Definite integrals

Contents

2.1 Introduction . 1
2.2 Partitions and Darboux sums . 2
2.3 Integrable functions . 6
2.4 Properties of definite integrals . 13
2.5 Antiderivative and definite integral as a function of its upper bound 15
2.6 General integration techniques . 16

2.1 Introduction

This chapter contains the method for constructing the definite (or Riemann) integral of a function f defined and bounded on an interval of type $[a, b]$ and its fundamental properties. Geometrically, the notion of the definite integral of a continuous and positive function f on $[a, b]$ is interpreted as a measure of the portion of the plane lying between $\left(\Gamma_{f}\right)$ the graph of the function f, the x axis and the straight lines $x=a, x=b$.

Figure 2.1 - Geometrical interpretation of the definite integral of $f(x)=x^{2}$ on $\left[\frac{1}{2}, \frac{3}{2}\right]$

2.2 Partitions and Darboux sums

2.2.1 Subdivision of an interval

Definition 2.1

A partition of the interval $[a, b]$ is any finite sequence $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of real numbers satisfying the following conditions:

1. $\forall i \in\{1,2, \ldots, n\} ; x_{i} \in[a, b]$
2. $x_{0}=a$ and $x_{n}=b$
3. $a=x_{0}<x_{1}<\ldots .<x_{n-1}<x_{n}=b$

Remark:

1. Let $P=\left\{x_{0}, x_{1}, \ldots ., x_{n}\right\}$ be a partition of the interval $[a, b]$ then, P contains $n+1$ points (called P partition nodes) and determines n interval $\left[x_{i-1}, x_{i}\right] / i \in\{1 \ldots, n\}$
2. The real $h=\max _{1 \leq i \leq n}\left(x_{i}-x_{i-1}\right)$ is called the norm of partition P.
3. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and $P^{\prime}=\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ two partitions of the interval $[a, b]$. We say that P^{\prime} is a refinement of P if:

$$
\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subset\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}
$$

Figure 2.2-P $=\left\{x_{0}, x_{1}, \ldots, x_{5}\right\}$ and $P^{\prime}=\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{9}^{\prime}\right\}$ are two partitions of $[a, b]$

Remark 2.1 In the figure above we have:

- P is a partition of $[a, b]$ with a largest step h
- P^{\prime} is also a partition of $[a, b]$ with a largest step h^{\prime}

We note that: $P \subset P^{\prime}$ and $h^{\prime}<h$, so in this case P^{\prime} is a refinement of P

Example 2.1

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ a partition of $[a, b]$ defined by:

$$
x_{k}=a+k\left(\frac{b-a}{n}\right) / k=0, \ldots, n
$$

In this case, P is called: the uniform partition of $[a, b]$, with $h=\frac{b-a}{n}$

2.2.2 Darboux sums

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function on $[a, b]$ (i.e. $\sup _{x \in[a, b]} f(x)$ and $\inf _{x \in[a, b]} f(x)$ exist in \mathbb{R}) and $P=\left\{x_{0}, x_{1}, \ldots ., x_{n}\right\}$ a partition of $[a, b]$.
Define:

$$
\left\{\begin{array}{l}
m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x) \\
M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)
\end{array} \quad \text { with } \quad k=1, \ldots, n\right.
$$

Definition 2.2

We call

1. Lower Darboux sum associated to f and P the number

$$
L(f, P)=\sum_{k=1}^{k=n} m_{k}\left(x_{k}-x_{k-1}\right)
$$

2. Upper Darboux sum associated to f and P the number

$$
U(f, P)=\sum_{k=1}^{k=n} M_{k}\left(x_{k}-x_{k-1}\right)
$$

Figure 2.3 - Darboux sums

2.2.3 Properties of Darboux sums

Proposition 2.1

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, Darboux sums satisfy the following properties:

1. for every partition P of $[a, b]: L(f, P) \leq U(f, P)$.
2. let P and P^{\prime} be two partitions of $[a, b]$ with $P \subset P^{\prime}$, then:

$$
\left\{\begin{array}{l}
U(f, P) \geq U\left(f, P^{\prime}\right) \\
L(f, P) \leq L\left(f, P^{\prime}\right)
\end{array}\right.
$$

