1>0 = f(0)f(27) <0

According to B.C’s theorem, there exists at least one real ¢ € [0, 27] such that: f(c¢) =0
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Figure 4.15: The graph of f(z) = sin(z) + (x — 1) cos(z) on the interval [0, 27].

Theorem 4.9: (The Intermediate Value Theorem)

Let f be a continuous function on [a, b] we have:
1. If f(a) < f(b) then Vv € [f(a), f(b)], Jc € [a,b] such that:f(c) =~
2. If f(b) < f(a) then Yy € [f(b), f(a)],3c € |a,b] such that:f(c) =~

Proposition 4.11

Let f : I — R be a continuous function on interval I (where [ is an arbitrary interval).
Then f(I) is an interval.

Let y1,y2 € f(I) such that: y; < yo = Fz1,29 € I such that: y; = f(z1) Ay = f(z2).
Let’s put: @ = min(zy,x2) and b = max(z,x). We have: a,b € I.

Let y € [y1,y2] = e € [a,b]; f(c) =y (LV.Th).

We have: [a,b] C I (as [ is an interval) = y = f(c) € f(I).

Yy, y2 € f(I),Vy €R; y € [y1,y2] = y € f(I) = f(I) is an interval.

Remark 4.9 If f is a continuous function on |a,b] then, f(|a,b]) = [m, M]
with m = m[lri](f(a:)) and M = m[aug](f(x))
x€|a, re|a,

4.3.9 Monotonic functions and continuity

Theorem 4.10

Let f: I — R be a function (/ is an interval). If f is strictly monotone on the interval
I, then f is injective on [.
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Let’s show that f is injective. consider xy,x9 € I; 11 # X3
1. Sizy < zyet fis strictly increasing = f(x1) < f(z2) = f(z1) # f(x2).

2. Sixy < 9 et f is strictly decreasing

= [(21) > [(x2) = 1) # [(22)

The same technique is used for x; > .
So Vay, 29 € I; @1 # 29 = f(x1) # f(xe) = f is injective.

Theorem 4.11

Let f : I — R be a function defined and monotone on interval I. Then the following
two statements are equivalent

1. f is continuous on I.

2. f(I) is an interval.

Theorem 4.12: (bijection theorem)

Let f: I — R be a function.
If f is strictly monotone and continuous on I, then

1. f is a bijection from I into J = f(I).

2. The inverse function f~': J = f(I) —> I is strictly monotonic and continuous on
J (and varies in the same direction as f).
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