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2.1 Introduction

This chapter contains the method for constructing the definite (or Riemann) integral of a
function f defined and bounded on an interval of type [a,b] and its fundamental properties.
Geometrically, the notion of the definite integral of a continuous and positive function f on
[a,b] is interpreted as a measure of the portion of the plane lying between (I'y) the graph of the
function f, the x axis and the straight lines x = a, = 0.

Figure 2.1 — Geometrical interpretation of the definite integral of f(z) = x* on B,%}
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2.2 Partitions and Darboux sums

2.2.1 Subdivision of an interval

Definition 2.1

2. zo=aand x, =

A partition of the interval [a,b] is any finite sequence P = {xq,1,...,2,,} of real numbers
satisfying the following conditions:

1. Vi e {1,2,...n}; z; € [a,b]

.a=20<11< ... <Tp_1<xT,=0b

Remark:

. Let P = {xo,x1,....,x,} be a partition of the interval [a,b] then, P contains n + 1 points

(called P partition nodes) and determines n interval [z;_q,2;]/i € {1.....n}

1<i<n

say that P’ is a refinement of P if:

. The real h = max (z; — x;_1) is called the norm of partition P.

Let P = {zg,x1,.....x,} and P" = {x{,2},....,x},} two partitions of the interval [a,b]. We

/ / /
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Figure 2.2 — P = {zg,x1,....,x5} and P' = {z{,2,.....x5} are two partitions of [a,b]
Remark 2.1 In the figure above we have:

e P is a partition of [a,b] w

ith a largest step h

e P’ is also a partition of [a,b] with a largest step b’

We note that: P C P’ and h' < h, so in this case P' is a refinement of P
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Example 2.1

Let P = {zg,x1,...,x, } a partition of [a,b] defined by:

b—a

xk:a—l—k( )/k:(),...,n

In this case, P is called: the uniform partition of [a,b], with h = I’_T"“

2.2.2 Darboux sums

Let f : [a,b] — R be a bounded function on [a,b] (i.e. sup f(x) and ir[lfb] f(z) exist in R) and
z€la,b] z€la,

P = {xg,x1,....,x,} a partition of [a,b].
Define:

my = inf T
K xe[xk_l,ack]f( )

My = sup f(z)

€Ty 1,7k

Definition 2.2

We call

1. Lower Darboux sum associated to f and P the number

k=n

L(f,P) = Z mk(xk - Ik—1)

k=1

2. Upper Darboux sum associated to f and P the number

k=n

U(f.P) =Y My(xk — x4-1)

k=1
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(a) L(f,P) for f(z) =1 and P = {},1,3,2,3 (b) U(f,P) for f(z) =} and P ={3,1,5,2,3

Figure 2.3 — Darboux sums

2.2.3 Properties of Darboux sums

Proposition 2.1

Let f : [a,b] — R be a bounded function, Darboux sums satisfy the following properties:

1. for every partition P of [a,b]: L(f,P) < U(f,P).

2. let P and P’ be two partitions of [a,b] with P C P’, then:

U(f,p)=U(f,P')
L(f,P) < L(f,P)

3. If P and P’ are any two partitions of [a,b], then
L(f,P) <U(f.F)

4. Let P be a partition of [a,b], m = ir[lfb] f(z) and M = sup f(z), then:

z€la, z€[a,b]

m(b— a) < L(f,P) < U(f,P) < M(b - a)
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1. Let’s prove (3).
We have P and P’ are two partitions of [a,b] then, P U P’ is a partition of [a,b]. So
it is a refinement of P and P’. From (1) and (2) we get:

L(f,P) < L(f,PUP) <U(f,PUP)<U(f.P)
= L(f.P) < U(},P)

2. Proof of (4).

(a) Let P = {xg,z1,...,x,} be a partition of [a,b], we have:

Vk e {1,..,n}; [zk,2p-1] Clah) = m= inf f(x) < inf f(z) =my

z€la,b] €Tk, TK—1]

— Vk e {l,..n}; m(xx —xp_1) < mp(rp — Tk_1)

Therefore,
k=n k=n
> mlzy — zp1) <Y mg(xg — 2p-1)
k=1 k=1
k=n
= m ) (wx —1-1) < L(f,P) = m(b—a) < L(f,P)
k=1
k=n
(Since Y (zy — x4-1) =b—a)
k=1

(b) From (1) we have: L(f,P) < U(f,P)
(¢) We have: U(f,P) < M(b— a) the proof is similar to (a).

