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6.1 An overview of inverse function
Let I be an interval of R, f a function defined on I and J = f(I). Our interest lies in the
existence of the inverse function of f , i.e the existence of a function f−1 from J into I such
that:

∀x ∈ I, f−1(f(x)) = x and ∀y ∈ J, f(f−1(y)) = y

Proposition 6.1: Existence of an inverse function

Let I be an interval and f a function defined on I. If f is continuous and strictly
monotone on I then f is a bijection from I to J = f(I) and admits a reciprocal function
f−1 from J to I which has the following properties:

1. f−1 is continuous on J .

2. f−1 is strictly monotonic on J and has the same direction of monotonicity as f .

3. f−1 is bijective.

Remark 6.1 The graphical representations of f and f−1 are symmetrical with respect to the
line with equation y = x.

1



Chapter 06 Usual functions

Example 6.1

Let f be a function defined by:

f : R∗
+ −→ R
x 7−→ f(x) = ln(x)

We have:

x

f(x)

0 +∞

−∞

+∞+∞

Set I = R∗
+, then J = f(I) =] − ∞, + ∞[= R

From the table of variations of f we have:

1. f is continuous on I

2. f is strictly increasing on I

then f admits an inverse function f−1 denoted by ex or exp(x) defined by:

f−1 : R →]0, + ∞[
x 7→ f−1(x) = ex

Proposition 6.2: (Differentiability at a point)

Let f : I → J be a bijective and differentiable function at x0 ∈ I.
If we have f ′(x0) ̸= 0 then f−1 is differentiable at y0 = f(x0) and moreover:

(f−1)′(y0) = 1
f ′(x0)

Proposition 6.3: (Differentiability on an interval)

Let f : I → J be a bijective and differentiable function on I (with I is an open interval).
If we have: ∀x ∈ I; f ′(x) ̸= 0, then f−1 is differentiable on J and moreover:

∀y ∈ J ; (f−1)′(y) = 1
f ′(f−1(y))
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Example 6.2

Let f(x) = ln(x) and I = R∗
+, then J = f(I) = R. From the previous example, f is

bijective from I into J and admits an inverse function f−1(x) = ex.
We have: for all x ∈ R∗

+, f(x) is differentiable and moreover f ′(x) = 1
x

̸= 0. According
to proposition (5.3) f−1 is differentiable on J = R and

∀y ∈ R; (f−1)′(y) = (ey)′ = 1
f ′(f−1(y)) = 1

1
ey

= ey

Remark 6.2 In the previous formula, we can replace y by x and write:

∀x ∈ R; (ex)′ = ex

6.2 Logarithmic Functions

6.2.1 The neperian logarithm function

Definition 6.1

The function that satisfies the following two conditions is called the neperian logarithm
function and is denoted by ln:

1. ∀x ∈ R∗
+; (ln(x))′ = 1

x

2. ln(1) = 0

Remark 6.3 (Properties of derivatives)

1. According to the previous definition, the function ln(x) is differentiable on R∗
+ and ∀x ∈

R∗
+; (ln(x))′ = 1

x
.

2. The function ln(|x|) is differentiable on R∗ and ∀x ∈ R∗; (ln(|x|))′ = 1
x

3. Let g be a function differentiable and non-zero on I then the function ln(|g(x)| is diffe-

rentiable on I and its derivative: (ln(|g(x)|)′ = g′(x)
g(x)
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Proposition 6.4: (Limits and classical inequalities)

1. lim
x→+∞

ln(x) = +∞

2. lim
x→0+

ln(x) = −∞

3. lim
x→+∞

ln(x)
x

= 0

4. lim
x→+∞

ln(x)
xα

= 0 (with α ∈ R∗
+).

5. lim
x→0+

x ln(x) = 0

6. lim
x→0

ln(x + 1)
x

= 1

7. ∀x ∈] − 1, + ∞[; ln(x + 1) ≤ x

‘

x

y

−3 −1 1 e 3

−3

−1

0

1

3

ln(x)

Figure 6.1 – Graphical representation of the function ln(x)

Proposition 6.5: (Algebraic properties of the function ln(x))

For all x,y ∈ R∗
+ and α ∈ Q, we have the following properties:

1. ln(x × y) = ln(x) + ln(y)

2. ln
(

x

y

)
= ln(x) − ln(y)

3. ln
(1

x

)
= − ln(x)

4. ln(xα) = α ln(x)
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6.2.2 The logarithmic function with base a

