Chapter 6

Usual functions

Contents

6.1	An overview of inverse function	1
6.2	Logarithmic Functions	3
6.3	Exponential Functions	5
6.4	Power functions	8
6.5	Circular (or trigonometric) functions	10
6.6	Hyperbolic Functions	13
6.7	Inverse Trigonometric Functions	18
6.8	The inverse hyperbolic functions	26

6.1 An overview of inverse function

Let I be an interval of \mathbb{R} , f a function defined on I and J = f(I). Our interest lies in the existence of the inverse function of f, i.e the existence of a function f^{-1} from J into I such that:

 $\forall x \in I, f^{-1}(f(x)) = x \quad \text{and} \quad \forall y \in J, f(f^{-1}(y)) = y$

Proposition 6.1: Existence of an inverse function

Let I be an interval and f a function defined on I. If f is continuous and strictly monotone on I then f is a bijection from I to J = f(I) and admits a reciprocal function f^{-1} from J to I which has the following properties:

- 1. f^{-1} is continuous on J.
- 2. f^{-1} is strictly monotonic on J and has the same direction of monotonicity as f.
- 3. f^{-1} is bijective.

Remark 6.1 The graphical representations of f and f^{-1} are symmetrical with respect to the line with equation y = x.

Example 6.1

Let f be a function defined by:

$$\begin{array}{rcccc} f: & \mathbb{R}^*_+ & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f(x) = \ln(x) \end{array}$$

We have:

Set $I = \mathbb{R}^*_+$, then $J = f(I) =] - \infty, + \infty [= \mathbb{R}$ From the table of variations of f we have:

- 1. f is continuous on I
- 2. f is strictly increasing on I

then f admits an inverse function f^{-1} denoted by e^x or $\exp(x)$ defined by:

$$f^{-1}: \quad \mathbb{R} \to]0, +\infty[$$
$$x \mapsto f^{-1}(x) = e^x$$

Proposition 6.2: (Differentiability at a point)

Let $f: I \to J$ be a bijective and differentiable function at $x_0 \in I$. If we have $f'(x_0) \neq 0$ then f^{-1} is differentiable at $y_0 = f(x_0)$ and moreover:

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

Proposition 6.3: (Differentiability on an interval)

Let $f: I \to J$ be a bijective and differentiable function on I (with I is an open interval). If we have: $\forall x \in I$; $f'(x) \neq 0$, then f^{-1} is differentiable on J and moreover:

$$\forall y \in J; \ (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$

Example 6.2

Let $f(x) = \ln(x)$ and $I = \mathbb{R}^*_+$, then $J = f(I) = \mathbb{R}$. From the previous example, f is bijective from I into J and admits an inverse function $f^{-1}(x) = e^x$. We have: for all $x \in \mathbb{R}^*_+$, f(x) is differentiable and moreover $f'(x) = \frac{1}{x} \neq 0$. According to proposition (5.3) f^{-1} is differentiable on $J = \mathbb{R}$ and

$$\forall y \in \mathbb{R}; \ (f^{-1})'(y) = (e^y)' = \frac{1}{f'(f^{-1}(y))} = \frac{1}{\frac{1}{e^y}} = e^y$$

Remark 6.2 In the previous formula, we can replace y by x and write:

$$\forall x \in \mathbb{R}; \ (e^x)' = e^x$$

6.2 Logarithmic Functions

6.2.1 The neperian logarithm function

Definition 6.1

The function that satisfies the following two conditions is called the neperian logarithm function and is denoted by ln:

1.
$$\forall x \in \mathbb{R}^*_+; (\ln(x))' = \frac{1}{x}$$

2. $\ln(1) = 0$

Remark 6.3 (Properties of derivatives)

1. According to the previous definition, the function $\ln(x)$ is differentiable on \mathbb{R}^*_+ and $\forall x \in \mathbb{R}^*_+$; $(\ln(x))' = \frac{1}{x}$.

2. The function $\ln(|x|)$ is differentiable on \mathbb{R}^* and $\forall x \in \mathbb{R}^*$; $(\ln(|x|))' = \frac{1}{x}$

3. Let g be a function differentiable and non-zero on I then the function $\ln(|g(x)|)$ is differentiable on I and its derivative: $(\ln(|g(x)|)' = \frac{g'(x)}{g(x)})$

6

Proposition 6.4: (Limits and classical inequalities)

1.
$$\lim_{x \to +\infty} \ln(x) = +\infty$$

2.
$$\lim_{x \to 0^+} \ln(x) = -\infty$$

3.
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$

4.
$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{\alpha}} = 0 \text{ (with } \alpha \in \mathbb{R}^*_+\text{)}.$$

5.
$$\lim_{x \to 0^+} x \ln(x) = 0$$

6.
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

7.
$$\forall x \in] -1, +\infty[; \ln(x+1) \le x]$$

Figure 6.1 – Graphical representation of the function $\ln(x)$

Proposition 6.5: (Algebraic properties of the function $\ln(x)$) For all $x, y \in \mathbb{R}^*_+$ and $\alpha \in \mathbb{Q}$, we have the following properties: 1. $\ln(x \times y) = \ln(x) + \ln(y)$ 2. $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$ 3. $\ln\left(\frac{1}{x}\right) = -\ln(x)$ 4. $\ln(x^{\alpha}) = \alpha \ln(x)$

6.2.2 The logarithmic function with base *a*

ŕ

Definition 6.2

Let $a \in]0,1[\cup]1, +\infty[$. We call the logarithm function with base a and denote \log_a , the function defined by:

$$\forall x \in]0, +\infty[; \log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Figure 6.2 – Graphical representation of the logarithmic functions and logarithms with base a for $a = \frac{1}{2}$, a = 2

Remark 6.4 (Properties of the function \log_a)

- 1. We have: $\ln(x) = \log_e(x)$ i.e., the neperian logarithm function is the logarithm function with base e.
- 2. The logarithm function with base a verifies relations analogous to those stated for the neperian logarithm function.