3. If P and P^{\prime} are any two partitions of $[a, b]$, then

$$
L(f, P) \leq U\left(f, P^{\prime}\right)
$$

4. Let P be a partition of $[a, b], m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$, then:

$$
m(b-a) \leq L(f, P) \leq U(f, P) \leq M(b-a)
$$

Proof

1. Let's prove (3).

We have P and P^{\prime} are two partitions of $[a, b]$ then, $P \cup P^{\prime}$ is a partition of $[a, b]$. So it is a refinement of P and P^{\prime}. From (1) and (2) we get:

$$
\begin{gathered}
L(f, P) \leq L\left(f, P \cup P^{\prime}\right) \leq U\left(f, P \cup P^{\prime}\right) \leq U\left(f, P^{\prime}\right) \\
\Longrightarrow L(f, P) \leq U\left(f, P^{\prime}\right)
\end{gathered}
$$

2. Proof of (4).
(a) Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$, we have:

$$
\begin{gathered}
\forall k \in\{1, \ldots, n\} ;\left[x_{k}, x_{k-1}\right] \subset[a, b] \Longrightarrow m=\inf _{x \in[a, b]} f(x) \leq \inf _{x \in\left[x_{k}, x_{k-1}\right]} f(x)=m_{k} \\
\Longrightarrow \forall k \in\{1, \ldots, n\} ; m\left(x_{k}-x_{k-1}\right) \leq m_{k}\left(x_{k}-x_{k-1}\right)
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
\sum_{k=1}^{k=n} m\left(x_{k}-x_{k-1}\right) \leq \sum_{k=1}^{k=n} m_{k}\left(x_{k}-x_{k-1}\right) \\
\Longrightarrow m \sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right) \leq L(f, P) \Longrightarrow m(b-a) \leq L(f, P)
\end{gathered}
$$

(Since $\sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right)=b-a$)
(b) From (1) we have: $L(f, P) \leq U(f, P)$
(c) We have: $U(f, P) \leq M(b-a)$ the proof is similar to (a).

Notations: Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function

1. The set of all partitions of $[a, b]$ is denoted by $S_{[a, b]}$.
2. We denote by $U_{[a, b]}(f)$ the set consisting of all upper Darboux sums associated to f obtained with all possible partitions of $[a, b]$ i.e.:

$$
U_{[a, b]}(f)=\left\{U(f, P) / P \in S_{[a, b]}\right\}
$$

3. We denote by $L_{[a, b]}(f)$ the set consisting of all lower Darboux sums associated to f obtained with all possible partitions of $[a, b]$ i.e.:

$$
L_{[a, b]}(f)=\left\{L(f, P) / P \in S_{[a, b]}\right\}
$$

Proposition 2.2

If f is a bounded function on $[a, b]$ then:

$$
\sup \left(L_{[a, b]}(f)\right) \leq \inf \left(U_{[a, b]}(f)\right)
$$

Proof

1. The sets $L_{[a, b]}(f)$ and $U_{[a, b]}(f)$ are non-empty.
2. We have:

$$
\forall P, P^{\prime} \in S_{[a, b]} ; \quad L(f, P) \leq U\left(f, P^{\prime}\right)
$$

\Longrightarrow The elements of $U_{[a, b]}(f)$ are upper bounds of $L_{[a, b]}(f)$

$$
\Longrightarrow \forall U\left(f, P^{\prime}\right) \in U_{[a, b]}(f) ; \sup \left(L_{[a, b]}(f)\right) \leq U\left(f, P^{\prime}\right)
$$

So $\sup \left(L_{[a, b]}(f)\right)$ is a lower bound of $U_{[a, b]}(f)$

$$
\Longrightarrow \sup \left(L_{[a, b]}(f)\right) \leq \inf \left(U_{[a, b]}(f)\right)
$$