Definition 6.2

Let a ∈]0,1[∪]1, + ∞[.
We call the logarithm function with base a and denote loga, the function defined by:

∀x ∈]0, + ∞[; loga(x) = ln(x)
ln(a)

x

y

−3 −1 1 e 3

−3

−1

0

1

3

ln(x)

log2(x)

log 1
2
(x)

Figure 6.2 – Graphical representation of the logarithmic functions and logarithms with base a

for a = 1
2 , a = 2

Remark 6.4 (Properties of the function loga)

1. We have: ln(x) = loge(x) i.e., the neperian logarithm function is the logarithm function
with base e.

2. The logarithm function with base a verifies relations analogous to those stated for the
neperian logarithm function.

6.3 Exponential Functions

6.3.1 The exponential function
Definition 6.3

The inverse function of the function ln(x) is called the exponential function and is denoted
by: exp(x) or ex, and satisfies the following properties:

1. ∀x ∈]0, + ∞[; x = eln(x)

2. ∀y ∈ R; y = ln(ey)

5



Chapter 06 Usual functions

Proposition 6.6

1. The function ex is continuous and strictly increasing on R.

2. The function ex is differentiable on R and we have: ∀x ∈ R; (ex)′ = ex

3. If u is differentiable on I then: the function eu(x) is differentiable on I and its
derivative defined by: ∀x ∈ I; (eu(x))′ = u′(x).eu(x)

Proposition 6.7: (Limits and inequalities)

1. lim
x→−∞

ex = 0

2. lim
x→+∞

ex = +∞

3. lim
x→+∞

xe−x = 0, lim
x→+∞

xα

ex
= 0, lim

x→+∞

ex

xα
= +∞ (with α ∈ R)

4. lim
x→0

ex − 1
x

= 1

5. ∀x ∈ R; ex ≥ 1 + x

x

y

−3 −1 1 e 3

−3

−1

0

1

3

ln(x)ex

Figure 6.3 – Graphical representation of the function ex
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Proposition 6.8: (Algebraic properties of the function ex)

For all x,y ∈ R and α ∈ Q, we have:

1. ex+y = ex × ey

2. e−x = 1
ex

3. ex−y = ex

ey

4. eαx = (ex)α

6.3.2 The exponential function with base a

Definition 6.4

Let a ∈]0,1[∪]1,∞[.
The inverse function of the function loga(x) is called the exponential function with base
a and is denoted ax:

1. ∀x ∈ R; ax = ex ln(a)

2. ∀x ∈ R; loga(ax) = loga(ex ln(a)) = ln(ex ln(a))
ln(a) = x

Remark 6.5 The function ax is differentiable on R and we have:

∀x ∈ R; (ax)′ = ln(a)ax
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x

y

−3 −1 1 3

−3

−1

0

1

3

(1
2)x

10x

Figure 6.4 – Graphical representation of functions 10x et
(1

2

)x

Remark 6.6 The exponential function with base a verifies similar properties to those of the
exponential function.

6.4 Power functions
Definition 6.5

Let α ∈ R, we name power function of exponent α, the function defined by:

∀x ∈]0, + ∞[; xα = eα ln(x)

Remark 6.7 If n ∈ N∗, we have :

en ln(x) = e

n∑
k=1

ln(x)
=

k=n∏
k=1

eln(x) =
k=n∏
k=1

x = x × x × .... × x︸ ︷︷ ︸
nfois

= xn

Proposition 6.9

1. For α ∈ R∗, the power function with exponent α is a continuous function on ]0,+∞[
and strictly monotonic (strictly increasing if α > 0 and strictly decreasing if α < 0).

2. It is differentiable on ]0, + ∞[ with derivative : (xα)′ = αxα−1, ∀x ∈]0, + ∞[

3. We have:

lim
x→+∞

xα =


0, si α < 0
1, si α = 0
+∞, si α > 0

and lim
x→0+

xα =


+∞, si α < 0
1, si α = 0
0, si α > 0

8



Chapter 06 Usual functions

x

y

−3 −1 1 3

−3

−1

0

1

3
y = x−2.5

y = x

y = x
1
3

Figure 6.5 – Graphical representation of functions xα, with α = −2.5,1,
1
3

Proposition 6.10

For x ∈ R∗
+ and α,β ∈ R we have the following relationships:

1. xα+β = xαxβ.

2. x−α = 1
xα

.

3. xα−β = xα

xβ
.