6.3 Exponential Functions

6.3.1 The exponential function

Definition 6.3

The inverse function of the function $\ln(x)$ is called the exponential function and is denoted by: $\exp(x)$ or e^x , and satisfies the following properties:

1.
$$\forall x \in]0, +\infty[; x = e^{\ln(x)}$$

2.
$$\forall y \in \mathbb{R}; y = \ln(e^y)$$

- 1. The function e^x is continuous and strictly increasing on \mathbb{R} .
- 2. The function e^x is differentiable on \mathbb{R} and we have: $\forall x \in \mathbb{R}; (e^x)' = e^x$
- 3. If u is differentiable on I then: the function $e^{u(x)}$ is differentiable on I and its derivative defined by: $\forall x \in I$; $(e^{u(x)})' = u'(x) \cdot e^{u(x)}$

Proposition 6.7: (Limits and inequalities)

1.
$$\lim_{x \to -\infty} e^x = 0$$

2.
$$\lim_{x \to +\infty} e^x = +\infty$$

3.
$$\lim_{x \to +\infty} x e^{-x} = 0, \quad \lim_{x \to +\infty} \frac{x^{\alpha}}{e^x} = 0, \quad \lim_{x \to +\infty} \frac{e^x}{x^{\alpha}} = +\infty \text{ (with } \alpha \in \mathbb{R}\text{)}$$

4.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

5.
$$\forall x \in \mathbb{R}; e^x \ge 1 + x$$

Figure 6.3 – Graphical representation of the function e^x

Proposition 6.8: (Algebraic properties of the function e^x) For all $x, y \in \mathbb{R}$ and $\alpha \in \mathbb{Q}$, we have: 1. $e^{x+y} = e^x \times e^y$ 2. $e^{-x} = \frac{1}{e^x}$ 3. $e^{x-y} = \frac{e^x}{e^y}$ 4. $e^{\alpha x} = (e^x)^{\alpha}$

6.3.2 The exponential function with base *a*

Definition 6.4

Let $a \in]0,1[\cup]1,\infty[$.

The inverse function of the function $\log_a(x)$ is called the exponential function with base a and is denoted a^x :

- 1. $\forall x \in \mathbb{R}; a^x = e^{x \ln(a)}$
- 2. $\forall x \in \mathbb{R}; \log_a(a^x) = \log_a(e^{x \ln(a)}) = \frac{\ln(e^{x \ln(a)})}{\ln(a)} = x$

Remark 6.5 The function a^x is differentiable on \mathbb{R} and we have:

 $\forall x \in \mathbb{R}; \ (a^x)' = \ln(a)a^x$

Remark 6.6 The exponential function with base a verifies similar properties to those of the exponential function.

6.4 Power functions

Definition 6.5

Let $\alpha \in \mathbb{R}$, we name power function of exponent α , the function defined by:

 $\forall x \in]0, +\infty[; x^{\alpha} = e^{\alpha \ln(x)}$

Remark 6.7 If $n \in \mathbb{N}^*$, we have :

$$e^{n\ln(x)} = e^{\sum_{k=1}^{n}\ln(x)} = \prod_{k=1}^{k=n} e^{\ln(x)} = \prod_{k=1}^{k=n} x = \underbrace{x \times x \times \dots \times x}_{nfois} = x^{n}$$

Proposition 6.9

- 1. For $\alpha \in \mathbb{R}^*$, the power function with exponent α is a continuous function on $]0, +\infty[$ and strictly monotonic (strictly increasing if $\alpha > 0$ and strictly decreasing if $\alpha < 0$).
- 2. It is differentiable on $]0, +\infty[$ with derivative : $(x^{\alpha})' = \alpha x^{\alpha-1}, \forall x \in]0, +\infty[$
- 3. We have:

$$\lim_{x \to +\infty} x^{\alpha} = \begin{cases} 0, & si \ \alpha < 0\\ 1, & si \ \alpha = 0\\ +\infty, & si \ \alpha > 0 \end{cases} \quad \text{and} \quad \lim_{x \to 0^+} x^{\alpha} = \begin{cases} +\infty, & si \ \alpha < 0\\ 1, & si \ \alpha = 0\\ 0, & si \ \alpha > 0 \end{cases}$$

Figure 6.5 – Graphical representation of functions x^{α} , with $\alpha = -2.5, 1, \frac{1}{3}$

For $x \in \mathbb{R}^*_+$ and $\alpha, \beta \in \mathbb{R}$ we have the following relationships: 1. $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$. 2. $x^{-\alpha} = \frac{1}{2}$

$$2. x = \frac{1}{x^{\alpha}}.$$

3.
$$x^{\alpha-\beta} = \frac{1}{x^{\beta}}$$
.

4.
$$x^{\alpha\beta} = (x^{\alpha})^{\beta} = (x^{\beta})^{\alpha}$$
.

