Usual functions

Contents

6.1 An overview of inverse function 1
6.2 Logarithmic Functions 3
6.3 Exponential Functions 5
6.4 Power functions 8
6.5 Circular (or trigonometric) functions 10
6.6 Hyperbolic Functions 13
6.7 Inverse Trigonometric Functions 18
6.8 The inverse hyperbolic functions 26

6.1 An overview of inverse function

Let I be an interval of \mathbb{R}, f a function defined on I and $J=f(I)$. Our interest lies in the existence of the inverse function of f, i.e the existence of a function f^{-1} from J into I such that:

$$
\forall x \in I, f^{-1}(f(x))=x \quad \text { and } \quad \forall y \in J, f\left(f^{-1}(y)\right)=y
$$

Proposition 6.1: Existence of an inverse function

Let I be an interval and f a function defined on I. If f is continuous and strictly monotone on I then f is a bijection from I to $J=f(I)$ and admits a reciprocal function f^{-1} from J to I which has the following properties:

1. f^{-1} is continuous on J.
2. f^{-1} is strictly monotonic on J and has the same direction of monotonicity as f.
3. f^{-1} is bijective.

Remark 6.1 The graphical representations of f and f^{-1} are symmetrical with respect to the line with equation $y=x$.

Example 6.1

Let f be a function defined by:

$$
\begin{aligned}
f: \mathbb{R}_{+}^{*} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x)=\ln (x)
\end{aligned}
$$

We have:

x	0	
$f(x)$		$+\infty$
		$+\infty$

Set $I=\mathbb{R}_{+}^{*}$, then $\left.J=f(I)=\right]-\infty,+\infty[=\mathbb{R}$
From the table of variations of f we have:

1. f is continuous on I
2. f is strictly increasing on I
then f admits an inverse function f^{-1} denoted by e^{x} or $\exp (x)$ defined by:

$$
\begin{aligned}
f^{-1}: & \mathbb{R} \rightarrow] 0,+\infty[\\
& x \mapsto f^{-1}(x)=e^{x}
\end{aligned}
$$

Proposition 6.2: (Differentiability at a point)

Let $f: I \rightarrow J$ be a bijective and differentiable function at $x_{0} \in I$.
If we have $f^{\prime}\left(x_{0}\right) \neq 0$ then f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and moreover:

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Proposition 6.3: (Differentiability on an interval)

Let $f: I \rightarrow J$ be a bijective and differentiable function on I (with I is an open interval). If we have: $\forall x \in I ; f^{\prime}(x) \neq 0$, then f^{-1} is differentiable on J and moreover:

$$
\forall y \in J ;\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Example 6.2

Let $f(x)=\ln (x)$ and $I=\mathbb{R}_{+}^{*}$, then $J=f(I)=\mathbb{R}$. From the previous example, f is bijective from I into J and admits an inverse function $f^{-1}(x)=e^{x}$.
We have: for all $x \in \mathbb{R}_{+}^{*}, f(x)$ is differentiable and moreover $f^{\prime}(x)=\frac{1}{x} \neq 0$. According to proposition (5.3) f^{-1} is differentiable on $J=\mathbb{R}$ and

$$
\forall y \in \mathbb{R} ;\left(f^{-1}\right)^{\prime}(y)=\left(e^{y}\right)^{\prime}=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}=\frac{1}{\frac{1}{e^{y}}}=e^{y}
$$

Remark 6.2 In the previous formula, we can replace y by x and write:

$$
\forall x \in \mathbb{R} ;\left(e^{x}\right)^{\prime}=e^{x}
$$

6.2 Logarithmic Functions

6.2.1 The neperian logarithm function

Definition 6.1

The function that satisfies the following two conditions is called the neperian logarithm function and is denoted by \ln :

1. $\forall x \in \mathbb{R}_{+}^{*} ;(\ln (x))^{\prime}=\frac{1}{x}$
2. $\ln (1)=0$

Remark 6.3 (Properties of derivatives)

1. According to the previous definition, the function $\ln (x)$ is differentiable on \mathbb{R}_{+}^{*} and $\forall x \in$ $\mathbb{R}_{+}^{*} ;(\ln (x))^{\prime}=\frac{1}{x}$.
2. The function $\ln (|x|)$ is differentiable on \mathbb{R}^{*} and $\forall x \in \mathbb{R}^{*} ;(\ln (|x|))^{\prime}=\frac{1}{x}$
3. Let g be a function differentiable and non-zero on I then the function $\ln (|g(x)|$ is differentiable on I and its derivative: $\left(\ln (|g(x)|)^{\prime}=\frac{g^{\prime}(x)}{g(x)}\right.$