2.3 Integrable functions

2.3.1 Lower and upper integral of f on $[a, b]$.

Definition 2.3

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function

- We denote by $U_{a}^{b}(f)$ the upper integral of f on $[a, b]$, defined by:

$$
U_{a}^{b}(f):=\inf \left(U_{[a, b]}(f)\right)
$$

- We denote by $L_{a}^{b}(f)$ the lower integral of f on $[a, b]$, defined by:

$$
L_{a}^{b}(f):=\sup \left(L_{[a, b]}(f)\right)
$$

2.3.2 Riemann integral

Definition 2.4

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. We say that f is Riemann integrable on $[a, b]$ if:

$$
U_{a}^{b}(f)=L_{a}^{b}(f)
$$

in this case the common value of $U_{a}^{b}(f)$ and $L_{a}^{b}(f)$ is called the definite integral (Riemann integral) of f on $[a, b]$ and is denoted by

$$
\int_{a}^{b} f(x) \mathrm{d} x
$$

We denote by $\mathcal{R}([a, b])$ the set of integrable functions on $[a, b]$.

Remarks:

1. a and b are called the bounds of the integral.
2. The number $\int_{a}^{b} f(x) \mathrm{d} x$ does not depend on x, it depends on a and b i.e. we can replace x by any other letter $y, t, u \ldots$

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(y) \mathrm{d} y=\int_{a}^{b} f(t) \mathrm{d} t
$$

Example 2.2

Let f be a function defined by:

$$
\forall x \in \mathbb{R} ; f(x)=c \quad \text { with } c \in \mathbb{R}
$$

1. Show that f is Riemann integrable on $[a, b]$ with $a, b \in \mathbb{R}$.
2. Determine $\int_{a}^{b} f(x) \mathrm{d} x$

Solution:

1. Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \in S_{[a, b]}$ (a partition of $[a, b]$), we have:

$$
\begin{gathered}
\forall k \in\{1,2, \ldots, n\} ;\left\{\begin{array}{c}
m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=c \\
\text { and } \\
M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=c
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
U(f, P)=\sum_{k=1}^{k=n} M_{k}\left(x_{k}-x_{k-1}\right)=c \sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right)=c(b-a) \\
\text { and } \\
L(f, P)=\sum_{k=1}^{k=n} m_{k}\left(x_{k}-x_{k-1}\right)=c \sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right)=c(b-a)
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
\forall U(f, P) \in U_{[a, b]}(f) ; U(f, b)=c(b-a) \\
\quad \Longrightarrow L(f, P) \in L_{[a, b]}(f) ; L(f, b)=c(b-a)
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
U_{a}^{b}(f)=\inf \left(U_{[a, b]}(f)\right)=c(b-a) \\
\operatorname{and} \\
L_{a}^{b}(f)=\sup \left(L_{[a, b]}(f)\right)=c(b-a) \\
\Longrightarrow U_{a}^{b}(f)=L_{a}^{b}(f)
\end{array}\right.
\end{gathered}
$$

so f is Riemann integrable on $[a, b]$.
2. We have f is integrable on $[a, b]$ so

$$
U_{a}^{b}(f)=L_{a}^{b}(f)=\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} c \mathrm{~d} x=c(b-a)
$$

Example 2.3

Let f be a function defined by:

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Show that f is not Riemann integrable on any interval $[a, b]$.

Solution:

Let $P=x_{0}, x_{1}, \ldots, x_{n} \in S_{[a, b]}$ (a partition of $[a, b]$), we have:

$$
\begin{gathered}
\forall k \in\{1,2, \ldots, n\} ;\left\{\begin{array}{c}
m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=0 \\
\text { and } \\
M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=1
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
U(f, P)=\sum_{k=1}^{k=n} M_{k}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right)=(b-a) \\
\text { and } \\
L(f, P)=\sum_{k=1}^{k=n} m_{k}\left(x_{k}-x_{k-1}\right)=0 \sum_{k=1}^{k=n}\left(x_{k}-x_{k-1}\right)=0
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
\forall U(f, P) \in U_{[a, b]}(f) ; U(f, b)=(b-a) \\
\text { and } \\
\forall L(f, P) \in L_{[a, b]}(f) ; L(f, b)=0
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{c}
U_{a}^{b}(f)=\inf \left(U_{[a, b]}(f)\right)=(b-a) \\
\text { and } \\
L_{a}^{b}(f)=\sup \left(L_{[a, b]}(f)\right)=0
\end{array}\right. \\
\Longrightarrow U_{a}^{b}(f) \neq L_{a}^{b}(f)
\end{gathered}
$$

so f is not Riemann integrable on $[a, b]$.