4. xαβ = (xα)β = (xβ)α.
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6.5 Circular (or trigonometric) functions

6.5.1 Recalls on the functions cos(x) and sin(x).
Proposition 6.11

The functions


x 7−→ cos(x)

and
x 7−→ sin(x)

are defined on R and satisfy the following properties:

1. ∀x ∈ R; |cos(x)| ≤ 1 ∧ |sin(x)| ≤ 1

2. cos(x) and sin(x) are 2π-periodic i.e.:

∀x ∈ R;


cos(x + 2π) = cos(x)

and
sin(x + 2π) = sin(x)

3. The function cos(x) is even and the function sin(x) is odd, i.e.:

∀x ∈ R;


cos(−x) = cos(x)

and
sin(−x) = − sin(x)

4. The functions cos(x) and sin(x) belong to C∞(R) and we have:

a ∀x ∈ R;


(cos(x))′ = − sin(x)

and
(sin(x))′ = cos(x)

b ∀x ∈ R,∀n ∈ N;


cos(n)(x) = cos(x + nπ

2 )
and

sin(n)(x) = sin(x + nπ
2 )

x

y

−1

1

−2π −3π
2

−π −π
2 0 π

2
π 3π

2
2π

sin(x)

cos(x)

2π

Figure 6.6 – Graphical representation of functions sin(x) and cos(x)
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Proposition 6.12: (Formules d’addition)

For all (x,y) ∈ R2, we have the following formulas:

• cos(x + y) = cos(x) cos(y) − sin(x) sin(y)

• cos(x − y) = cos(x) cos(y) + sin(x) sin(y)

• sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

• sin(x − y) = sin(x) cos(y) − cos(x) sin(y)

• cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 = 1 − 2 sin2(x)

• sin(2x) = 2 sin(x) cos(x)

• sin(x) + sin(y) = 2 sin
(

x+y
2

)
cos

(
x−y

2

)
• sin(x) − sin(y) = 2 cos

(
x+y

2

)
sin

(
x−y

2

)
• cos(x) + cos(y) = 2 cos

(
x+y

2

)
cos

(
x−y

2

)
• cos(x) − cos(y) = −2 sin

(
x+y

2

)
sin

(
x−y

2

)

6.5.2 Recall about the function tan(x)

Definition 6.6

The tangent function is one of the main trigonometric functions and defined by:

tan : R\{π
2 + kπ/k ∈ Z} −→ R

x 7−→ tan(x) = sin(x)
cos(x)

Proposition 6.13

The function tan(x) is differentiable on R\{π
2 + kπ/k ∈ Z} and we have:

∀x ∈ R\{π

2 + kπ/k ∈ Z}; (tan(x))′ = 1
cos2(x) = 1 + tan2(x)
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x

y

−1

1

−2π −3π
2

−π −π
2 0 π

2
π 3π

2
2π

π

x = π
2 x = 3π

2x = −π
2x = −3π

2

y = tan(x)

Figure 6.7 – Graphical representation of the function tan(x)

Proposition 6.14

The function tan(x) checks the following properties:

1. The function tan(x) is π-periodic i.e :

∀x ∈ R\{π

2 + kπ/k ∈ Z}; tan(x + π) = tan(x)

2. For any x,y ∈ R\{π
2 + kπ/k ∈ Z} we have:

tan(x + y) = tan(x) + tan(y)
1 − tan(x) tan(y)

and

tan(x − y) = tan(x) − tan(y)
1 + tan(x) tan(y)

3. ∀x ∈ R\{π
2 + kπ/k ∈ Z}; tan(2x) = 2 tan(x)

1 − tan2(x)
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Proposition 6.15: (Some usual limits)

1. lim
x→0

sin(x)
x

= 1

2. lim
x→0

1 − cos(x)
x2 = 1

2

3. lim
x→0

cos(x) − 1
x

= 0

4. lim
x→− π

2

tan(x) = −∞

5. lim
x→+ π

2

tan(x) = +∞

6. lim
x→0

tan(x)
x

= 1

6.6 Hyperbolic Functions

6.6.1 Hyperbolic cosine, sine and tangent functions
Any function f defined on R can be uniquely decomposed into a sum of two functions fev and
fod where fev is an even function and fod is an odd function. This means for every x ∈ R we
can write

f(x) = f(x) + f(−x)
2 + f(x) − f(−x)

2
and we choose 

fp(x) = f(x) + f(−x)
2

et

fi(x) = f(x) − f(−x)
2

Remark 6.8 We can easily check that this decomposition is unique, and fev is an even function
and fod is an odd function.