Proposition 6.4: (Limits and classical inequalities)

1. $\lim _{x \rightarrow+\infty} \ln (x)=+\infty$
2. $\lim _{x \rightarrow 0^{+}} \ln (x)=-\infty$
3. $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x}=0$
4. $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x^{\alpha}}=0$ (with $\alpha \in \mathbb{R}_{+}^{*}$).
5. $\lim _{x \rightarrow 0^{+}} x \ln (x)=0$
6. $\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}=1$
7. $\forall x \in]-1,+\infty[; \ln (x+1) \leq x$

Figure 6.1 - Graphical representation of the function $\ln (x)$

Proposition 6.5: (Algebraic properties of the function $\ln (x)$)
For all $x, y \in \mathbb{R}_{+}^{*}$ and $\alpha \in \mathbb{Q}$, we have the following properties:

1. $\ln (x \times y)=\ln (x)+\ln (y)$
2. $\ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y)$
3. $\ln \left(\frac{1}{x}\right)=-\ln (x)$
4. $\ln \left(x^{\alpha}\right)=\alpha \ln (x)$

6.2.2 The logarithmic function with base a

Definition 6.2

Let $a \in] 0,1[\cup] 1,+\infty[$.
We call the logarithm function with base a and denote $\log _{a}$, the function defined by:

$$
\forall x \in] 0,+\infty\left[; \log _{a}(x)=\frac{\ln (x)}{\ln (a)}\right.
$$

Figure 6.2 - Graphical representation of the logarithmic functions and logarithms with base a for $a=\frac{1}{2}, a=2$

Remark 6.4 (Properties of the function $\log _{a}$)

1. We have: $\ln (x)=\log _{e}(x)$ i.e., the neperian logarithm function is the logarithm function with base e.
2. The logarithm function with base a verifies relations analogous to those stated for the neperian logarithm function.

6.3 Exponential Functions

6.3.1 The exponential function

Definition 6.3

The inverse function of the function $\ln (x)$ is called the exponential function and is denoted by: $\exp (x)$ or e^{x}, and satisfies the following properties:

1. $\forall x \in] 0,+\infty\left[; x=e^{\ln (x)}\right.$
2. $\forall y \in \mathbb{R} ; y=\ln \left(e^{y}\right)$

Proposition 6.6

1. The function e^{x} is continuous and strictly increasing on \mathbb{R}.
2. The function e^{x} is differentiable on \mathbb{R} and we have: $\forall x \in \mathbb{R} ;\left(e^{x}\right)^{\prime}=e^{x}$
3. If u is differentiable on I then: the function $e^{u(x)}$ is differentiable on I and its derivative defined by: $\forall x \in I ;\left(e^{u(x)}\right)^{\prime}=u^{\prime}(x) . e^{u(x)}$

Proposition 6.7: (Limits and inequalities)

1. $\lim _{x \rightarrow-\infty} e^{x}=0$
2. $\lim _{x \rightarrow+\infty} e^{x}=+\infty$
3. $\lim _{x \rightarrow+\infty} x e^{-x}=0, \lim _{x \rightarrow+\infty} \frac{x^{\alpha}}{e^{x}}=0, \lim _{x \rightarrow+\infty} \frac{e^{x}}{x^{\alpha}}=+\infty($ with $\alpha \in \mathbb{R})$
4. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
5. $\forall x \in \mathbb{R} ; e^{x} \geq 1+x$

Figure 6.3 - Graphical representation of the function e^{x}

Proposition 6.8: (Algebraic properties of the function e^{x})

For all $x, y \in \mathbb{R}$ and $\alpha \in \mathbb{Q}$, we have:

1. $e^{x+y}=e^{x} \times e^{y}$
2. $e^{-x}=\frac{1}{e^{x}}$
3. $e^{x-y}=\frac{e^{x}}{e^{y}}$
4. $e^{\alpha x}=\left(e^{x}\right)^{\alpha}$

6.3.2 The exponential function with base a

Definition 6.4

Let $a \in] 0,1[\cup] 1, \infty[$.
The inverse function of the function $\log _{a}(x)$ is called the exponential function with base a and is denoted a^{x} :

1. $\forall x \in \mathbb{R} ; a^{x}=e^{x \ln (a)}$
2. $\forall x \in \mathbb{R} ; \log _{a}\left(a^{x}\right)=\log _{a}\left(e^{x \ln (a)}\right)=\frac{\ln \left(e^{x \ln (a)}\right)}{\ln (a)}=x$

Remark 6.5 The function a^{x} is differentiable on \mathbb{R} and we have:

$$
\forall x \in \mathbb{R} ;\left(a^{x}\right)^{\prime}=\ln (a) a^{x}
$$

Figure 6.4 - Graphical representation of functions 10^{x} et $\left(\frac{1}{2}\right)^{x}$

Remark 6.6 The exponential function with base a verifies similar properties to those of the exponential function.