Theorem 2.1

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. For f to be integrable on $[a, b]$ it is necessary, and sufficient, that

$$
\forall \varepsilon>0, \exists P \in S_{[a, b]} ; U(f, d)-L(f, d)<\varepsilon
$$

1. We assume that f is integrable on $[a, b]$ so

$$
\begin{gathered}
U_{a}^{b}(f)=L_{a}^{b}(f)=\int_{a}^{b} f(x) \mathrm{d} x \\
\text { such that: }\left\{\begin{array}{l}
U_{a}^{b}(f)=\inf \left\{U(f, P) / P \in S_{[a, b]}\right\} \\
L_{a}^{b}(f)=\sup \left\{L(f, P) / P \in S_{[a, b]}\right\}
\end{array}\right.
\end{gathered}
$$

So

$$
\forall \varepsilon>0 ; \begin{cases}\exists P_{1} \in S_{[a, b]} ; & U\left(f, P_{1}\right)<U_{a}^{b}(f)+\frac{\varepsilon}{2} \\ \exists P_{2} \in S_{[a, b]} ; & L_{a}^{b}(f)-\frac{\varepsilon}{2}<L\left(f, P_{2}\right)\end{cases}
$$

Let's put $P=P_{1} \cup P_{2}$, then $P_{1} \subset d$ and $P_{2} \subset d$, from the properties of Darboux sums we have:

$$
\begin{array}{r}
\left\{\begin{array}{c}
U(f, P) \leq U\left(f, P_{1}\right) \\
\wedge \\
L\left(f, P_{2}\right) \leq L(f, P)
\end{array}\right. \\
\Longrightarrow \forall \varepsilon>0, \exists d \in S_{[a, b]} ;\left\{\begin{array}{l}
U(f, P)<U_{a}^{b}(f)+\frac{\varepsilon}{2} \\
L_{a}^{b}(f)-\frac{\varepsilon}{2}<L(f, P)
\end{array}\right.
\end{array}
$$

By summing, we obtain:

$$
\forall \varepsilon>0, \exists P \in S_{[a, b]} ; U(f, P)-L(f, P)<\varepsilon
$$

Therefore, $\left(f \in \mathcal{R}([a, b]) \Longrightarrow \forall \varepsilon>0, \exists P \in S_{[a, b]} ; U(f, P)-L(f, P)<\varepsilon\right)$ is true.
2. From proposition (2.2) we have: $L_{a}^{b}(f) \leq U_{a}^{b}(f)$.

We Assume that $\forall \varepsilon>0, \exists P \in S_{[a, b]} ; U(f, P)-L(f, P)<\varepsilon$

$$
\Longrightarrow \forall \varepsilon>0, \exists P \in S_{[a, b]} ; U(f, P)-\varepsilon<L(f, P) \leq U(f, P)
$$

So $U(f, P)=\sup \left(L_{[a, b]}(f)\right)=L_{a}^{b}(f)$.
On the other hand, we have:

$$
\forall \varepsilon>0, \exists P \in S_{[a, b]} ; L(f, p) \leq U(f, P)<L(f, P)+\varepsilon
$$

So $L(f, P)=\inf \left(U_{[a, b]}(f)\right)=U_{a}^{b}(f) \Longrightarrow U_{a}^{b} \leq L_{a}^{b}$.
Finally, we obtain $\left(U_{a}^{b} \leq L_{a}^{b}\right) \wedge\left(L_{a}^{b} \leq U_{a}^{b}\right) \Longrightarrow U_{a}^{b}=L_{a}^{b}$, So $f \in \mathcal{R}([a, b])$. So the inverse implication is true.