6.5 Circular (or trigonometric) functions

6.5.1 Recalls on the functions cos(x) and sin(x).

Proposition 6.11

The functions $\begin{cases} x \longmapsto \cos(x) \\ \text{and} \\ x \longmapsto \sin(x) \end{cases}$ are defined on \mathbb{R} and satisfy the following properties: $x \longmapsto \sin(x)$ 1. $\forall x \in \mathbb{R}; \ |\cos(x)| \le 1 \land |\sin(x)| \le 1$ 2. $\cos(x)$ and $\sin(x)$ are 2π -periodic i.e.: $\forall x \in \mathbb{R}; \begin{cases} \cos(x+2\pi) = \cos(x) \\ \text{and} \\ \sin(x+2\pi) = \sin(x) \end{cases}$ 3. The function $\cos(x)$ is even and the function $\sin(x)$ is odd, i.e.: $\forall x \in \mathbb{R}; \begin{cases} \cos(-x) = \cos(x) \\ \text{and} \\ \sin(-x) = -\sin(x) \end{cases}$ 4. The functions $\cos(x)$ and $\sin(x)$ belong to $C^{\infty}(\mathbb{R})$ and we have: $\left((\cos(x))' = -\sin(x)\right)$

a
$$\forall x \in \mathbb{R}$$
;

$$\begin{cases}
(\cos(x))' = -\sin(x) \\
\text{and} \\
(\sin(x))' = \cos(x)
\end{cases}$$
b $\forall x \in \mathbb{R}, \forall n \in \mathbb{N};$

$$\begin{cases}
\cos^{(n)}(x) = \cos(x + n\frac{\pi}{2}) \\
\text{and} \\
\sin^{(n)}(x) = \sin(x + n\frac{\pi}{2})
\end{cases}$$

Figure 6.6 – Graphical representation of functions sin(x) and cos(x)

Proposition 6.12: (Formules d'addition) For all $(x,y) \in \mathbb{R}^2$, we have the following formulas: • $\cos(x + y) = \cos(x)\cos(y) - \sin(x)\sin(y)$ • $\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$ • $\sin(x + y) = \sin(x)\cos(y) + \cos(x)\sin(y)$ • $\sin(x - y) = \sin(x)\cos(y) - \cos(x)\sin(y)$ • $\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$ • $\sin(2x) = 2\sin(x)\cos(x)$ • $\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$ • $\sin(x) - \sin(y) = 2\cos\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$ • $\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$ • $\cos(x) + \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$

6.5.2 Recall about the function tan(x)

Definition 6.6

The tangent function is one of the main trigonometric functions and defined by:

$$\tan: \mathbb{R} \setminus \{ \frac{\pi}{2} + k\pi/k \in \mathbb{Z} \} \longrightarrow \mathbb{R}$$
$$x \longmapsto \tan(x) = \frac{\sin(x)}{\cos(x)}$$

Proposition 6.13

The function $\tan(x)$ is differentiable on $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi/k\in\mathbb{Z}\}\$ and we have:

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\}; \ (\tan(x))' = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Figure 6.7 – Graphical representation of the function tan(x)

The function $\tan(x)$ checks the following properties:

1. The function $\tan(x)$ is π -periodic i.e :

$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\}; \ \tan(x+\pi) = \tan(x)$$

2. For any $x, y \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\}$ we have:

$$\begin{cases} \tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)} \\ \text{and} \\ \tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)} \end{cases}$$

3. $\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi/k \in \mathbb{Z}\}; \tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$

and we choose

Proposition 6.15: (Some usual limits) 1. $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$ 2. $\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} = \frac{1}{2}$ 3. $\lim_{x \to 0} \frac{\cos(x) - 1}{x} = 0$ 4. $\lim_{x \to -\frac{\pi}{2}} \tan(x) = -\infty$ 5. $\lim_{x \to +\frac{\pi}{2}} \tan(x) = +\infty$ 6. $\lim_{x \to 0} \frac{\tan(x)}{x} = 1$

6.6 Hyperbolic Functions

6.6.1 Hyperbolic cosine, sine and tangent functions

Any function f defined on \mathbb{R} can be uniquely decomposed into a sum of two functions f_{ev} and f_{od} where f_{ev} is an even function and f_{od} is an odd function. This means for every $x \in \mathbb{R}$ we can write

$$f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2}$$

$$\begin{cases} f_p(x) = \frac{f(x) + f(-x)}{2} \\ et \\ f_i(x) = \frac{f(x) - f(-x)}{2} \end{cases}$$

Remark 6.8 We can easily check that this decomposition is unique, and f_{ev} is an even function and f_{od} is an odd function.

Definition 6.7: (Hyperbolic cosine)

We call the hyperbolic cosine function and denoted (ch or cosh), the even part of the exponential function defined by:

$$\begin{array}{rcl} \operatorname{ch} : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \end{array}$$

Definition 6.8: (Hyperbolic sine)

The hyperbolic sine function, denoted by (sh or sinh), is the odd part of the exponential function defined by:

$$\operatorname{sh}: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \operatorname{sh}(x) = \frac{e^x - e^{-x}}{2}$

Definition 6.9: (Hyperbolic tangent)

The hyperbolic tangent function, denoted by (th or tanh), is the quotient of the hyperbolic sine function with the hyperbolic cosine function and defined by:

th:
$$\mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto \operatorname{th}(x) = \frac{\operatorname{sh}(x)}{\operatorname{ch}(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Proposition 6.16

