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2.1 Introduction
This chapter contains the method for constructing the definite (or Riemann) integral of a
function f defined and bounded on an interval of type [a,b] and its fundamental properties.
Geometrically, the notion of the definite integral of a continuous and positive function f on
[a,b] is interpreted as a measure of the portion of the plane lying between (Γf ) the graph of the
function f , the x axis and the straight lines x = a, x = b.
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Chapter1 Definite integrals

2.2 Partitions and Darboux sums

2.2.1 Subdivision of an interval
Definition 2.1

A partition of the interval [a,b] is any finite sequence P = {x0,x1,...,xn} of real numbers
satisfying the following conditions:

1. ∀i ∈ {1,2,...,n}; xi ∈ [a,b]

2. x0 = a and xn = b

3. a = x0 < x1 < .... < xn−1 < xn = b

Remark:

1. Let P = {x0,x1,....,xn} be a partition of the interval [a,b] then, P contains n + 1 points
(called P partition nodes) and determines n interval [xi−1,xi]/i ∈ {1....,n}

2. The real h = max
1≤i≤n

(xi − xi−1) is called the norm of partition P .

3. Let P = {x0,x1,....,xn} and P ′ = {x′
0,x

′
1,....,x

′
m} two partitions of the interval [a,b]. We

say that P ′ is a refinement of P if:

{x0,x1,....,xn} ⊂ {x′
0,x

′
1,....,x

′
m}

a = x0 x1 x2 x3 x4 x5 = b

h

a = x′
0 x′

1 x′
2 x′

3 x′
4 x′

5 x′
6 x′

7 x′
8 x′

9 = b

h′

Figure 2.2 – P = {x0,x1,...,x5} and P ′ = {x′
0,x

′
1,....,x

′
9} are two partitions of [a,b]

Remark 2.1 In the figure above we have:

• P is a partition of [a,b] with a largest step h

• P ′ is also a partition of [a,b] with a largest step h′

We note that: P ⊂ P ′ and h′ < h, so in this case P ′ is a refinement of P
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Chapter1 Definite integrals

Example 2.1

Let P = {x0,x1,...,xn} a partition of [a,b] defined by:

xk = a + k

(
b − a

n

)
/k = 0,...,n

In this case, P is called: the uniform partition of [a,b], with h = b−a
n

2.2.2 Darboux sums

Let f : [a,b] → R be a bounded function on [a,b] (i.e. sup
x∈[a,b]

f(x) and inf
x∈[a,b]

f(x) exist in R) and

P = {x0,x1,....,xn} a partition of [a,b].
Define:


mk = inf

x∈[xk−1,xk]
f(x)

Mk = sup
x∈[xk−1,xk]

f(x) with k = 1,...,n

Definition 2.2

We call

1. Lower Darboux sum associated to f and P the number

L(f,P ) =
k=n∑
k=1

mk(xk − xk−1)

2. Upper Darboux sum associated to f and P the number

U(f,P ) =
k=n∑
k=1

Mk(xk − xk−1)
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Figure 2.3 – Darboux sums

2.2.3 Properties of Darboux sums

Proposition 2.1

Let f : [a,b] → R be a bounded function, Darboux sums satisfy the following properties:

1. for every partition P of [a,b]: L(f,P ) ≤ U(f,P ).

2. let P and P ′ be two partitions of [a,b] with P ⊂ P ′, then:U(f,P ) ≥ U(f,P ′)
L(f,P ) ≤ L(f,P ′)

3. If P and P ′ are any two partitions of [a,b], then

L(f,P ) ≤ U(f,P ′)

4. Let P be a partition of [a,b], m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x), then:

m(b − a) ≤ L(f,P ) ≤ U(f,P ) ≤ M(b − a)
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Chapter1 Definite integrals

Proof

1. Let’s prove (3).
We have P and P ′ are two partitions of [a,b] then, P ∪ P ′ is a partition of [a,b]. So
it is a refinement of P and P ′. From (1) and (2) we get:

L(f,P ) ≤ L(f,P ∪ P ′) ≤ U(f,P ∪ P ′) ≤ U(f,P ′)

=⇒ L(f,P ) ≤ U(f,P ′)

2. Proof of (4).

(a) Let P = {x0,x1,...,xn} be a partition of [a,b], we have:

∀k ∈ {1,...,n}; [xk,xk−1] ⊂ [a,b] =⇒ m = inf
x∈[a,b]

f(x) ≤ inf
x∈[xk,xk−1]

f(x) = mk

=⇒ ∀k ∈ {1,...,n}; m(xk − xk−1) ≤ mk(xk − xk−1)
Therefore,

k=n∑
k=1

m(xk − xk−1) ≤
k=n∑
k=1

mk(xk − xk−1)

=⇒ m
k=n∑
k=1

(xk − xk−1) ≤ L(f,P ) =⇒ m(b − a) ≤ L(f,P )

(Since
k=n∑
k=1

(xk − xk−1) = b − a)

(b) From (1) we have: L(f,P ) ≤ U(f,P )
(c) We have: U(f,P ) ≤ M(b − a) the proof is similar to (a).