6.4 Power functions

Definition 6.5

Let $\alpha \in \mathbb{R}$, we name power function of exponent α, the function defined by:

$$
\forall x \in] 0,+\infty\left[; x^{\alpha}=e^{\alpha \ln (x)}\right.
$$

Remark 6.7 If $n \in \mathbb{N}^{*}$, we have :

$$
e^{n \ln (x)}=e^{\sum_{k=1}^{n} \ln (x)}=\prod_{k=1}^{k=n} e^{\ln (x)}=\prod_{k=1}^{k=n} x=\underbrace{x \times x \times \ldots \times x}_{n \text { fois }}=x^{n}
$$

Proposition 6.9

1. For $\alpha \in \mathbb{R}^{*}$, the power function with exponent α is a continuous function on $] 0,+\infty[$ and strictly monotonic (strictly increasing if $\alpha>0$ and strictly decreasing if $\alpha<0$).
2. It is differentiable on $] 0,+\infty\left[\right.$ with derivative : $\left.\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}, \forall x \in\right] 0,+\infty[$
3. We have:

$$
\lim _{x \rightarrow+\infty} x^{\alpha}=\left\{\begin{array}{ll}
0, & \text { si } \alpha<0 \\
1, & \text { si } \alpha=0 \\
+\infty, & \text { si } \alpha>0
\end{array} \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} x^{\alpha}= \begin{cases}+\infty, & \text { si } \alpha<0 \\
1, & \text { si } \alpha=0 \\
0, & \text { si } \alpha>0\end{cases}\right.
$$

Figure 6.5-Graphical representation of functions x^{α}, with $\alpha=-2.5,1, \frac{1}{3}$

Proposition 6.10

For $x \in \mathbb{R}_{+}^{*}$ and $\alpha, \beta \in \mathbb{R}$ we have the following relationships:

1. $x^{\alpha+\beta}=x^{\alpha} x^{\beta}$.
2. $x^{-\alpha}=\frac{1}{x^{\alpha}}$.
3. $x^{\alpha-\beta}=\frac{x^{\alpha}}{x^{\beta}}$.
4. $x^{\alpha \beta}=\left(x^{\alpha}\right)^{\beta}=\left(x^{\beta}\right)^{\alpha}$.

6.5 Circular (or trigonometric) functions

6.5.1 Recalls on the functions $\cos (x)$ and $\sin (x)$.

Proposition 6.11

The functions $\left\{\begin{aligned} x \longmapsto \cos (x) \\ \text { and } \\ x \longmapsto \sin (x)\end{aligned}\right.$ are defined on \mathbb{R} and satisfy the following properties:

1. $\forall x \in \mathbb{R} ;|\cos (x)| \leq 1 \wedge|\sin (x)| \leq 1$
2. $\cos (x)$ and $\sin (x)$ are 2π-periodic i.e.:

$$
\forall x \in \mathbb{R} ;\left\{\begin{array}{c}
\cos (x+2 \pi)=\cos (x) \\
\text { and } \\
\sin (x+2 \pi)=\sin (x)
\end{array}\right.
$$

3. The function $\cos (x)$ is even and the function $\sin (x)$ is odd, i.e.:

$$
\forall x \in \mathbb{R} ;\left\{\begin{array}{c}
\cos (-x)=\cos (x) \\
\quad \text { and } \\
\sin (-x)=-\sin (x)
\end{array}\right.
$$

4. The functions $\cos (x)$ and $\sin (x)$ belong to $C^{\infty}(\mathbb{R})$ and we have:
a $\forall x \in \mathbb{R} ;\left\{\begin{aligned} &(\cos (x))^{\prime}=-\sin (x) \\ & \text { and } \\ &(\sin (x))^{\prime}=\cos (x)\end{aligned}\right.$
$\mathrm{b} \forall x \in \mathbb{R}, \forall n \in \mathbb{N} ;\left\{\begin{array}{r}\cos ^{(n)}(x)=\cos \left(x+n \frac{\pi}{2}\right) \\ \text { and } \\ \sin ^{(n)}(x)=\sin \left(x+n \frac{\pi}{2}\right)\end{array}\right.$

Figure 6.6 - Graphical representation of functions $\sin (x)$ and $\cos (x)$

Proposition 6.12: (Formules d'addition)

For all $(x, y) \in \mathbb{R}^{2}$, we have the following formulas:

- $\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
- $\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
- $\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
- $\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
- $\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
- $\sin (2 x)=2 \sin (x) \cos (x)$
- $\sin (x)+\sin (y)=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
- $\sin (x)-\sin (y)=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$
- $\cos (x)+\cos (y)=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
- $\cos (x)-\cos (y)=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$

6.5.2 Recall about the function $\tan (x)$

Definition 6.6

The tangent function is one of the main trigonometric functions and defined by:

$$
\begin{aligned}
\tan : \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\} & \longrightarrow \mathbb{R} \\
x & \longmapsto \tan (x)=\frac{\sin (x)}{\cos (x)}
\end{aligned}
$$

Proposition 6.13

The function $\tan (x)$ is differentiable on $\mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\}$ and we have:

$$
\forall x \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\} ;(\tan (x))^{\prime}=\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x)
$$

Figure 6.7-Graphical representation of the function $\tan (x)$

Proposition 6.14

The function $\tan (x)$ checks the following properties:

1. The function $\tan (x)$ is π-periodic i.e :

$$
\forall x \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\} ; \tan (x+\pi)=\tan (x)
$$

2. For any $x, y \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\}$ we have:

$$
\left\{\begin{array}{l}
\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)} \\
\quad \text { and } \\
\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}
\end{array}\right.
$$

3. $\forall x \in \mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi / k \in \mathbb{Z}\right\} ; \tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

Proposition 6.15: (Some usual limits)

1. $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$
2. $\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2}$
3. $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0$
4. $\lim _{x \rightarrow-\frac{\pi}{2}} \tan (x)=-\infty$
5. $\lim _{x \rightarrow+\frac{\pi}{2}} \tan (x)=+\infty$
6. $\lim _{x \rightarrow 0} \frac{\tan (x)}{x}=1$

6.6 Hyperbolic Functions

6.6.1 Hyperbolic cosine, sine and tangent functions

Any function f defined on \mathbb{R} can be uniquely decomposed into a sum of two functions $f_{e v}$ and $f_{o d}$ where $f_{e v}$ is an even function and $f_{o d}$ is an odd function. This means for every $x \in \mathbb{R}$ we can write

$$
f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}
$$

and we choose

$$
\left\{\begin{array}{c}
f_{p}(x)=\frac{f(x)+f(-x)}{2} \\
\text { et } \\
f_{i}(x)=\frac{f(x)-f(-x)}{2}
\end{array}\right.
$$

Remark 6.8 We can easily check that this decomposition is unique, and $f_{\text {ev }}$ is an even function and $f_{\text {od }}$ is an odd function.

Definition 6.7: (Hyperbolic cosine)

We call the hyperbolic cosine function and denoted (ch or cosh), the even part of the exponential function defined by:

$$
\begin{aligned}
\operatorname{ch}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{ch}(x)=\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

Definition 6.8: (Hyperbolic sine)

The hyperbolic sine function, denoted by (sh or sinh), is the odd part of the exponential function defined by:

$$
\begin{aligned}
\operatorname{sh}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{sh}(x)=\frac{e^{x}-e^{-x}}{2}
\end{aligned}
$$

Definition 6.9: (Hyperbolic tangent)

The hyperbolic tangent function, denoted by (th or tanh), is the quotient of the hyperbolic sine function with the hyperbolic cosine function and defined by:

$$
\text { th: } \mathbb{R} \longrightarrow \mathbb{R}
$$

$$
x \longmapsto \operatorname{th}(x)=\frac{\operatorname{sh}(x)}{\operatorname{ch}(x)}=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

Proposition 6.16

- The function $\operatorname{ch}(x)$ is a function defined on \mathbb{R}, continuous and even.
- The function $\operatorname{sh}(x)$ is a function defined on \mathbb{R}, continuous and odd.
- The function $\operatorname{th}(x)$ is a function defined on \mathbb{R}, continuous and odd.
- The functions $\operatorname{ch}(x), \operatorname{sh}(x)$ and $\operatorname{th}(x)$ are differentiable on \mathbb{R} and their derivatives are defined by:

$$
\forall x \in \mathbb{R} ;\left\{\begin{array}{l}
(\operatorname{ch}(x))^{\prime}=\operatorname{sh}(x) \\
(\operatorname{sh}(x))^{\prime}=\operatorname{ch}(x) \\
(\operatorname{th}(x))^{\prime}=\frac{1}{\operatorname{ch}(x)^{2}}=1-\operatorname{th}(x)^{2}
\end{array}\right.
$$