Notations: Let f : [a,b] — R be a bounded function
1. The set of all partitions of [a,b] is denoted by Siap).

2. We denote by Uy (f) the set consisting of all upper Darboux sums associated to f
obtained with all possible partitions of [a,b] i.e.:

U[a,b](f) = {U(f,P)/P S S[a,b]}

3. We denote by Lip(f) the set consisting of all lower Darboux sums associated to f
obtained with all possible partitions of [a,b] i.e.:

Liay(f) ={L(f,P)/P € Siap}

Proposition 2.2

If f is a bounded function on [a,b] then:

sup (Liay(f)) < inf (Upsy(£))
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1. The sets Ly (f) and Upp(f) are non-empty.

2. We have:
VP,P" € Siu; L(f,P) < U(f,P")

—> The elements of U}, (f) are upper bounds of L, (f)
— YU(f.P') € Uy (f); sup (L (f)) < U(S.P)
So sup (L[a,b](f)) is a lower bound of U, (f)

= sup (L[a,b](f>> < inf (U[a,b](f))

2.3 Integrable functions

2.3.1 Lower and upper integral of f on [a,b].

Definition 2.3

Let f : [a,b] — R be a bounded function

« We denote by U(f) the upper integral of f on [a,b], defined by:
UL(f) = inf (Uiap(f))
« We denote by L2(f) the lower integral of f on [a,b], defined by:

Lg(f) = sup (L[a,b](f))

2.3.2 Riemann integral

Definition 2.4

Let f: [a,b] = R be a bounded function. We say that f is Riemann integrable on [a,b]
if:

Ua(f) = La(f)
in this case the common value of U’(f) and L%(f) is called the definite integral (Riemann
integral) of f on [a,b] and is denoted by

fb f(z) da

We denote by R([a,b]) the set of integrable functions on [a,b].

Remarks:

1. a and b are called the bounds of the integral.
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b
2. The number J f(z)dz does not depend on x , it depends on a and b i.e. we can replace

x by any other letter y.t,u....

ff(:v) dz = fbf(y) dy = be(t) dt

Example 2.2

Let f be a function defined by:

Ve eR; f(x)=c withceR

1. Show that f is Riemann integrable on [a,b] with a,b € R.

b
2. Determine ff(x) dz

Solution:

1. Let P = {x,21,...,5,} € Spap (& partition of [a,b]), we have:

mr = inf f(zx)=c
T€[zp—1,7]

Vi € {1,2,...,n}; and
M, = sup f(zx)=c

TE[TK—1,Tk]

k=n k=n

U(f,P)= Z_: My (z — xp—1) = ¢ Z(wk —x_1) =c(b—a)
— and ) B
k=n k=n

L(f,P) = Z_: my(Tp — xp_1) = ¢ Z_:(xk —xp_1) =c(b—a)

\V/U<f7P) € U[a,b](f); U(fab) = C(b - CL)
- and
VL(f,P) € Lay(f); L(f.b) = c(b—a)

U(f) = inf (Ui (1)) = c(b - a)
= and
L(f) = sup (Liayy(f)) = c(b — a)
= Ua(f) = Ly(f)
so f is Riemann integrable on [a,b].
2. We have f is integrable on [a,b] so

b

UL = L) = [ Flo)de = j cdz = c(b— a)

a
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Let f be a function defined by:

1 ifreQ
J(x) = {0 if z € R\Q

Definite integrals

Show that f is not Riemann integrable on any interval [a,b].

Solution:

Let P = zo,21,...,, € S[ay (a partition of [a,b]), we have:

my = _inf f(z)=0

TE[TRp_1,Tk]

Vk € {1,2,...,n}; and
My= sup f(z)=1

TE[TR—_1,Tk]

U(f,P) = §Mk(l‘k - £L‘k_1) = i(l’k - xk—l) = (b — CL)

— and

k=n k=n
L(f,P) = Z mk(.ilﬁk — .CEk_l) =0 Z(a:k - xk—l) =0
k=1 k=1

VU(f,P) € Uy (f); U(f,0) = (b—a)
- and

VL(f,P) S L[a,b}(f); L(fvb) =0

Ub(f) = inf (Uiay(f)) = (b— a)

— and

L(f) = sup (L (1) = 0

= U,(f) # Lo(f)

so f is not Riemann integrable on [a,b].