Definition 6.7: (Hyperbolic cosine)

We call the hyperbolic cosine function and denoted (ch or cosh), the even part of the
exponential function defined by:

ch : R −→ R

x 7−→ ch(x) = ex + e−x

2

Definition 6.8: (Hyperbolic sine)

The hyperbolic sine function, denoted by (sh or sinh), is the odd part of the exponential
function defined by:

sh : R −→ R

x 7−→ sh(x) = ex − e−x

2

13
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Definition 6.9: (Hyperbolic tangent)

The hyperbolic tangent function, denoted by (th or tanh), is the quotient of the hyperbolic
sine function with the hyperbolic cosine function and defined by:

th : R −→ R

x 7−→ th(x) = sh(x)
ch(x) = ex − e−x

ex + e−x

Proposition 6.16

• The function ch(x) is a function defined on R, continuous and even.

• The function sh(x) is a function defined on R, continuous and odd.

• The function th(x) is a function defined on R, continuous and odd.

• The functions ch(x), sh(x) and th(x) are differentiable on R and their derivatives
are defined by:

∀x ∈ R;



(ch(x))′ = sh(x)

(sh(x))′ = ch(x)

(th(x))′ = 1
ch(x)2 = 1 − th(x)2

14
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Proof

These properties can be verified using the properties of the ex function. In our proof,
we’re interested with the function th(x).
We have:

∀x ∈ R; th(x) = ex − e−x

ex + e−x

• The continuity: The functions (ex − e−x) and (ex + e−x) are continuous on R, with

ex + e−x ̸= 0 then the quotient function ex − e−x

ex + e−x
is continuous on R =⇒ th(x) is

continuous on R

• The parity: We have:

∀x ∈ R; th(−x) = e−x − ex

e−x + ex
= −ex − e−x

ex + e−x
= −th(x)

So th(x) is odd.

• The differentiability: The functions (ex − e−x) et (ex + e−x) are differentiable on

R, with ex + e−x ̸= 0 then the quotient function ex − e−x

ex + e−x
is differentiable on

R =⇒ th(x) is differentiable on R and we have:

∀x ∈ R; (th(x))′ =
(

ex − e−x

ex + e−x

)′

= (ex + e−x)(ex + e−x) − (ex − e−x)(ex − e−x)
(ex + e−x)2

⇐⇒ th(x)′ = 1 −
(

ex − e−x

ex + e−x

)2

= 1 − th(x)2

also th(x)′ = 4
(ex + e−x)2 = 1

ch(x)2 .

Remark 6.9 The functions ch(x),sh(x) and th(x) have the following properties:

1. ch(0) = 1, sh(0) = 0 and th(0) = 0.

2. lim
x→−∞

sh(x) = −∞, lim
x→−∞

ch(x) = +∞ and lim
x→−∞

th(x) = −1

3. lim
x→+∞

sh(x) = +∞, lim
x→+∞

ch(x) = +∞ and lim
x→+∞

th(x) = 1

Therefore, the above results can be grouped together in tabular form.
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x

sh(x)′ = ch(x)

sh(x)

−∞ 0 +∞

+

−∞−∞

+∞+∞
0

(a) Function sh(x)

x

ch(x)′ = sh(x)

ch(x)

−∞ 0 +∞

− 0 +

+∞+∞

11

+∞+∞

(b) Function ch(x)

Figure 6.8 – Functions sh(x) and ch(x)

x

th(x)′ = 1
ch(x)2

th(x)

−∞ 0 +∞

+

−1−1

11
0

Figure 6.9 – Function th(x)

x

y

−3 −1 1 3

−3

−1

0

1

3
y = sh(x)

x

y

−3 −1 1 3

−3

−1

0

1

3
y = ch(x)

Figure 6.10 – Graphical representation of functions sh(x) et ch(x)
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x

y

−3 −1 1 3

−3

−1

0

1

3

y = th(x)

Figure 6.11 – Graphical representation of the function th(x)

Proposition 6.17

For every real x, we have:

• ch(x) + sh(x) = ex

• ch(x) − sh(x) = e−x

• ch(x)2 − sh(x)2 = 1

Proposition 6.18: (Addition formulas)

For all (x,y) ∈ R2, we have the following formulas:

• ch(x + y) = ch(x)ch(y) + sh(x)sh(y)

• ch(x − y) = ch(x)ch(y) − sh(x)sh(y)

• sh(x + y) = sh(x)ch(y) + ch(x)sh(y)

• sh(x − y) = sh(x)ch(y) − ch(x)sh(y)

• th(x + y) = th(x) + th(y)
1 + th(x)th(y)

• th(x − y) = th(x) − th(y)
1 − th(x)th(y)

17
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Proof

We prove these formulas by using the expressions of hyperbolic functions with the expo-
nential function. We have:

ch(x)ch(y) + sh(x)sh(y) = 1
4
(
(ex + e−x)(ey + e−y) + (ex − e−x)(ey − e−y)

)
= 1

4
(
2exey + 2e−xe−y

)
= 1

2
(
e(x+y) + e−(x+y)

)
= ch(x + y).