Notations: Let f : [a,b] → R be a bounded function

1. The set of all partitions of [a,b] is denoted by S[a,b].

2. We denote by U[a,b](f) the set consisting of all upper Darboux sums associated to f
obtained with all possible partitions of [a,b] i.e.:

U[a,b](f) = {U(f,P )/P ∈ S[a,b]}

3. We denote by L[a,b](f) the set consisting of all lower Darboux sums associated to f
obtained with all possible partitions of [a,b] i.e.:

L[a,b](f) = {L(f,P )/P ∈ S[a,b]}

Proposition 2.2

If f is a bounded function on [a,b] then:

sup
(
L[a,b](f)

)
≤ inf

(
U[a,b](f)

)
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Proof

1. The sets L[a,b](f) and U[a,b](f) are non-empty.

2. We have:
∀P,P ′ ∈ S[a,b]; L(f,P ) ≤ U(f,P ′)

=⇒ The elements of U[a,b](f) are upper bounds of L[a,b](f)

=⇒ ∀U(f,P ′) ∈ U[a,b](f); sup
(
L[a,b](f)

)
≤ U(f,P ′)

So sup
(
L[a,b](f)

)
is a lower bound of U[a,b](f)

=⇒ sup
(
L[a,b](f)

)
≤ inf

(
U[a,b](f)

)

2.3 Integrable functions

2.3.1 Lower and upper integral of f on [a,b].
Definition 2.3

Let f : [a,b] → R be a bounded function

• We denote by U b
a(f) the upper integral of f on [a,b], defined by:

U b
a(f) := inf

(
U[a,b](f)

)
• We denote by Lb

a(f) the lower integral of f on [a,b], defined by:

Lb
a(f) := sup

(
L[a,b](f)

)

2.3.2 Riemann integral
Definition 2.4

Let f : [a,b] → R be a bounded function. We say that f is Riemann integrable on [a,b]
if:

U b
a(f) = Lb

a(f)
in this case the common value of U b

a(f) and Lb
a(f) is called the definite integral (Riemann

integral) of f on [a,b] and is denoted by

b
ż

a

f(x) dx

We denote by R([a,b]) the set of integrable functions on [a,b].

Remarks:

1. a and b are called the bounds of the integral.
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2. The number
b

ż

a

f(x) dx does not depend on x , it depends on a and b i.e. we can replace

x by any other letter y,t,u....

b
ż

a

f(x) dx =
b

ż

a

f(y) dy =
b

ż

a

f(t) dt

Example 2.2

Let f be a function defined by:

∀x ∈ R; f(x) = c with c ∈ R

1. Show that f is Riemann integrable on [a,b] with a,b ∈ R.

2. Determine
b

ż

a

f(x) dx

Solution:

1. Let P = {x0,x1,...,xn} ∈ S[a,b] (a partition of [a,b]), we have:

∀k ∈ {1,2,...,n};


mk = inf

x∈[xk−1,xk]
f(x) = c

and
Mk = sup

x∈[xk−1,xk]
f(x) = c

=⇒



U(f,P ) =
k=n∑
k=1

Mk(xk − xk−1) = c
k=n∑
k=1

(xk − xk−1) = c(b − a)

and

L(f,P ) =
k=n∑
k=1

mk(xk − xk−1) = c
k=n∑
k=1

(xk − xk−1) = c(b − a)

=⇒


∀U(f,P ) ∈ U[a,b](f); U(f,b) = c(b − a)

and
∀L(f,P ) ∈ L[a,b](f); L(f,b) = c(b − a)

=⇒


U b

a(f) = inf
(
U[a,b](f)

)
= c(b − a)

and
Lb

a(f) = sup
(
L[a,b](f)

)
= c(b − a)

=⇒ U b
a(f) = Lb

a(f)
so f is Riemann integrable on [a,b].