Let f : [a,b] = R be a bounded function. For f to be integrable on [a,b] it is necessary,
and sufficient, that

Ve > 03P € Sy U(fod) — L(f,d) < <
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1. We assume that f is integrable on [a,b] so

Ub(f Jf
Ub( ) = inf{U(f,P)/P € S[a,b]}
Lb(f) = sup{L(f,P)/P € S[a,b]}

such that: {

Ve > 0: 3Py € Sy; U(f,P1) < UL(f)+ ¢
’ EIPQES[a,b]; Lg(f)_%<L(faP2)

Let’s put P = P, U P,, then P, C d and P, C d, from the properties of Darboux
sums we have:

U(f.p) <U(f.h)
A

(f.P) <Us(f

= Ve > 0,3d € Sja; {Lb(f) - ()f %

By summing, we obtain:
Ve > 0,dP € S[a,b]; U(f,P)— L(f,P) <e
Therefore, (f € R([a,b]) = Ve > 0,3P € Sjuy; U(f,P) — L(f,P) <¢) is true.

2. From proposition (2.2) we have: LY(f) < UL(f).
We Assume that Ve > 0,3P € Sjoy; U(f,P) — L(f,.P) <¢

= Ve > O,HPE S[a,b}; U(f7P) —€< L(f7P> < U(f7P)

So U(f.P) = sup Ly (f)) = LE(f)-
On the other hand, we have:

Ve > 073P € S[a,b]; L(fap) < U<f7P) < L(f7P) +e

So L(f.P) = inf (Uy(f)) = ULf) = UL <L},
Finally, we obtain (U? < Lb) A (L2 < Ub) = U’ = L%, So f € R([a,b]). So the

inverse implication is true.
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2.3.3 Riemann sums

Definition 2.5

Let f : [a,b] = R be a bounded function, P = {z¢,z1,...,x,} a partition of [a,b] and
aq,0,...,a, are real numbers such that: Vi = 1,n; «; € ;1,24
Define: .

S(f.P) = Zf(%’)(ifi —Ti1)

i=1
The number S(f,P) is called the Riemann sum corresponds to the partition P and the

point system {aq,qo,...,a,, }

2 |
1 |
‘ >
Lo L QT3 T34 X
—14

Figure 2.4 — Riemann sum of f(r) =
point system {aq,00,03,04}

L corresponds to the partition P = {xy,x1,73,74} and the

Theorem 2.2

Let f be an integrable function on [a,b] then:

b
| #te)do =t s(7.p)

a

Remark 2.2 P = {xy,x1,...,x,} is a partition of [a,b] with a norm h.

10
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Example 2.4

Assuming P = {x¢,21,...,x,} the uniform partition of [a,b] defined by:

b—a

n

fronw= o () E (e (5)

b—
xk—a—l—k( )/kE{O,l, n} with h =

then:

2.3.4 [Examples of integrable functions

Theorem 2.3

Any monotonic function f on [a,b] is integrable on [a,b].

In our proof, we assume that f is increasing (the same technique is used if f is decreasing).
Let P = xg,x1,...,x, be a partition of [a,b] with its norm h.
We have f is then increasing:

my = inf  f(x) = f(xp_1)
TE[xp—_1,Tk)

Vi € {1,2...,n}; My= sup  f(z)= F(zp)
T€[TK_1,Tk]
U(f.d) = L(fd) = 3 (Fr — Flros)@n— 201) < B> (Flan — flans)
k=1 k=1

IN

h(f(b) — f(a))

Let € > 0, if we choose a partition with a norm A < , we get:

£
f(b) = f(a)
Ve > 03P € Sy =— U(f,P)—L(f,P)<ce¢

Therefore f is integrable on [a,b].

Theorem 2.4

Any continuous function on [a,b] is integrable on [a,b].

11
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Example 2.5

1. Show that f(z) = e” is integrable on [a,b].

2. Using the Riemann sum, show that:

1

Jexdx:e—l

0

Solution:

1. According to the previous theorem f(z) = e” is continuous on [0,1], so f is integrable on
[0,1]

2. If we choose the following uniform partition of [0,1]:

P = {xy,r1,...,x, } such that: z, = —/k = I,nand h =

According to the Riemann sum corresponds to P we have:

[ roa= (23 0)

12
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2.4 Properties of definite integrals

Proposition 2.3

Let f and g be two functions integrable on the interval [a,b], then we have:

1.