2.3.3 Riemann sums

Definition 2.5

Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function, $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ a partition of $[a, b]$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are real numbers such that: $\forall i=\overline{1, n} ; \alpha_{i} \in\left[x_{i-1}, x_{i}\right]$
Define:

$$
S(f, P)=\sum_{i=1}^{n} f\left(\alpha_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

The number $S(f, P)$ is called the Riemann sum corresponds to the partition P and the point system $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$

Figure 2.4 - Riemann sum of $f(x)=\frac{1}{x}$ corresponds to the partition $P=\left\{x_{0}, x_{1}, x_{3}, x_{4}\right\}$ and the point system $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$

Theorem 2.2

Let f be an integrable function on $[a, b]$ then:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{h \rightarrow 0} S(f, P)
$$

Remark 2.2 $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ with a norm h.

Example 2.4

Assuming $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ the uniform partition of $[a, b]$ defined by:

$$
x_{k}=a+k\left(\frac{b-a}{n}\right) / k \in\{0,1, \ldots, n\} \text { with } h=\frac{b-a}{n}
$$

then:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow+\infty}\left(\frac{b-a}{n}\right) \sum_{k=1}^{n} f\left(a+k\left(\frac{b-a}{n}\right)\right)
$$

2.3.4 Examples of integrable functions

Theorem 2.3

Any monotonic function f on $[a, b]$ is integrable on $[a, b]$.

Proof

In our proof, we assume that f is increasing (the same technique is used if f is decreasing). Let $P=x_{0}, x_{1}, \ldots, x_{n}$ be a partition of $[a, b]$ with its norm h.
We have f is then increasing:

$$
\begin{array}{r}
\forall k \in\{1,2 \ldots, n\} ;\left\{\begin{array}{l}
m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=f\left(x_{k-1}\right) \\
M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x)=f\left(x_{k}\right)
\end{array}\right. \\
\Longrightarrow U(f, d)-L(f, d)=\sum_{k=1}^{n}\left(f \left(x_{k}-f\left(x_{k-1}\right)\left(x_{k}-x_{k-1}\right) \leq h \sum_{k=1}^{n}\left(f \left(x_{k}-f\left(x_{k-1}\right)\right.\right.\right.\right. \\
\leq h(f(b)-f(a))
\end{array}
$$

Let $\varepsilon>0$, if we choose a partition with a norm $h<\frac{\varepsilon}{f(b)-f(a)}$, we get:

$$
\forall \varepsilon>0, \exists P \in S_{[a, b]} \Longrightarrow U(f, P)-L(f, P)<\varepsilon
$$

Therefore f is integrable on $[a, b]$.

Theorem 2.4

Any continuous function on $[a, b]$ is integrable on $[a, b]$.

Example 2.5

1. Show that $f(x)=e^{x}$ is integrable on $[a, b]$.
2. Using the Riemann sum, show that:

$$
\int_{0}^{1} e^{x} \mathrm{~d} x=e-1
$$

Solution:

1. According to the previous theorem $f(x)=e^{x}$ is continuous on $[0,1]$, so f is integrable on [0,1]
2. If we choose the following uniform partition of $[0,1]$:

$$
P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \text { such that: } x_{k}=\frac{k}{n} / k=\overline{1, n} \text { and } h=\frac{1}{n}
$$

According to the Riemann sum corresponds to P we have:

$$
\int_{0}^{1} f(x) \mathrm{d} x=\lim _{n \rightarrow+\infty}\left(\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\right)
$$

$$
\begin{aligned}
\Longrightarrow \int_{0}^{1} e^{x} \mathrm{~d} x=\lim _{n \rightarrow+\infty}\left(\frac{1}{n} \sum_{k=1}^{n} e^{\frac{k}{n}}\right) & =\lim _{n \rightarrow+\infty}\left(\frac{1}{n}\left(e^{\frac{1}{n}}+e^{\frac{2}{n}}+\ldots .+e^{\frac{n}{n}}\right)\right) \\
& =\lim _{n \rightarrow+\infty} \frac{1}{n}\left(e^{\frac{1}{n}} \frac{e^{\frac{n}{n}}-1}{e^{\frac{1}{n}}-1}\right) \\
& =\lim _{n \rightarrow+\infty}\left(e^{\frac{1}{n}} \frac{e^{\frac{n}{n}}-1}{\frac{e^{\frac{1}{n}}-1}{\frac{1}{n}}}\right)=e-1
\end{aligned}
$$