- The function ch(x) is a function defined on \mathbb{R} , continuous and even.
- The function sh(x) is a function defined on \mathbb{R} , continuous and odd.
- The function th(x) is a function defined on \mathbb{R} , continuous and odd.
- The functions ch(x), sh(x) and th(x) are differentiable on \mathbb{R} and their derivatives are defined by:

$$\forall x \in \mathbb{R}; \begin{cases} (\operatorname{ch}(x))' = \operatorname{sh}(x) \\ (\operatorname{sh}(x))' = \operatorname{ch}(x) \\ (\operatorname{th}(x))' = \frac{1}{\operatorname{ch}(x)^2} = 1 - \operatorname{th}(x)^2 \end{cases}$$

Proof

These properties can be verified using the properties of the e^x function. In our proof, we're interested with the function th(x). We have:

$$\forall x \in \mathbb{R}; \ \operatorname{th}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- The continuity: The functions $(e^x e^{-x})$ and $(e^x + e^{-x})$ are continuous on \mathbb{R} , with $e^x + e^{-x} \neq 0$ then the quotient function $\frac{e^x e^{-x}}{e^x + e^{-x}}$ is continuous on $\mathbb{R} \implies \operatorname{th}(x)$ is continuous on \mathbb{R}
- The parity: We have:

Ł

$$\forall x \in \mathbb{R}; \ \operatorname{th}(-x) = \frac{e^{-x} - e^x}{e^{-x} + e^x} = -\frac{e^x - e^{-x}}{e^x + e^{-x}} = -\operatorname{th}(x)$$

So th(x) is odd.

• The differentiability: The functions $(e^x - e^{-x})$ et $(e^x + e^{-x})$ are differentiable on \mathbb{R} , with $e^x + e^{-x} \neq 0$ then the quotient function $\frac{e^x - e^{-x}}{e^x + e^{-x}}$ is differentiable on $\mathbb{R} \implies \operatorname{th}(x)$ is differentiable on \mathbb{R} and we have:

$$\forall x \in \mathbb{R}; \ (\operatorname{th}(x))' = \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)' = \frac{(e^x + e^{-x})(e^x + e^{-x}) - (e^x - e^{-x})(e^x - e^{-x})}{(e^x + e^{-x})^2}$$
$$\iff \operatorname{th}(x)' = 1 - \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)^2 = 1 - \operatorname{th}(x)^2$$
also $\operatorname{th}(x)' = \frac{4}{(e^x + e^{-x})^2} = \frac{1}{\operatorname{ch}(x)^2}.$

Remark 6.9 The functions ch(x), sh(x) and th(x) have the following properties:

- 1. ch(0) = 1, sh(0) = 0 and th(0) = 0.
- 2. $\lim_{x \to -\infty} sh(x) = -\infty$, $\lim_{x \to -\infty} ch(x) = +\infty$ and $\lim_{x \to -\infty} th(x) = -1$
- 3. $\lim_{x \to +\infty} sh(x) = +\infty$, $\lim_{x \to +\infty} ch(x) = +\infty$ and $\lim_{x \to +\infty} th(x) = 1$

Therefore, the above results can be grouped together in tabular form.

(a) Function sh(x)

(b) Function ch(x)

x	$-\infty$	0	$+\infty$
$th(x)' = \frac{1}{ch(x)^2}$		+	
h(x)	-1	0	1

Figure 6.9 – Function th(x)

Figure 6.10 – Graphical representation of functions sh(x) et ch(x)

Figure 6.11 – Graphical representation of the function th(x)

For every real x, we have:

• $\operatorname{ch}(x) + \operatorname{sh}(x) = e^x$

•
$$ch(x) - sh(x) = e^{-x}$$

•
$$ch(x)^2 - sh(x)^2 = 1$$

Proposition 6.18: (Addition formulas)

For all $(x,y) \in \mathbb{R}^2$, we have the following formulas:

•
$$\operatorname{ch}(x+y) = \operatorname{ch}(x)\operatorname{ch}(y) + \operatorname{sh}(x)\operatorname{sh}(y)$$

•
$$\operatorname{ch}(x-y) = \operatorname{ch}(x)\operatorname{ch}(y) - \operatorname{sh}(x)\operatorname{sh}(y)$$

•
$$\operatorname{sh}(x+y) = \operatorname{sh}(x)\operatorname{ch}(y) + \operatorname{ch}(x)\operatorname{sh}(y)$$

•
$$\operatorname{sh}(x-y) = \operatorname{sh}(x)\operatorname{ch}(y) - \operatorname{ch}(x)\operatorname{sh}(y)$$

•
$$\operatorname{th}(x+y) = \frac{\operatorname{th}(x) + \operatorname{th}(y)}{1 + \operatorname{th}(x)\operatorname{th}(y)}$$

•
$$\operatorname{th}(x-y) = \frac{\operatorname{th}(x) - \operatorname{th}(y)}{1 - \operatorname{th}(x)\operatorname{th}(y)}$$

Proof

We prove these formulas by using the expressions of hyperbolic functions with the exponential function. We have:

$$ch(x)ch(y) + sh(x)sh(y) = \frac{1}{4} \left((e^x + e^{-x})(e^y + e^{-y}) + (e^x - e^{-x})(e^y - e^{-y}) \right)$$
$$= \frac{1}{4} \left(2e^x e^y + 2e^{-x} e^{-y} \right)$$
$$= \frac{1}{2} \left(e^{(x+y)} + e^{-(x+y)} \right)$$
$$= ch(x+y).$$

The other relations are shown using the same method.