@

ff(x)dx:()

ff(x) dz

a

< [ 1@ s

a

If we have: Vz € [a,b]; f(z) > 0 then:

. If we have: Vz € [a,b]; f(z) < g(z) then:

. For all real number ¢ €]a,b[ the function f is intégrable on [a,c] and [¢,b], and in

addition:

b c b
Jf(x) dr = ff(x) dxr + ff@) dz  (Chasles relation)

For all real numbers «,5 € R the function af + B¢ is intégrable on [a,b] and

b b

Jb(af(x) + Bg(x)) dr = o f fz)dx + 6[9@) dz

a

(J f(x)g(z) dx) < (J f2(z) dx) (J g*(x) da:) ( Cauchy-Schwarz inequality )

13
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2.4.1 Theorem of the Mean for Integrals

Theorem 2.5: Mean Theorem

Let f and g be two integrable functions on [a,b], with ¢ having a constant sign in [a,b]
(i.e. g > 0or g <0 on [a,b]), then there exists a number u € [m,M] such that:

fﬂ@ﬂ@dxzufﬂﬂdw

With m = mf f( )and M = sup f(x).

z€[a,b z€[a,b]
Moreover, if f is continuous, there exists £ € [a,b] such that: p = f(&).

Remark 2.3 If g =1, then :

b
du € [m,M]; ff pu(b—a)
with: m = mf f( ) and M = sup f(x).
z€la,b z€a,b]
Example 2.6
3
Let I = f cos?(z) dx. Show that there exists a number p € [0,1] such that:
3
I=pu J cos(x) dx
-3
Solution:

let’s put f(z) = g(x) = cos(z), we have:

and
m= inf f(z)=0and M = sup f(z)=1
v€[-3,3] ve[-Z,3]

According to the mean theorem

duemM]; I=p J cos(z)de = Fuel0,1]; I =p J cos(x) dx

14
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2.5 Antiderivative and definite integral as a function of its up-

per bound

Definition 2.6

Let f be an integrable function on [a,b], we define:

O(z) = J F(t)dt

We call ®(x) the integral of f defined as a function of its upper bound.

Proposition 2.4

Let f be an integrable function on [a,b] and ®(z) = Jf(t)dt, then:

a

1. ® is continuous on [a,b]

2. If f is continuous on [a,b], then @ is differentiable on [a,b] and:

Va € [ab]; '(x) = f(x)

2.5.1 Newton-Leibnitz theorem

Theorem 2.6

Let ® be any antiderivative of the continuous function f on [a,b]. Then:

Example 2.7

1

1
C t —Fd
0mpuej1+$2 x

0
According to the previous theorem, we have:

1

1
f T2 dx = [arctan(x)]é = arctan(1) — arctan(0) = %

0

15
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2.6 General integration techniques

2.6.1 Variable change method for definite integral

Theorem 2.7

Let f be a continuous function on [a,b] and ® : [a,3] — [a,b] be function € C'([a,f])
such that: ®(«) = a and ®(5) = b, then:

b B
| rarae = [ remeo

We put:
r=>0() = da=d(t)dt

For the bounds of the integral we have:

Example 2.8

1
Compute [ = J V1—a22dx
21

Solution: We put:
x =sin(t) = da = cos(t)dt

r=-1= t=-3

™

Then:
e

Replacing in the integral gives:

I= J mcos(t) dt = f | cos(t)|cos(t)dt = f cos?(t) dt
—3 —3 —3
On the other hand, we have: cos?(t) = 1 cos(2t) + 1
3 .
= [ = J(; cos(2t) + ;) dt = ; B sin(2t) + t]zg = g

16
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2.6.2 Integration by part in a definite integral

Theorem 2.8
Let f and g be two functions differentiable on [a,b] then

Example 2.9

Compute I = chos(x) dz
0

w3

Solution: We put
fl@)=z— fl(z) =1

g'(x) = cos(z) — g(x) = sin(z)

by applying the integration by parts formula, we obtain

:szos( )dz = [xsin(x § J
. jus s m 1
— [ = [zsin(z)]|§ — [cos(x)]§ = w3 2

17