The other relations are shown using the same method.

Proposition 6.19: (Some usual limits of hyperbolic functions)

1. lim
x→+∞

ch(x)
ex

= 1
2

2. lim
x→+∞

sh(x)
ex

= 1
2

3. lim
x→0

sh(x)
x

= 1

4. lim
x→0

ch(x) − 1
x2 = 1

2

6.7 Inverse Trigonometric Functions

6.7.1 The function arc-sinus

According to the variation table below, we have:
The function sin(x) is continuous and strictly increasing on [−π

2 ,π
2 ], then the function sin(x)

represents a bijection from [−π
2 ,π

2 ] to [−1,1].

x

sin(x)′ = cos(x)

sin(x)

−π
2 0 +π

2

+

−1−1

11
0

Figure 6.12 – Function sin(x)
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Definition 6.10

The inverse function of the restriction of sin(x) on [−π
2 ,π

2 ] is called the arcsine function
and is denoted by arcsin(x) or sin−1(x):

arcsin : [−1,1] −→ [−π
2 ,π

2 ]
x 7−→ arcsin(x)

Proposition 6.20

The function arcsin(x) has the following properties:

1. The function arcsin(x) is continuous and strictly increasing on [−1,1]. (According
to the inverse function theorem)

2. ∀x ∈ [−π
2 ,π

2 ]; arcsin(sin(x) = x.

3. ∀y ∈ [−1,1]; sin(arcsin(y) = y.

4. ∀x ∈ [−π
2 ,π

2 ],∀y ∈ [−1,1]; (sin(x) = y ⇐⇒ x = arcsin(y)).

5. The function arcsin(x) is odd.

Proof

Let’s prove property (5).

1. The function arcsin(x) is defined on [−1,1], so in this case the domain of definition
is symmetric about 0.

2. Let x ∈ [−1,1] and:
arcsin(−x) = y (6.1)

⇔ −x = sin(y) ⇔ x = − sin(y) ⇔ x = sin(−y) (Since sin(x) is odd)
We have: y ∈ [−π

2 ,π
2 ] =⇒ −y ∈ [−π

2 ,π
2 ]

So we obtain: arcsin(x) = −y ⇔ − arcsin(x) = y
From equation (6.1) we get: arcsin(−x) = − arcsin(x)

=⇒ The function arcsin(x) is odd.

Remark 6.10 The following table contains some usual values for the function arcsin(x)

sin(0) = 0 arcsin(0) = 0

sin(π
6 ) = 1

2 arcsin(1
2) = π

6

sin(π
4 ) =

√
2

2 arcsin(
√

2
2 ) = π

4

sin(π
3 ) =

√
3

2 arcsin(
√

3
2 ) = π

3

sin(π
2 ) = 1 arcsin(1) = π

2
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Proposition 6.21

The arcsine function is differentiable on ] − 1,1[ and verifies:

∀x ∈] − 1,1[; (arcsin(x))′ = 1√
1 − x2

Proof

The function sin(x) has the following two properties:

1. sin(x) is differentiable on ] − π
2 ,π

2 [.

2. ∀x ∈] − π
2 ,π

2 [; (sin(x))′ = cos(x) ̸= 0

=⇒ (from proposition (5.3)), the function arcsin(x) is differentiable on ] − 1,1[ and
we have:

∀x ∈] − 1,1[; (arcsin(x))′ = 1
cos(arcsin(x)) (6.2)

Let x ∈] − 1,1[, and y = arcsin(x)

=⇒ y ∈] − π

2 ,
π

2 [ ∧ cos(y) > 0

Based on the relationship cos2(y) + sin2(y) = 1, we deduce that: cos(y) =
√

1 − sin2(y).
Since for all x ∈] − 1,1[ we have: sin(arcsin(x)) = x

=⇒ cos(arcsin(x)) =
√

1 − x2

From equation (6.2) we obtain:

∀x ∈] − 1,1[; (arcsin(x))′ = 1√
1 − x2

.