Proposition 6.19: (Some usual limits of hyperbolic functions)

1.
$$\lim_{x \to +\infty} \frac{\operatorname{ch}(x)}{e^x} = \frac{1}{2}$$

2.
$$\lim_{x \to +\infty} \frac{\operatorname{sh}(x)}{e^x} = \frac{1}{2}$$

3.
$$\lim_{x \to 0} \frac{\operatorname{sh}(x)}{x} = 1$$

4.
$$\lim_{x \to 0} \frac{\operatorname{ch}(x) - 1}{x^2} = \frac{1}{2}$$

6.7 Inverse Trigonometric Functions

6.7.1 The function arc-sinus

According to the variation table below, we have:

The function $\sin(x)$ is continuous and strictly increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then the function $\sin(x)$ represents a bijection from $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to $\left[-1, 1\right]$.

Figure 6.12 – Function $\sin(x)$

Definition 6.10

The inverse function of the restriction of $\sin(x)$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is called the arcsine function and is denoted by $\arcsin(x)$ or $\sin^{-1}(x)$:

$$\begin{array}{rcl} \arcsin: & [-1,1] & \longrightarrow & [-\frac{\pi}{2},\frac{\pi}{2}] \\ & x & \longmapsto & \arcsin(x) \end{array}$$

Proposition 6.20

The function $\arcsin(x)$ has the following properties:

- 1. The function $\arcsin(x)$ is continuous and strictly increasing on [-1,1]. (According to the inverse function theorem)
- 2. $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$; $\arcsin(\sin(x) = x$.
- 3. $\forall y \in [-1,1]; \sin(\arcsin(y) = y)$.
- 4. $\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in \left[-1, 1\right]; (\sin(x) = y \iff x = \arcsin(y)).$
- 5. The function $\arcsin(x)$ is odd.

\mathbf{Proof}

Let's prove property (5).

- 1. The function $\arcsin(x)$ is defined on [-1,1], so in this case the domain of definition is symmetric about 0.
- 2. Let $x \in [-1,1]$ and:

$$\operatorname{arcsin}(-x) = y \tag{6.1}$$

 $\Leftrightarrow -x = \sin(y) \Leftrightarrow x = -\sin(y) \Leftrightarrow x = \sin(-y) \text{ (Since } \sin(x) \text{ is odd)}$

We have: $y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \implies -y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ So we obtain: $\arcsin(x) = -y \Leftrightarrow -\arcsin(x) = y$ From equation (6.1) we get: $\arcsin(-x) = -\arcsin(x)$

 \Rightarrow The function $\arcsin(x)$ is odd.

Remark 6.10 The following table contains some usual values for the function $\arcsin(x)$

$\sin(0) = 0$	$\arcsin(0) = 0$
$\sin(\frac{\pi}{6}) = \frac{1}{2}$	$\operatorname{arcsin}(\frac{1}{2}) = \frac{\pi}{6}$
$\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$	$\operatorname{arcsin}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$
$\sin(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}$	$\operatorname{arcsin}(\frac{\sqrt{3}}{2}) = \frac{\pi}{3}$
$\sin(\frac{\pi}{2}) = 1$	$\arcsin(1) = \frac{\pi}{2}$

The arcsine function is differentiable on]-1,1[and verifies:

$$\forall x \in]-1,1[; (\arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$

Proof

The function sin(x) has the following two properties:

- 1. $\sin(x)$ is differentiable on $] \frac{\pi}{2}, \frac{\pi}{2}[.$
- 2. $\forall x \in] -\frac{\pi}{2}, \frac{\pi}{2}[; (\sin(x))' = \cos(x) \neq 0$

 \implies (from proposition (5.3)), the function $\arcsin(x)$ is differentiable on]-1,1[and we have:

$$\forall x \in]-1,1[; (\arcsin(x))' = \frac{1}{\cos(\arcsin(x))}$$
(6.2)

Let $x \in]-1,1[$, and $y = \arcsin(x)$

$$\implies y \in] - \frac{\pi}{2}, \frac{\pi}{2}[\land \cos(y) > 0$$

Based on the relationship $\cos^2(y) + \sin^2(y) = 1$, we deduce that: $\cos(y) = \sqrt{1 - \sin^2(y)}$. Since for all $x \in [-1,1[$ we have: $\sin(\arcsin(x)) = x$

$$\implies \cos(\arcsin(x)) = \sqrt{1 - x^2}$$

From equation (6.2) we obtain:

$$\forall x \in]-1,1[; (arcsin(x))' = \frac{1}{\sqrt{1-x^2}}$$

Figure 6.13 – Graphical representation of the function $\arcsin(x)$

6.7.2 The Arccosine Function

In the variation table below, we have:

The function cos(x) is continuous and strictly decreasing on $[0,\pi]$, so the function cos(x) makes a bijection from $[0,\pi]$ into [-1,1].

Figure 6.14 – The function $\cos(x)$

Definition 6.11

The inverse function of the restriction of $\cos(x)$ on $[0,\pi]$ is called the accosine function and is denoted by $\arccos(x)$ or $\cos^{-1}(x)$:

$$\begin{array}{rcl} \arccos: & [-1,1] & \longrightarrow & [0,\pi] \\ & x & \longmapsto & \arccos(x) \end{array}$$

Proposition 6.22

The function $\arccos(x)$ has the following properties:

1. The function $\arccos(x)$ is continuous and strictly decreasing on [-1,1]. (From the inverse function theorem)

2.
$$\forall x \in [0,\pi]; \arccos(\cos(x) = x)$$
.