2. We have f is integrable on [a,b] so

U b
a(f) = Lb

a(f) =
b

ż

a

f(x) dx =
b

ż

a

c dx = c(b − a)
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Example 2.3

Let f be a function defined by:

f(x) =
1 if x ∈ Q

0 if x ∈ R\Q

Show that f is not Riemann integrable on any interval [a,b].

Solution:

Let P = x0,x1,...,xn ∈ S[a,b] (a partition of [a,b]), we have:

∀k ∈ {1,2,...,n};


mk = inf

x∈[xk−1,xk]
f(x) = 0

and
Mk = sup

x∈[xk−1,xk]
f(x) = 1

=⇒



U(f,P ) =
k=n∑
k=1

Mk(xk − xk−1) =
k=n∑
k=1

(xk − xk−1) = (b − a)

and

L(f,P ) =
k=n∑
k=1

mk(xk − xk−1) = 0
k=n∑
k=1

(xk − xk−1) = 0

=⇒


∀U(f,P ) ∈ U[a,b](f); U(f,b) = (b − a)

and
∀L(f,P ) ∈ L[a,b](f); L(f,b) = 0

=⇒


U b

a(f) = inf
(
U[a,b](f)

)
= (b − a)

and
Lb

a(f) = sup
(
L[a,b](f)

)
= 0

=⇒ U b
a(f) ̸= Lb

a(f)

so f is not Riemann integrable on [a,b].

Theorem 2.1

Let f : [a,b] → R be a bounded function. For f to be integrable on [a,b] it is necessary,
and sufficient, that

∀ε > 0,∃P ∈ S[a,b]; U(f,d) − L(f,d) < ε

8
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Proof

1. We assume that f is integrable on [a,b] so

U b
a(f) = Lb

a(f) =
b

ż

a

f(x) dx

such that:
U b

a(f) = inf{U(f,P )/P ∈ S[a,b]}
Lb

a(f) = sup{L(f,P )/P ∈ S[a,b]}

So

∀ε > 0;
∃P1 ∈ S[a,b]; U(f,P1) < U b

a(f) + ε
2

∃P2 ∈ S[a,b]; Lb
a(f) − ε

2 < L(f,P2)

Let’s put P = P1 ∪ P2, then P1 ⊂ d and P2 ⊂ d, from the properties of Darboux
sums we have: 

U(f,P ) ≤ U(f,P1)
∧

L(f,P2) ≤ L(f,P )

=⇒ ∀ε > 0,∃d ∈ S[a,b];
U(f,P ) < U b

a(f) + ε
2

Lb
a(f) − ε

2 < L(f,P )

By summing, we obtain:

∀ε > 0,∃P ∈ S[a,b]; U(f,P ) − L(f,P ) < ε

Therefore, (f ∈ R([a,b]) =⇒ ∀ε > 0,∃P ∈ S[a,b]; U(f,P ) − L(f,P ) < ε) is true.

2. From proposition (2.2) we have: Lb
a(f) ≤ U b

a(f).
We Assume that ∀ε > 0,∃P ∈ S[a,b]; U(f,P ) − L(f,P ) < ε

=⇒ ∀ε > 0,∃P ∈ S[a,b]; U(f,P ) − ε < L(f,P ) ≤ U(f,P )

So U(f,P ) = sup
(
L[a,b](f)

)
= Lb

a(f).
On the other hand, we have:

∀ε > 0,∃P ∈ S[a,b]; L(f,p) ≤ U(f,P ) < L(f,P ) + ε

So L(f,P ) = inf
(
U[a,b](f)

)
= U b

a(f) =⇒ U b
a ≤ Lb

a.
Finally, we obtain (U b

a ≤ Lb
a) ∧ (Lb

a ≤ U b
a) =⇒ U b

a = Lb
a, So f ∈ R([a,b]). So the

inverse implication is true.
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2.3.3 Riemann sums

Definition 2.5

Let f : [a,b] → R be a bounded function, P = {x0,x1,...,xn} a partition of [a,b] and
α1,α2,...,αn are real numbers such that: ∀i = 1,n; αi ∈ [xi−1,xi]
Define:

S(f,P ) =
n∑

i=1
f(αi)(xi − xi−1)

The number S(f,P ) is called the Riemann sum corresponds to the partition P and the
point system {α1,α2,...,αn}

x

y

1

−1

2

1

−1

2

1

−1

2

0 x0α1x1α2x2α3x3α4x4

S(f,P )

Figure 2.4 – Riemann sum of f(x) = 1
x

corresponds to the partition P = {x0,x1,x3,x4} and the
point system {α1,α2,α3,α4}