x

y

1

−1

−π
2

π
2

1

−1

−π
2

π
2

1

−1

−π
2

π
2

1

−1

−π
2

π
2

−2 −1 π
2−π

2 0 1 2

y = arcsin(x)

y = sin(x)

Figure 6.13 – Graphical representation of the function arcsin(x)
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6.7.2 The Arccosine Function

In the variation table below, we have:
The function cos(x) is continuous and strictly decreasing on [0,π], so the function cos(x) makes
a bijection from [0,π] into [−1,1].

x

(cos(x))′ = − sin(x)

cos(x)

0 π

−

11

−1−1

Figure 6.14 – The function cos(x)

Definition 6.11

The inverse function of the restriction of cos(x) on [0,π] is called the arccosine function
and is denoted by arccos(x) or cos−1(x) :

arccos : [−1,1] −→ [0,π]
x 7−→ arccos(x)

Proposition 6.22

The function arccos(x) has the following properties:

1. The function arccos(x) is continuous and strictly decreasing on [−1,1]. ( From the
inverse function theorem)

2. ∀x ∈ [0,π]; arccos(cos(x) = x.

3. ∀y ∈ [−1,1]; cos(arccos(y) = y.

4. ∀x ∈ [0,π],∀y ∈ [−1,1]; (cos(x) = y ⇐⇒ x = arccos(y)).

5. The function arccos(x) is neither even nor odd.

Remark 6.11 The table below shows some usual values for the function arccos(x).

cos(0) = 1 arccos(1) = 0

cos(π
6 ) =

√
3

2 arccos(
√

3
2 ) = π

6

cos(π
4 ) =

√
2

2 arccos(
√

2
2 ) = π

4

cos(π
3 ) = 1

2 arccos(1
2) = π

3

cos(π
2 ) = 0 arccos(0) = π

2
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Proposition 6.23

The arccosine function is differentiable on ] − 1,1[ and verifies:

∀x ∈] − 1,1[; (arccos(x))′ = − 1√
1 − x2

Proof

We have the function cos(x) satisfying the following two properties:

1. cos(x) is differentiable on ]0,π[.

2. ∀x ∈]0,π[; (cos(x))′ = − sin(x) ̸= 0

=⇒ (from proposition (6.3)), the function arccos(x) is differentiable on ] − 1,1[ and
we have:

∀x ∈] − 1,1[; (arccos(x))′ = 1
− sin(arccos(x)) (6.3)

Let x ∈] − 1,1[, and y = arccos(x)

=⇒ y ∈]0,π[ ∧ sin(y) > 0

Using the relationship cos2(y) + sin2(y) = 1, we deduce that sin(y) =
√

1 − cos2(y).
Since for any x ∈] − 1,1[ we have: cos(arccos(x)) = x, then we get:

sin(arccos(x)) =
√

1 − x2

From equation (6.3) we obtain:

∀x ∈] − 1,1[; (arccos(x))′ = − 1√
1 − x2

.

x

y

−1 0−1 1 π
2

π

−1

1

π
2

π
y = arccos(x)

y = cos(x)

Figure 6.15 – Graphical representation of the function arccos(x)
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6.7.3 The Arctangent function

The function tan(x) = sin(x)
cos(x) is defined on D = R\{π

2 + kπ : k ∈ Z}. It is continuous and
differentiable on its domain of definition and for all x ∈ D we have:

(tan(x))′ = 1
cos2(x) = 1 + tan2(x)

Consider the restriction of the function tan(x) on the interval ] − π
2 , π

2 [, from the table of
variation below we have: the function tan(x) is continuous and strictly increasing on ] − π

2 , π
2 [,

then the function tan(x) makes a bijection from ] − π
2 , π

2 [ into R.

x

(tan(x))′ = 1
cos2

tan(x)

−π
2

π
2

+

−∞−∞

+∞+∞

Figure 6.16 – The function tan(x)

Definition 6.12

We call the arctangent function arctan(x) or tan−1(x) the inverse of the tangent function
on ] − π

2 , π
2 [ defined by:

arctan : ] − ∞, + ∞[ −→ ] − π
2 , π

2 [
x 7−→ arctan(x)

Proposition 6.24

The function arctan(x) has the following properties:

1. The function arctan(x) is continuous and strictly increasing on R, with values in
] − π

2 , π
2 [

2. ∀x ∈] − π
2 , π

2 [; arctan(tan(x)) = x

3. ∀y ∈ R; tan(arctan(y)) = y.