- 3. $\forall y \in [-1,1]; \cos(\arccos(y) = y)$.
- 4. $\forall x \in [0,\pi], \forall y \in [-1,1]; (\cos(x) = y \iff x = \arccos(y)).$
- 5. The function $\arccos(x)$ is neither even nor odd.

Remark 6.11 The table below shows some usual values for the function $\arccos(x)$.

$\cos(0) = 1$	$\arccos(1) = 0$
$\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$	$\operatorname{arccos}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6}$
$\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$	$\operatorname{arccos}(\frac{\sqrt{2}}{2}) = \frac{\pi}{4}$
$\cos(\frac{\pi}{3}) = \frac{1}{2}$	$\operatorname{arccos}(\frac{1}{2}) = \frac{\pi}{3}$
$\cos(\frac{\pi}{2}) = 0$	$\arccos(0) = \frac{\pi}{2}$

The arccosine function is differentiable on]-1,1[and verifies:

$$\forall x \in]-1,1[; (\arccos(x))' = -\frac{1}{\sqrt{1-x^2}}$$

Proof

We have the function $\cos(x)$ satisfying the following two properties:

- 1. $\cos(x)$ is differentiable on $]0,\pi[$.
- 2. $\forall x \in]0,\pi[; (\cos(x))' = -\sin(x) \neq 0$

 \implies (from proposition (6.3)), the function $\arccos(x)$ is differentiable on]-1,1[and we have:

$$\forall x \in]-1,1[; (\arccos(x))' = \frac{1}{-\sin(\arccos(x))}$$
(6.3)

Let $x \in]-1,1[$, and $y = \arccos(x)$

$$\implies y \in]0,\pi[\land \sin(y) > 0]$$

Using the relationship $\cos^2(y) + \sin^2(y) = 1$, we deduce that $\sin(y) = \sqrt{1 - \cos^2(y)}$. Since for any $x \in]-1,1[$ we have: $\cos(\arccos(x)) = x$, then we get:

$$\sin(\arccos(x)) = \sqrt{1 - x^2}$$

From equation (6.3) we obtain:

$$\forall x \in]-1,1[; (\arccos(x))' = -\frac{1}{\sqrt{1-x^2}}$$

Figure 6.15 – Graphical representation of the function $\arccos(x)$

6.7.3 The Arctangent function

The function $\tan(x) = \frac{\sin(x)}{\cos(x)}$ is defined on $D = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$. It is continuous and differentiable on its domain of definition and for all $x \in D$ we have:

$$(\tan(x))' = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

Consider the restriction of the function $\tan(x)$ on the interval $] -\frac{\pi}{2}, \frac{\pi}{2}[$, from the table of variation below we have: the function $\tan(x)$ is continuous and strictly increasing on $] -\frac{\pi}{2}, \frac{\pi}{2}[$, then the function $\tan(x)$ makes a bijection from $] -\frac{\pi}{2}, \frac{\pi}{2}[$ into \mathbb{R} .

Figure 6.16 – The function $\tan(x)$

Definition 6.12

We call the arctangent function $\arctan(x)$ or $\tan^{-1}(x)$ the inverse of the tangent function on $\left] -\frac{\pi}{2}, \frac{\pi}{2}\right[$ defined by:

 $\arctan:] - \infty, + \infty[\longrightarrow] - \frac{\pi}{2}, \frac{\pi}{2}[$ $x \longmapsto \arctan(x)$

Proposition 6.24

The function $\arctan(x)$ has the following properties:

- 1. The function $\arctan(x)$ is continuous and strictly increasing on \mathbb{R} , with values in $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$
- 2. $\forall x \in] -\frac{\pi}{2}, \frac{\pi}{2}[; \arctan(\tan(x)) = x$
- **3**. $\forall y \in \mathbb{R}$; $\tan(\arctan(y)) = y$.
- 4. $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \forall y \in \mathbb{R}; \tan(x) = y \iff x = \arctan(y)$
- 5. The function arctan(x) is odd.

Remark 6.12 The table below shows some usual values for the function $\arctan(x)$.

$\tan(0) = 0$	$\arctan(0) = 0$
$\tan(\frac{\pi}{6}) = \frac{1}{\sqrt{3}}$	$\arctan(\frac{1}{\sqrt{3}}) = \frac{\pi}{6}$
$\tan(\frac{\pi}{4}) = 1$	$\arctan(1) = \frac{\sqrt{2}}{2}$
$\tan(\frac{\pi}{3}) = \sqrt{3}$	$\arctan(\sqrt{3}) = \frac{\pi}{3}$

The function $\arctan(x)$ is differentiable on \mathbb{R} and verifies:

$$\forall x \in \mathbb{R}; \; (\arctan(x))' = \frac{1}{1+x^2}$$

\mathbf{Proof}

The function $\tan(x)$ has the following two properties:

1. The function $\tan(x)$ is differentiable on $] - \frac{\pi}{2}, \frac{\pi}{2}[$.

2.
$$\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[; (\tan(x))' = \frac{1}{\cos^2(x)} = 1 + \tan^2(x) \neq 0$$