Proof

These properties can be verified using the properties of the e^{x} function. In our proof, we're interested with the function $\operatorname{th}(x)$.
We have:

$$
\forall x \in \mathbb{R} ; \operatorname{th}(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}
$$

- The continuity: The functions $\left(e^{x}-e^{-x}\right)$ and $\left(e^{x}+e^{-x}\right)$ are continuous on \mathbb{R}, with $e^{x}+e^{-x} \neq 0$ then the quotient function $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ is continuous on $\mathbb{R} \Longrightarrow \operatorname{th}(x)$ is continuous on \mathbb{R}
- The parity: We have:

$$
\forall x \in \mathbb{R} ; \operatorname{th}(-x)=\frac{e^{-x}-e^{x}}{e^{-x}+e^{x}}=-\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=-\operatorname{th}(x)
$$

So $\operatorname{th}(x)$ is odd.

- The differentiability: The functions $\left(e^{x}-e^{-x}\right)$ et $\left(e^{x}+e^{-x}\right)$ are differentiable on \mathbb{R}, with $e^{x}+e^{-x} \neq 0$ then the quotient function $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$ is differentiable on $\mathbb{R} \Longrightarrow \operatorname{th}(x)$ is differentiable on \mathbb{R} and we have:

$$
\begin{aligned}
\forall x \in \mathbb{R} ;(\operatorname{th}(x))^{\prime} & =\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{\prime}=\frac{\left(e^{x}+e^{-x}\right)\left(e^{x}+e^{-x}\right)-\left(e^{x}-e^{-x}\right)\left(e^{x}-e^{-x}\right)}{\left(e^{x}+e^{-x}\right)^{2}} \\
& \Longleftrightarrow \operatorname{th}(x)^{\prime}=1-\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right)^{2}=1-\operatorname{th}(x)^{2}
\end{aligned}
$$

also $\operatorname{th}(x)^{\prime}=\frac{4}{\left(e^{x}+e^{-x}\right)^{2}}=\frac{1}{\operatorname{ch}(x)^{2}}$.
Remark 6.9 The functions $\operatorname{ch}(x), \operatorname{sh}(x)$ and th(x) have the following properties:

1. $\operatorname{ch}(0)=1, \operatorname{sh}(0)=0$ and $\operatorname{th}(0)=0$.
2. $\lim _{x \rightarrow-\infty} \operatorname{sh}(x)=-\infty, \lim _{x \rightarrow-\infty} \operatorname{ch}(x)=+\infty$ and $\lim _{x \rightarrow-\infty} \operatorname{th}(x)=-1$
3. $\lim _{x \rightarrow+\infty} \operatorname{sh}(x)=+\infty, \lim _{x \rightarrow+\infty} \operatorname{ch}(x)=+\infty$ and $\lim _{x \rightarrow+\infty} \operatorname{th}(x)=1$

Therefore, the above results can be grouped together in tabular form.

x	$-\infty$	0	$+\infty$
$\operatorname{sh}(x)^{\prime}=\operatorname{ch}(x)$		+	
$\operatorname{sh}(x)$		$+\infty$	
	$-\infty$		

(a) Function $\operatorname{sh}(x)$

x	$-\infty$		0		$+\infty$
$\operatorname{ch}(x)^{\prime}=\operatorname{sh}(x)$		-	\vdots	+	
$\operatorname{ch}(x)$	$+\infty$				$+\infty$

(b) Function $\operatorname{ch}(x)$

Figure 6.8 - Functions $\operatorname{sh}(x)$ and $\operatorname{ch}(x)$

x	$-\infty$	0	$+\infty$
$\operatorname{th}(x)^{\prime}=\frac{1}{\operatorname{ch}(x)^{2}}$		+	
$\operatorname{th}(x)$	$-1 \longrightarrow$	1	

Figure 6.9 - Function th(x)

Figure 6.10 - Graphical representation of functions sh(x) et ch(x)

Figure 6.11 - Graphical representation of the function th(x)

Proposition 6.17

For every real x, we have:

- $\operatorname{ch}(x)+\operatorname{sh}(x)=e^{x}$
- $\operatorname{ch}(x)-\operatorname{sh}(x)=e^{-x}$
- $\operatorname{ch}(x)^{2}-\operatorname{sh}(x)^{2}=1$

Proposition 6.18: (Addition formulas)

For all $(x, y) \in \mathbb{R}^{2}$, we have the following formulas:

- $\operatorname{ch}(x+y)=\operatorname{ch}(x) \operatorname{ch}(y)+\operatorname{sh}(x) \operatorname{sh}(y)$
- $\operatorname{ch}(x-y)=\operatorname{ch}(x) \operatorname{ch}(y)-\operatorname{sh}(x) \operatorname{sh}(y)$
- $\operatorname{sh}(x+y)=\operatorname{sh}(x) \operatorname{ch}(y)+\operatorname{ch}(x) \operatorname{sh}(y)$
- $\operatorname{sh}(x-y)=\operatorname{sh}(x) \operatorname{ch}(y)-\operatorname{ch}(x) \operatorname{sh}(y)$
- $\operatorname{th}(x+y)=\frac{\operatorname{th}(x)+\operatorname{th}(y)}{1+\operatorname{th}(x) \operatorname{th}(y)}$
- $\operatorname{th}(x-y)=\frac{\operatorname{th}(x)-\operatorname{th}(y)}{1-\operatorname{th}(x) \operatorname{th}(y)}$

Proof

We prove these formulas by using the expressions of hyperbolic functions with the exponential function. We have:

$$
\begin{aligned}
\operatorname{ch}(x) \operatorname{ch}(y)+\operatorname{sh}(x) \operatorname{sh}(y) & =\frac{1}{4}\left(\left(e^{x}+e^{-x}\right)\left(e^{y}+e^{-y}\right)+\left(e^{x}-e^{-x}\right)\left(e^{y}-e^{-y}\right)\right) \\
& =\frac{1}{4}\left(2 e^{x} e^{y}+2 e^{-x} e^{-y}\right) \\
& =\frac{1}{2}\left(e^{(x+y)}+e^{-(x+y)}\right) \\
& =\operatorname{ch}(x+y) .
\end{aligned}
$$

The other relations are shown using the same method.

Proposition 6.19: (Some usual limits of hyperbolic functions)

1. $\lim _{x \rightarrow+\infty} \frac{\operatorname{ch}(x)}{e^{x}}=\frac{1}{2}$
2. $\lim _{x \rightarrow+\infty} \frac{\operatorname{sh}(x)}{e^{x}}=\frac{1}{2}$
3. $\lim _{x \rightarrow 0} \frac{\operatorname{sh}(x)}{x}=1$
4. $\lim _{x \rightarrow 0} \frac{\operatorname{ch}(x)-1}{x^{2}}=\frac{1}{2}$

6.7 Inverse Trigonometric Functions

6.7.1 The function arc-sinus

According to the variation table below, we have:
The function $\sin (x)$ is continuous and strictly increasing on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then the function $\sin (x)$ represents a bijection from $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ to $[-1,1]$.

x	$-\frac{\pi}{2}$	0	$+\frac{\pi}{2}$
$\sin (x)^{\prime}=\cos (x)$	+		
$\sin (x)$		1	

Figure 6.12 - Function $\sin (x)$

Definition 6.10

The inverse function of the restriction of $\sin (x)$ on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is called the arcsine function and is denoted by $\arcsin (x)$ or $\sin ^{-1}(x)$:

$$
\begin{aligned}
\arcsin :[-1,1] & \longrightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
x & \longmapsto \arcsin (x)
\end{aligned}
$$

Proposition 6.20

The function $\arcsin (x)$ has the following properties:

1. The function $\arcsin (x)$ is continuous and strictly increasing on $[-1,1]$. (According to the inverse function theorem)
2. $\forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \arcsin (\sin (x)=x$.
3. $\forall y \in[-1,1] ; \sin (\arcsin (y)=y$.
4. $\forall x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \forall y \in[-1,1] ;(\sin (x)=y \Longleftrightarrow x=\arcsin (y))$.
5. The function $\arcsin (x)$ is odd.

Proof

Let's prove property (5).

1. The function $\arcsin (x)$ is defined on $[-1,1]$, so in this case the domain of definition is symmetric about 0 .
2. Let $x \in[-1,1]$ and:

$$
\begin{gather*}
\arcsin (-x)=y \tag{6.1}\\
\Leftrightarrow-x=\sin (y) \Leftrightarrow x=-\sin (y) \Leftrightarrow x=\sin (-y) \text { (Since } \sin (x) \text { is odd) }
\end{gather*}
$$

We have: $y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \Longrightarrow-y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
So we obtain: $\arcsin (x)=-y \Leftrightarrow-\arcsin (x)=y$
From equation (6.1) we get: $\arcsin (-x)=-\arcsin (x)$
\Longrightarrow The function $\arcsin (x)$ is odd.
Remark 6.10 The following table contains some usual values for the function $\arcsin (x)$

$\sin (0)=0$	$\arcsin (0)=0$
$\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$	$\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$
$\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$	$\arcsin \left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
$\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$	$\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
$\sin \left(\frac{\pi}{2}\right)=1$	$\arcsin (1)=\frac{\pi}{2}$