2.4 Properties of definite integrals

Proposition 2.3

Let f and g be two functions integrable on the interval $[a, b]$, then we have:

1. $\int_{a}^{a} f(x) \mathrm{d} x=0$
2. $\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x$
3. $\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x$
4. If we have: $\forall x \in[a, b] ; f(x) \geq 0$ then:

$$
\int_{a}^{b} f(x) \mathrm{d} x \geq 0
$$

5. If we have: $\forall x \in[a, b] ; f(x) \leq g(x)$ then:

$$
\int_{a}^{b} f(x) \mathrm{d} x \leq \int_{a}^{b} g(x) \mathrm{d} x
$$

6. For all real number $c \in] a, b[$ the function f is intégrable on $[a, c]$ and $[c, b]$, and in addition:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{c}^{b} f(x) \mathrm{d} x \quad \text { (Chasles relation) }
$$

7. For all real numbers $\alpha, \beta \in \mathbb{R}$ the function $\alpha f+\beta g$ is intégrable on $[a, b]$ and

$$
\int_{a}^{b}(\alpha f(x)+\beta g(x)) \mathrm{d} x=\alpha \int_{a}^{b} f(x) \mathrm{d} x+\beta \int_{a}^{b} g(x) \mathrm{d} x
$$

8. $\left(\int_{a}^{b} f(x) g(x) \mathrm{d} x\right)^{2} \leq\left(\int_{a}^{b} f^{2}(x) \mathrm{d} x\right)\left(\int_{a}^{b} g^{2}(x) \mathrm{d} x\right)$ (Cauchy-Schwarz inequality)

2.4.1 Theorem of the Mean for Integrals

Theorem 2.5: Mean Theorem

Let f and g be two integrable functions on $[a, b]$, with g having a constant sign in $[a, b]$ (i.e. $g \geq 0$ or $g \leq 0$ on $[a, b]$), then there exists a number $\mu \in[m, M]$ such that:

$$
\int_{a}^{b} f(x) g(x) \mathrm{d} x=\mu \int_{a}^{b} g(x) \mathrm{d} x
$$

With $m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$.
Moreover, if f is continuous, there exists $\xi \in[a, b]$ such that: $\mu=f(\xi)$.

Remark 2.3 If $g=1$, then:

$$
\exists \mu \in[m, M] ; \int_{a}^{b} f(x) \mathrm{d} x=\mu(b-a)
$$

with: $\quad m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$.

Example 2.6

Let $I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(x) \mathrm{d} x$. Show that there exists a number $\mu \in[0,1]$ such that:

$$
I=\mu \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) \mathrm{d} x
$$

Solution:

let's put $f(x)=g(x)=\cos (x)$, we have:

$$
\left\{\begin{array}{l}
\forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \cos (x) \geq 0 \\
\quad \text { and } \\
m=\inf _{x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} f(x)=0 \text { and } M=\sup _{x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} f(x)=1
\end{array}\right.
$$

According to the mean theorem

$$
\exists \mu \in[m, M] ; I=\mu \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) \mathrm{d} x \Longrightarrow \exists \mu \in[0,1] ; I=\mu \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) \mathrm{d} x
$$

2.5 Antiderivative and definite integral as a function of its upper bound

Definition 2.6

Let f be an integrable function on $[a, b]$, we define:

$$
\Phi(x)=\int_{a}^{x} f(t) d t
$$

We call $\Phi(x)$ the integral of f defined as a function of its upper bound.