From proposition (6.3), the function $\arctan(x)$ is differentiable on $\left] - \frac{\pi}{2}, \frac{\pi}{2}\right[$ and we have:

$$\forall x \in \mathbb{R}; \; (\arctan(x))' = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}$$

Figure 6.17 – Graphical representation of the function $\arctan(x)$

Proposition 6.26: (Some properties)

1. For any $x \in [-1,1]$ we have:

$$\arccos(x) + \arcsin(x) = \frac{\pi}{2}$$

2. For all $x \in \mathbb{R}^*_-$ we have:

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$$

3. For every $x \in \mathbb{R}^*_+$ we have:

$$\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$$

\mathbf{Proof}

We'll show properties (2) and (3). Set $f(x) = \arctan(x) + \arctan(\frac{1}{x})$. Since the functions $\frac{1}{x}$ and $\arctan(x)$ are differentiable on \mathbb{R}^*), the function f is differentiable on \mathbb{R}^* and we have:

$$f'(x) = \frac{1}{1+x^2} + \left(\frac{1}{x}\right)' \frac{1}{1+\left(\frac{1}{x}\right)^2} = \frac{1}{1+x^2} - \frac{1}{x^2} \left(\frac{x^2}{1+x^2}\right) = 0$$

From this we deduce that f is a constant function on each of the intervals $] - \infty, 0[$ and $]0, + \infty[$. On the other hand, we have:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\arctan(x) + \arctan\left(\frac{1}{x}\right) \right) = -\frac{\pi}{2}$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\arctan(x) + \arctan\left(\frac{1}{x}\right) \right) = \frac{\pi}{2}$$

so f can't be extended by continuity at 0. So we deduce that:

$$\exists C_1, C_2 \in \mathbb{R} \operatorname{tq}: f(x) = \begin{cases} C_1 & \text{if } x \in]0, +\infty[\\ C_2 & \text{if } x \in]-\infty, 0[\end{cases}$$

Since $f(1) = 2 \arctan(1) = 2\left(\frac{\pi}{4}\right) = \frac{\pi}{2} = C_1$ and $f(-1) = 2 \arctan(-1) = 2\left(-\frac{\pi}{4}\right) = -\frac{\pi}{2} = C_2$

$$\implies f(x) = \begin{cases} \frac{\pi}{2} & \text{if } x \in]0, +\infty[\\ -\frac{\pi}{2} & \text{if } x \in]-\infty, 0[\end{cases}$$

So $\forall x \in \mathbb{R}^*_-$; $\arctan(x) + \arctan\left(\frac{1}{x}\right) = -\frac{\pi}{2}$ and $\forall x \in \mathbb{R}^*_+$; $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

6.8 The inverse hyperbolic functions

6.8.1 The inverse of hyperbolic Sine function

From the above table of variation of sh(x) we have: sh(x) is continuous and strictly increasing on \mathbb{R} . Hence, it realizes a bijection from \mathbb{R} into \mathbb{R} .

Definition 6.13

The inverse function of the hyperbolic sine function on \mathbb{R} is denoted $\operatorname{argsh}(x)$ or $\operatorname{sh}^{-1}(x)$.

 $\begin{array}{rcl} \operatorname{argsh}: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{argsh}(x) \end{array}$

Proposition 6.27

The function $\operatorname{argsh}(x)$ has the following properties:

- 1. The function $\operatorname{argsh}(x)$ is defined on \mathbb{R} , it is continuous and strictly increasing on \mathbb{R} .
- 2. $\forall x \in \mathbb{R}; \operatorname{argsh}(\operatorname{sh}(x)) = x.$
- 3. $\forall y \in \mathbb{R}$; sh(argsh(y))=y.
- 4. $\forall (x,y) \in \mathbb{R}^2$; $y = \operatorname{sh}(x) \iff x = \operatorname{argsh}(y)$.
- 5. $\operatorname{argsh}(x)$ is odd function.

Proof

We'll show that $\operatorname{argsh}(x)$ is odd. Let $x \in \mathbb{R}$, and

$$y = \operatorname{argsh}(-x) \tag{6.4}$$

 $\begin{array}{l} (6.4) \Longleftrightarrow \operatorname{sh}(y) = -x \Longleftrightarrow \operatorname{sh}(-y) = x \; (\operatorname{Since} \, \operatorname{sh}(x) \; \operatorname{is} \; \operatorname{odd}) \\ \Longrightarrow \; -y = \operatorname{argsh}(x) \Longleftrightarrow y = -\operatorname{argsh}(x). \\ \operatorname{From} \; (6.4), \; \operatorname{we} \; \operatorname{get:} \; \operatorname{argsh}(-x) = -\operatorname{argsh}(x). \\ \operatorname{So}, \; \forall x \in \mathbb{R}; \; \operatorname{argsh}(-x) = -\operatorname{argsh}(x) \implies \operatorname{argsh}(x) \; \operatorname{is} \; \operatorname{odd}. \end{array}$

Proposition 6.28

The function $\operatorname{argsh}(x)$ is differentiable on $\mathbb R$ and verifies:

$$\forall x \in \mathbb{R}; \; (\operatorname{argsh}(x))' = \frac{1}{\sqrt{1+x^2}}$$

Proof

The sh(x) function verifies the following two properties:

1. $\operatorname{sh}(x)$ is differentiable on \mathbb{R} .