4. ∀x ∈] − π
2 , π

2 [,∀y ∈ R; tan(x) = y ⇐⇒ x = arctan(y)

5. The function arctan(x) is odd.

Remark 6.12 The table below shows some usual values for the function arctan(x).

23



Chapter 06 Usual functions

tan(0) = 0 arctan(0) = 0

tan(π
6 ) = 1√

3 arctan( 1√
3) = π

6

tan(π
4 ) = 1 arctan(1) =

√
2

2

tan(π
3 ) =

√
3 arctan(

√
3) = π

3

Proposition 6.25

The function arctan(x) is differentiable on R and verifies:

∀x ∈ R; (arctan(x))′ = 1
1 + x2

Proof

The function tan(x) has the following two properties:

1. The function tan(x) is differentiable on ] − π
2 ,π

2 [.

2. ∀x ∈] − π
2 ,π

2 [; (tan(x))′ = 1
cos2(x) = 1 + tan2(x) ̸= 0

From proposition (6.3), the function arctan(x) is differentiable on ] − π
2 ,π

2 [ and we have:

∀x ∈ R; (arctan(x))′ = 1
1 + tan2(arctan(x)) = 1

1 + x2

x

y

−π
2

0 π
2

−π
2

π
2 y = arctan(x)

y = tan(x)

Figure 6.17 – Graphical representation of the function arctan(x)
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Proposition 6.26: (Some properties)

1. For any x ∈ [−1,1] we have:

arccos(x) + arcsin(x) = π

2

2. For all x ∈ R∗
− we have:

arctan(x) + arctan
(1

x

)
= −π

2

3. For every x ∈ R∗
+ we have:

arctan(x) + arctan
(1

x

)
= π

2

Proof

We’ll show properties (2) and (3).
Set f(x) = arctan(x) + arctan

(
1
x

)
.

Since the functions 1
x

and arctan(x) are differentiable on R∗), the function f is differen-
tiable on R∗ and we have:

f ′(x) = 1
1 + x2 +

(1
x

)′ 1
1 +

(
1
x

)2 = 1
1 + x2 − 1

x2

(
x2

1 + x2

)
= 0

From this we deduce that f is a constant function on each of the intervals ] − ∞,0[ and
]0, + ∞[. On the other hand, we have:

lim
x→0−

f(x) = lim
x→0−

(
arctan(x) + arctan

(1
x

))
= −π

2

and
lim

x→0+
f(x) = lim

x→0+

(
arctan(x) + arctan

(1
x

))
= π

2
so f can’t be extended by continuity at 0. So we deduce that:

∃C1,C2 ∈ R tq:f(x) =
C1 if x ∈]0, + ∞[

C2 if x ∈] − ∞,0[

Since f(1) = 2 arctan(1) = 2
(

π

4

)
= π

2 = C1

and f(−1) = 2 arctan(−1) = 2
(

−π

4

)
= −π

2 = C2

=⇒ f(x) =


π
2 if x ∈]0, + ∞[

−π
2 if x ∈] − ∞,0[

So ∀x ∈ R∗
−; arctan(x) + arctan

(1
x

)
= −π

2 and ∀x ∈ R∗
+; arctan(x) + arctan

(1
x

)
= π

2
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6.8 The inverse hyperbolic functions

6.8.1 The inverse of hyperbolic Sine function

From the above table of variation of sh(x) we have: sh(x) is continuous and strictly increasing
on R. Hence, it realizes a bijection from R into R.

Definition 6.13

The inverse function of the hyperbolic sine function on R is denoted argsh(x) or sh−1(x).

argsh : R −→ R
x 7−→ argsh(x)

Proposition 6.27

The function argsh(x) has the following properties:

1. The function argsh(x) is defined on R, it is continuous and strictly increasing on
R.

2. ∀x ∈ R; argsh(sh(x))=x.

3. ∀y ∈ R; sh(argsh(y))=y.

4. ∀(x,y) ∈ R2; y = sh(x) ⇐⇒ x = argsh(y).

5. argsh(x) is odd function.

Proof

We’ll show that argsh(x) is odd.
Let x ∈ R, and

y = argsh(−x) (6.4)

(6.4)⇐⇒ sh(y) = −x ⇐⇒ sh(−y) = x (Since sh(x) is odd)
=⇒ −y = argsh(x) ⇐⇒ y = −argsh(x).
From (6.4), we get: argsh(−x) = −argsh(x).
So, ∀x ∈ R; argsh(−x) = −argsh(x) =⇒ argsh(x) is odd.