Proposition 6.21

The arcsine function is differentiable on] $-1,1$ [and verifies:

$$
\forall x \in]-1,1\left[;(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Proof

The function $\sin (x)$ has the following two properties:

1. $\sin (x)$ is differentiable on $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
2. $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}\left[;(\sin (x))^{\prime}=\cos (x) \neq 0\right.$
\Longrightarrow (from proposition (5.3)), the function $\arcsin (x)$ is differentiable on $]-1,1[$ and we have:

$$
\begin{equation*}
\forall x \in]-1,1\left[;(\arcsin (x))^{\prime}=\frac{1}{\cos (\arcsin (x))}\right. \tag{6.2}
\end{equation*}
$$

Let $x \in]-1,1[$, and $y=\arcsin (x)$

$$
\Longrightarrow y \in]-\frac{\pi}{2}, \frac{\pi}{2}[\wedge \cos (y)>0
$$

Based on the relationship $\cos ^{2}(y)+\sin ^{2}(y)=1$, we deduce that: $\cos (y)=\sqrt{1-\sin ^{2}(y)}$. Since for all $x \in]-1,1[$ we have: $\sin (\arcsin (x))=x$

$$
\Longrightarrow \cos (\arcsin (x))=\sqrt{1-x^{2}}
$$

From equation (6.2) we obtain:

$$
\forall x \in]-1,1\left[;(\arcsin (x))^{\prime}=\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Figure 6.13 - Graphical representation of the function $\arcsin (x)$

6.7.2 The Arccosine Function

In the variation table below, we have:
The function $\cos (x)$ is continuous and strictly decreasing on $[0, \pi]$, so the function $\cos (x)$ makes a bijection from $[0, \pi]$ into $[-1,1]$.

x	0		π
$(\cos (x))^{\prime}=-\sin (x)$		-	
$\cos (x)$	1		
			-1

Figure 6.14 - The function $\cos (x)$

Definition 6.11

The inverse function of the restriction of $\cos (x)$ on $[0, \pi]$ is called the arccosine function and is denoted by $\arccos (x)$ or $\cos ^{-1}(x)$:

$$
\begin{aligned}
\arccos :[-1,1] & \longrightarrow[0, \pi] \\
x & \longmapsto \arccos (x)
\end{aligned}
$$

Proposition 6.22

The function $\arccos (x)$ has the following properties:

1. The function $\arccos (x)$ is continuous and strictly decreasing on $[-1,1]$. (From the inverse function theorem)
2. $\forall x \in[0, \pi] ; \arccos (\cos (x)=x$.
3. $\forall y \in[-1,1] ; \cos (\arccos (y)=y$.
4. $\forall x \in[0, \pi], \forall y \in[-1,1] ;(\cos (x)=y \Longleftrightarrow x=\arccos (y))$.
5. The function $\arccos (x)$ is neither even nor odd.

Remark 6.11 The table below shows some usual values for the function $\arccos (x)$.

$\cos (0)=1$	$\arccos (1)=0$
$\cos \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}$	$\arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$
$\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$	$\arccos \left(\frac{\sqrt{2}}{2}\right)=\frac{\pi}{4}$
$\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$	$\arccos \left(\frac{1}{2}\right)=\frac{\pi}{3}$
$\cos \left(\frac{\pi}{2}\right)=0$	$\arccos (0)=\frac{\pi}{2}$

Proposition 6.23

The arccosine function is differentiable on] $-1,1[$ and verifies:

$$
\forall x \in]-1,1\left[;(\arccos (x))^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Proof

We have the function $\cos (x)$ satisfying the following two properties:

1. $\cos (x)$ is differentiable on $] 0, \pi[$.
2. $\forall x \in] 0, \pi\left[;(\cos (x))^{\prime}=-\sin (x) \neq 0\right.$
\Longrightarrow (from proposition (6.3)), the function $\arccos (x)$ is differentiable on $]-1,1[$ and we have:

$$
\begin{equation*}
\forall x \in]-1,1\left[;(\arccos (x))^{\prime}=\frac{1}{-\sin (\arccos (x))}\right. \tag{6.3}
\end{equation*}
$$

Let $x \in]-1,1[$, and $y=\arccos (x)$

$$
\Longrightarrow y \in] 0, \pi[\wedge \sin (y)>0
$$

Using the relationship $\cos ^{2}(y)+\sin ^{2}(y)=1$, we deduce that $\sin (y)=\sqrt{1-\cos ^{2}(y)}$. Since for any $x \in]-1,1[$ we have: $\cos (\arccos (x))=x$, then we get:

$$
\sin (\arccos (x))=\sqrt{1-x^{2}}
$$

From equation (6.3) we obtain:

$$
\forall x \in]-1,1\left[;(\arccos (x))^{\prime}=-\frac{1}{\sqrt{1-x^{2}}}\right.
$$