2.
$$\forall x \in \mathbb{R}; (\operatorname{sh}(x))' = \operatorname{ch}(x) = \frac{e^x + e^{-x}}{2} \neq 0$$

From proposition (6.3), the function $\operatorname{argsh}(x)$ is differentiable on \mathbb{R} :

$$\forall x \in \mathbb{R}; \ (\operatorname{argsh}(x))' = \frac{1}{\operatorname{sh}'(\operatorname{argsh}(x))} = \frac{1}{\operatorname{ch}(\operatorname{argsh}(x))}$$

On the other hand, we have: $ch(x)^2 - sh(x)^2 = 1 \implies ch(x) = \sqrt{1 + sh^2(x)}$ because ch(x) is positive function.

$$\implies \forall x \in \mathbb{R}; \text{ ch}(\operatorname{argsh}(x)) = \sqrt{1 + (\operatorname{sh}(\operatorname{argsh}(x))^2)} = \sqrt{1 + x^2}$$
$$\implies \forall x \in \mathbb{R}; (\operatorname{argsh}(x))' = \frac{1}{\sqrt{1 + x^2}}$$

Proposition 6.29

$$\forall x \in \mathbb{R}; \operatorname{argsh}(x) = \ln\left(x + \sqrt{1 + x^2}\right)$$

Figure 6.18 – Graphical representation of the function argsh(x)

6.8.2 The inverse hyperbolic cosine function

From the table of variation of the function ch(x) above we have: ch(x) is continuous and strictly increasing on $[0, +\infty[$. So it forms a bijection from $[0, +\infty[$ into $[1, +\infty[$.

Definition 6.14

The inverse function of the restriction of ch(x) on $[0, +\infty[$ is denoted by $\operatorname{argch}(x)$ or $ch^{-1}(x)$

 $\begin{array}{rcl} \operatorname{argch}: & [1, +\infty[& \longrightarrow & [0, +\infty[\\ & x & \longmapsto & \operatorname{argch}(x) \end{array} \end{array}$

Proposition 6.30

The $\operatorname{argch}(x)$ function has the following properties:

- 1. The function $\operatorname{argch}(x)$ is defined on $[1, +\infty[$, it is continuous and strictly increasing on $[1, +\infty[$.
- 2. $\forall x \in [0, +\infty[; \operatorname{argch}(\operatorname{ch}(x)) = x.$
- 3. $\forall y \in [1, +\infty[; \operatorname{ch}(\operatorname{argch}(y))=y]$.
- 4. $\forall x \in [0, +\infty[, \forall y \in [1, +\infty[; y = ch(x) \iff x = argch(y)).$

Proposition 6.31

The inverse hyperbolic cosine function is differentiable on $]1, +\infty[$ and verifies:

$$\forall x \in]1, +\infty[; (\operatorname{argch}(x))' = \frac{1}{\sqrt{x^2 - 1}}$$

Remark 6.13 The proof of proposition (6.31) is similar to the proof of proposition (6.28).

Proposition 6.32

$$\forall x \in]1, +\infty[; \operatorname{argch}(x) = \ln\left(x + \sqrt{x^2 - 1}\right)$$

Figure 6.19 – Graphical representation of the function argch(x)

6.8.3 The inverse hyperbolic tangent function

From the table of variation of the function th(x) above we have: th(x) is continuous and strictly increasing on \mathbb{R} . So it makes is a bijection from \mathbb{R} into]-1,1[.

Definition 6.15

The inverse function of the function th(x) on \mathbb{R} is denoted by $\operatorname{argth}(x)$ or $th^{-1}(x)$

 $\begin{array}{rcl} \operatorname{argth}: &]-1,1[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \operatorname{argth}(x) \end{array}$

Proposition 6.33

The function $\operatorname{argth}(x)$ has the following properties:

- 1. The function $\operatorname{argth}(x)$ is defined on]-1,1[, it is continuous and strictly increasing on]-1,1[.
- 2. $\forall x \in \mathbb{R}; \operatorname{argth}(\operatorname{th}(x)) = x.$
- 3. $\forall y \in]-1,1[; \operatorname{th}(\operatorname{argth}(y))=y.$
- 4. $\forall x \in \mathbb{R}, \forall y \in]-1, 1[; y = th(x) \iff x = argth(y).$
- 5. The $\operatorname{argth}(x)$ function is odd.

The function $\operatorname{argth}(x)$ is differentiable on]-1,1[and verifies:

$$\forall x \in]-1,1[; (\operatorname{argth}(x))' = \frac{1}{1-x^2}.$$

Proposition 6.35

$$\forall x \in]-1; 1[; \operatorname{argth}(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$$

Proof

Let
$$x \in]-1; 1[$$
, and $y = \operatorname{argth}(x)$.
We have:

$$\operatorname{th}(x) = \frac{e^y - e^{-y}}{e^y + e^{-y}} = \frac{e^{2y} - 1}{e^{2y} + 1}$$

$$\implies e^{2y} = \frac{1 + \operatorname{th}(y)}{1 - \operatorname{th}(y)} = \frac{1 + \operatorname{th}(\operatorname{argth}(x))}{1 - \operatorname{th}(\operatorname{argth}(x))} = \frac{1 + x}{1 - x}$$

$$\iff e^{2y} = \frac{1 + x}{1 - x} \iff 2y = \ln\left(\frac{1 + x}{1 - x}\right) \iff y = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$$

$$\implies \forall x \in]-1,1[; \operatorname{argth}(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right)$$

Figure 6.20 – Graphical representation of the function argth(x)