Proposition 6.28

The function argsh(x) is differentiable on R and verifies:

∀x ∈ R; (argsh(x))′ = 1√
1 + x2

.
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Proof

The sh(x) function verifies the following two properties:

1. sh(x) is differentiable on R.

2. ∀x ∈ R; (sh(x))′ = ch(x) = ex + e−x

2 ̸= 0

From proposition (6.3), the function argsh(x) is differentiable on R :

∀x ∈ R; (argsh(x))′ = 1
sh′(argsh(x)) = 1

ch(argsh(x))

On the other hand, we have: ch(x)2 − sh(x)2 = 1 =⇒ ch(x) =
√

1 + sh2(x) because
ch(x) is positive function.

=⇒ ∀x ∈ R; ch(argsh(x)) =
√

1 + (sh(argsh(x))2 =
√

1 + x2

=⇒ ∀x ∈ R; (argsh(x))′ = 1√
1 + x2

.

Proposition 6.29

∀x ∈ R; argsh(x) = ln
(
x +

√
1 + x2

)

x

y

−1 0 1

−1

1

y = sh(x)

y = argsh(x)

Figure 6.18 – Graphical representation of the function argsh(x)
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6.8.2 The inverse hyperbolic cosine function
From the table of variation of the function ch(x) above we have:
ch(x) is continuous and strictly increasing on [0, + ∞[. So it forms a bijection from [0, + ∞[
into [1, + ∞[.

Definition 6.14

The inverse function of the restriction of ch(x) on [0, + ∞[ is denoted by argch(x) or
ch−1(x)

argch : [1, + ∞[ −→ [0, + ∞[
x 7−→ argch(x)

Proposition 6.30

The argch(x) function has the following properties:

1. The function argch(x) is defined on [1,+∞[, it is continuous and strictly increasing
on [1, + ∞[.

2. ∀x ∈ [0, + ∞[; argch(ch(x))=x.

3. ∀y ∈ [1, + ∞[; ch(argch(y))=y.

4. ∀x ∈ [0, + ∞[,∀y ∈ [1, + ∞[; y = ch(x) ⇐⇒ x = argch(y).

Proposition 6.31

The inverse hyperbolic cosine function is differentiable on ]1, + ∞[ and verifies:

∀x ∈]1, + ∞[; (argch(x))′ = 1√
x2 − 1

Remark 6.13 The proof of proposition (6.31) is similar to the proof of proposition (6.28).

Proposition 6.32

∀x ∈]1, + ∞[; argch(x) = ln
(
x +

√
x2 − 1

)
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x

y

−1 0 1

−1

1

y = ch(x)

y = argch(x)

Figure 6.19 – Graphical representation of the function argch(x)

6.8.3 The inverse hyperbolic tangent function

From the table of variation of the function th(x) above we have: th(x) is continuous and strictly
increasing on R. So it makes is a bijection from R into ] − 1,1[.

Definition 6.15

The inverse function of the function th(x) on R is denoted by argth(x) or th−1(x)

argth : ] − 1,1[ −→ R
x 7−→ argth(x)

Proposition 6.33

The function argth(x) has the following properties:

1. The function argth(x) is defined on ] − 1,1[, it is continuous and strictly increasing
on ] − 1,1[.

2. ∀x ∈ R; argth(th(x))=x.

3. ∀y ∈] − 1,1[; th(argth(y))=y.

4. ∀x ∈ R,∀y ∈] − 1,1[; y = th(x) ⇐⇒ x = argth(y).

5. The argth(x) function is odd.
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Proposition 6.34

The function argth(x) is differentiable on ] − 1,1[ and verifies:

∀x ∈] − 1,1[; (argth(x))′ = 1
1 − x2 .

Proposition 6.35

∀x ∈] − 1; 1[; argth(x) = 1
2 ln

(1 + x

1 − x

)

Proof

Let x ∈] − 1; 1[, and y = argth(x).
We have:

th(x) = ey − e−y

ey + e−y
= e2y − 1

e2y + 1

=⇒ e2y = 1 + th(y)
1 − th(y) = 1 + th(argth(x))

1 − th(argth(x)) = 1 + x

1 − x

⇐⇒ e2y = 1 + x

1 − x
⇐⇒ 2y = ln

(1 + x

1 − x

)
⇐⇒ y = 1

2 ln
(1 + x

1 − x

)

=⇒ ∀x ∈] − 1,1[; argth(x) = 1
2 ln

(1 + x

1 − x

)

x

y

−1 0 1

−1

1
y = th(x)

y = argth(x)

Figure 6.20 – Graphical representation of the function argth(x)
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