Proposition 2.4

Let f be an integrable function on $[a, b]$ and $\Phi(x)=\int_{a}^{x} f(t) d t$, then:

1. Φ is continuous on $[a, b]$
2. If f is continuous on $[a, b]$, then Φ is differentiable on $[a, b]$ and:

$$
\forall x \in[a, b] ; \Phi^{\prime}(x)=f(x)
$$

2.5.1 Newton-Leibnitz theorem

Theorem 2.6

Let Φ be any antiderivative of the continuous function f on $[a, b]$. Then:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\Phi(b)-\Phi(a)
$$

Remark: We note by $[\Phi(x)]_{a}^{b}$ or $\left.\Phi(x)\right|_{a} ^{b}$ for $\Phi(b)-\Phi(a)$. So we get:

$$
\int_{a}^{b} f(x) \mathrm{d} x=[\Phi(x)]_{a}^{b}
$$

Example 2.7

Compute $\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x$
According to the previous theorem, we have:

$$
\int_{0}^{1} \frac{1}{1+x^{2}} \mathrm{~d} x=[\arctan (x)]_{0}^{1}=\arctan (1)-\arctan (0)=\frac{\pi}{4}
$$

2.6 General integration techniques

2.6.1 Variable change method for definite integral

Theorem 2.7

Let f be a continuous function on $[a, b]$ and $\Phi:[\alpha, \beta] \rightarrow[a, b]$ be function $\in C^{1}([\alpha, \beta])$ such that: $\Phi(\alpha)=a$ and $\Phi(\beta)=b$, then:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\Phi(t)) \Phi^{\prime}(t) \mathrm{dt}
$$

Proof

We put:

$$
x=\Phi(t) \Longrightarrow \mathrm{d} x=\Phi^{\prime}(t) \mathrm{dt}
$$

For the bounds of the integral we have:

$$
\left\{\begin{array}{l}
x=a \Leftrightarrow \Phi(t)=a \Longrightarrow t=\alpha \\
x=b \Leftrightarrow \Phi(t)=b \Longrightarrow t=\beta
\end{array}\right.
$$

By replacing in the integral, we obtain:

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\Phi(t)) \Phi^{\prime}(t) \mathrm{dt}
$$

Example 2.8

Compute $I=\int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$

Solution: We put:

$$
x=\sin (t) \Longrightarrow \mathrm{d} x=\cos (t) \mathrm{dt}
$$

Then:

$$
\left\{\begin{array}{l}
x=-1 \Longrightarrow t=-\frac{\pi}{2} \\
x=1 \Longrightarrow t=\frac{\pi}{2}
\end{array}\right.
$$

Replacing in the integral gives:

$$
I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin ^{2}(t)} \cos (t) \mathrm{dt}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\cos (t)| \cos (t) \mathrm{dt}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2}(t) \mathrm{dt}
$$

On the other hand, we have: $\cos ^{2}(t)=\frac{1}{2} \cos (2 t)+\frac{1}{2}$

$$
\Longrightarrow I=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1}{2} \cos (2 t)+\frac{1}{2}\right) \mathrm{dt}=\frac{1}{2}\left[\frac{1}{2} \sin (2 t)+t\right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}=\frac{\pi}{2}
$$

2.6.2 Integration by part in a definite integral

Theorem 2.8

Let f and g be two functions differentiable on $[a, b]$ then

$$
\int_{a}^{b} f(x) g^{\prime}(x) \mathrm{d} x=[f(x) g(x)]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) \mathrm{d} x
$$

Example 2.9
Compute $I=\int_{0}^{\frac{\pi}{3}} x \cos (x) \mathrm{d} x$
Solution: We put

$$
\begin{gathered}
f(x)=x \longrightarrow f^{\prime}(x)=1 \\
g^{\prime}(x)=\cos (x) \longrightarrow g(x)=\sin (x)
\end{gathered}
$$

by applying the integration by parts formula, we obtain:

$$
\begin{aligned}
I & =\int_{0}^{\frac{\pi}{3}} x \cos (x) \mathrm{d} x=[x \sin (x)]_{0}^{\frac{\pi}{3}}-\int_{0}^{\frac{\pi}{3}} \sin (x) \mathrm{d} x \\
& \Longrightarrow I=[x \sin (x)]_{0}^{\frac{\pi}{3}}-[\cos (x)]_{0}^{\frac{\pi}{3}}=\frac{\pi}{2 \sqrt{3}}-\frac{1}{2}
\end{aligned}
$$