Theorem 2.2

Let f be an integrable function on [a,b] then:

b
ż

a

f(x) dx = lim
h→0

S(f,P )

Remark 2.2 P = {x0,x1,...,xn} is a partition of [a,b] with a norm h.
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Example 2.4

Assuming P = {x0,x1,...,xn} the uniform partition of [a,b] defined by:

xk = a + k

(
b − a

n

)
/k ∈ {0,1,...,n} with h = b − a

n

then:
b

ż

a

f(x) dx = lim
n→+∞

(
b − a

n

)
n∑

k=1
f

(
a + k

(
b − a

n

))

2.3.4 Examples of integrable functions

Theorem 2.3

Any monotonic function f on [a,b] is integrable on [a,b].

Proof

In our proof, we assume that f is increasing (the same technique is used if f is decreasing).
Let P = x0,x1,...,xn be a partition of [a,b] with its norm h.
We have f is then increasing:

∀k ∈ {1,2...,n};


mk = inf

x∈[xk−1,xk]
f(x) = f(xk−1)

Mk = sup
x∈[xk−1,xk]

f(x) = f(xk)

=⇒ U(f,d) − L(f,d) =
n∑

k=1
(f(xk − f(xk−1)(xk − xk−1) ≤ h

n∑
k=1

(f(xk − f(xk−1)

≤ h(f(b) − f(a))

Let ε > 0, if we choose a partition with a norm h <
ε

f(b) − f(a) , we get:

∀ε > 0,∃P ∈ S[a,b] =⇒ U(f,P ) − L(f,P ) < ε

Therefore f is integrable on [a,b].

Theorem 2.4

Any continuous function on [a,b] is integrable on [a,b].
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Example 2.5

1. Show that f(x) = ex is integrable on [a,b].

2. Using the Riemann sum, show that:

1
ż

0

ex dx = e − 1

Solution:

1. According to the previous theorem f(x) = ex is continuous on [0,1], so f is integrable on
[0,1]

2. If we choose the following uniform partition of [0,1]:

P = {x0,x1,...,xn} such that: xk = k

n
/k = 1,n and h = 1

n

According to the Riemann sum corresponds to P we have:

1
ż

0

f(x) dx = lim
n→+∞

(
1
n

n∑
k=1

f(k

n
)
)

=⇒
1

ż

0

ex dx = lim
n→+∞

(
1
n

n∑
k=1

e
k
n

)
= lim

n→+∞

( 1
n

(
e

1
n + e

2
n + .... + e

n
n

))

= lim
n→+∞

1
n

(
e

1
n

e
n
n − 1

e
1
n − 1

)

= lim
n→+∞

e
1
n

e
n
n − 1
e

1
n −1

1
n

 = e − 1
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2.4 Properties of definite integrals
Proposition 2.3

Let f and g be two functions integrable on the interval [a,b], then we have:

1.
a

ż

a

f(x) dx = 0

2.
b

ż

a

f(x) dx = −
a

ż

b

f(x) dx

3.

∣∣∣∣∣∣∣
b

ż

a

f(x) dx

∣∣∣∣∣∣∣ ≤
b

ż

a

|f(x)| dx

4. If we have: ∀x ∈ [a,b]; f(x) ≥ 0 then:

b
ż

a

f(x) dx ≥ 0

5. If we have: ∀x ∈ [a,b]; f(x) ≤ g(x) then:

b
ż

a

f(x) dx ≤
b

ż

a

g(x) dx

6. For all real number c ∈]a,b[ the function f is intégrable on [a,c] and [c,b], and in
addition:

b
ż

a

f(x) dx =
c

ż

a

f(x) dx +
b

ż

c

f(x) dx (Chasles relation)

7. For all real numbers α,β ∈ R the function αf + βg is intégrable on [a,b] and

b
ż

a

(αf(x) + βg(x)) dx = α

b
ż

a

f(x) dx + β

b
ż

a

g(x) dx

8.


b

ż

a

f(x)g(x) dx


2

≤


b

ż

a

f 2(x) dx




b
ż

a

g2(x) dx

 ( Cauchy-Schwarz inequality )
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2.4.1 Theorem of the Mean for Integrals
Theorem 2.5: Mean Theorem

Let f and g be two integrable functions on [a,b], with g having a constant sign in [a,b]
(i.e. g ≥ 0 or g ≤ 0 on [a,b]), then there exists a number µ ∈ [m,M ] such that:

b
ż

a

f(x)g(x) dx = µ

b
ż

a

g(x) dx

With m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x).

Moreover, if f is continuous, there exists ξ ∈ [a,b] such that: µ = f(ξ).

Remark 2.3 If g = 1, then :

∃µ ∈ [m,M ];
b

ż

a

f(x) dx = µ(b − a)

with: m = inf
x∈[a,b]

f(x) and M = sup
x∈[a,b]

f(x).

Example 2.6

Let I =

π
2

ż

− π
2

cos2(x) dx. Show that there exists a number µ ∈ [0,1] such that:

I = µ

π
2

ż

− π
2

cos(x) dx

Solution:
let’s put f(x) = g(x) = cos(x), we have:

∀x ∈ [−π
2 ,π

2 ]; cos(x) ≥ 0
and

m = inf
x∈[− π

2 , π
2 ]

f(x) = 0 and M = sup
x∈[− π

2 , π
2 ]

f(x) = 1

According to the mean theorem

∃µ ∈ [m,M ]; I = µ

π
2

ż

− π
2

cos(x) dx =⇒ ∃µ ∈ [0,1]; I = µ

π
2

ż

− π
2

cos(x) dx

14
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2.5 Antiderivative and definite integral as a function of its up-
per bound

Definition 2.6

Let f be an integrable function on [a,b], we define:

Φ(x) =
x

ż

a

f(t)dt

We call Φ(x) the integral of f defined as a function of its upper bound.

Proposition 2.4

Let f be an integrable function on [a,b] and Φ(x) =
x

ż

a

f(t)dt, then:

1. Φ is continuous on [a,b]

2. If f is continuous on [a,b], then Φ is differentiable on [a,b] and:

∀x ∈ [a,b]; Φ′(x) = f(x)

2.5.1 Newton-Leibnitz theorem
Theorem 2.6

Let Φ be any antiderivative of the continuous function f on [a,b]. Then:

b
ż

a

f(x) dx = Φ(b) − Φ(a)

Remark: We note by [Φ(x)]ba or Φ(x)|ba for Φ(b) − Φ(a). So we get:

b
ż

a

f(x) dx = [Φ(x)]ba

Example 2.7

Compute
1

ż

0

1
1 + x2 dx

According to the previous theorem, we have:

1
ż

0

1
1 + x2 dx = [arctan(x)]10 = arctan(1) − arctan(0) = π

4
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2.6 General integration techniques

2.6.1 Variable change method for definite integral
Theorem 2.7

Let f be a continuous function on [a,b] and Φ : [α,β] → [a,b] be function ∈ C1([α,β])
such that: Φ(α) = a and Φ(β) = b, then:

b
ż

a

f(x) dx =
β

ż

α

f(Φ(t))Φ′(t) dt

Proof

We put:
x = Φ(t) =⇒ dx = Φ′(t)dt

For the bounds of the integral we have:x = a ⇔ Φ(t) = a =⇒ t = α

x = b ⇔ Φ(t) = b =⇒ t = β

By replacing in the integral, we obtain:

b
ż

a

f(x) dx =
β

ż

α

f(Φ(t))Φ′(t) dt

Example 2.8

Compute I =
1

ż

−1

√
1 − x2 dx

Solution: We put:
x = sin(t) =⇒ dx = cos(t)dt

Then: x = −1 =⇒ t = −π
2

x = 1 =⇒ t = π
2

Replacing in the integral gives:

I =

π
2

ż

− π
2

√
1 − sin2(t) cos(t) dt =

π
2

ż

− π
2

| cos(t)| cos(t) dt =

π
2

ż

− π
2

cos2(t) dt

On the other hand, we have: cos2(t) = 1
2 cos(2t) + 1

2

=⇒ I =

π
2

ż

− π
2

(1
2 cos(2t) + 1

2) dt = 1
2

[1
2 sin(2t) + t

]π
2

− π
2

= π

2
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2.6.2 Integration by part in a definite integral
Theorem 2.8

Let f and g be two functions differentiable on [a,b] then

b
ż

a

f(x)g′(x) dx = [f(x)g(x)]ba −
b

ż

a

f ′(x)g(x) dx

Example 2.9

Compute I =

π
3

ż

0

x cos(x) dx

Solution: We put
f(x) = x −→ f ′(x) = 1

g′(x) = cos(x) −→ g(x) = sin(x)
by applying the integration by parts formula, we obtain:

I =

π
3

ż

0

x cos(x) dx = [x sin(x)]
π
3
0 −

π
3

ż

0

sin(x) dx

=⇒ I = [x sin(x)]
π
3
0 − [cos(x)]

π
3
0 = π

2
√

3
− 1

2
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