Figure 6.15 - Graphical representation of the function $\arccos (x)$

6.7.3 The Arctangent function

The function $\tan (x)=\frac{\sin (x)}{\cos (x)}$ is defined on $D=\mathbb{R} \backslash\left\{\frac{\pi}{2}+k \pi: k \in \mathbb{Z}\right\}$. It is continuous and differentiable on its domain of definition and for all $x \in D$ we have:

$$
(\tan (x))^{\prime}=\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x)
$$

Consider the restriction of the function $\tan (x)$ on the interval $]-\frac{\pi}{2}, \frac{\pi}{2}[$, from the table of variation below we have: the function $\tan (x)$ is continuous and strictly increasing on $]-\frac{\pi}{2}, \frac{\pi}{2}[$, then the function $\tan (x)$ makes a bijection from $]-\frac{\pi}{2}, \frac{\pi}{2}[$ into \mathbb{R}.

x	$-\frac{\pi}{2}$	
$(\tan (x))^{\prime}=\frac{1}{\cos ^{2}}$		+
$\tan (x)$		

Figure 6.16 - The function $\tan (x)$

Definition 6.12

We call the arctangent function $\arctan (x)$ or $\tan ^{-1}(x)$ the inverse of the tangent function on] $-\frac{\pi}{2}, \frac{\pi}{2}[$ defined by:

$$
\begin{aligned}
\arctan :]-\infty,+\infty[& \longrightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[\\
x & \longmapsto \arctan (x)
\end{aligned}
$$

Proposition 6.24

The function $\arctan (x)$ has the following properties:

1. The function $\arctan (x)$ is continuous and strictly increasing on \mathbb{R}, with values in] $-\frac{\pi}{2}, \frac{\pi}{2}[$
2. $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[; \arctan (\tan (x))=x$
3. $\forall y \in \mathbb{R} ; \tan (\arctan (y))=y$.
4. $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \forall y \in \mathbb{R} ; \tan (x)=y \Longleftrightarrow x=\arctan (y)$
5. The function $\arctan (x)$ is odd.

Remark 6.12 The table below shows some usual values for the function $\arctan (x)$.

$\tan (0)=0$	$\arctan (0)=0$
$\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$	$\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}$
$\tan \left(\frac{\pi}{4}\right)=1$	$\arctan (1)=\frac{\sqrt{2}}{2}$
$\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$	$\arctan (\sqrt{3})=\frac{\pi}{3}$

Proposition 6.25

The function $\arctan (x)$ is differentiable on \mathbb{R} and verifies:

$$
\forall x \in \mathbb{R} ;(\arctan (x))^{\prime}=\frac{1}{1+x^{2}}
$$

Proof

The function $\tan (x)$ has the following two properties:

1. The function $\tan (x)$ is differentiable on $]-\frac{\pi}{2}, \frac{\pi}{2}[$.
2. $\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}\left[;(\tan (x))^{\prime}=\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x) \neq 0\right.$

From proposition (6.3), the function $\arctan (x)$ is differentiable on $]-\frac{\pi}{2}, \frac{\pi}{2}[$ and we have:

$$
\forall x \in \mathbb{R} ;(\arctan (x))^{\prime}=\frac{1}{1+\tan ^{2}(\arctan (x))}=\frac{1}{1+x^{2}}
$$

Figure 6.17 - Graphical representation of the function $\arctan (x)$

Proposition 6.26: (Some properties)

1. For any $x \in[-1,1]$ we have:

$$
\arccos (x)+\arcsin (x)=\frac{\pi}{2}
$$

2. For all $x \in \mathbb{R}_{-}^{*}$ we have:

$$
\arctan (x)+\arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2}
$$

3. For every $x \in \mathbb{R}_{+}^{*}$ we have:

$$
\arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}
$$

Proof

We'll show properties (2) and (3).
Set $f(x)=\arctan (x)+\arctan \left(\frac{1}{x}\right)$.
Since the functions $\frac{1}{x}$ and $\arctan (x)$ are differentiable on $\left.\mathbb{R}^{*}\right)$, the function f is differentiable on \mathbb{R}^{*} and we have:

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}+\left(\frac{1}{x}\right)^{\prime} \frac{1}{1+\left(\frac{1}{x}\right)^{2}}=\frac{1}{1+x^{2}}-\frac{1}{x^{2}}\left(\frac{x^{2}}{1+x^{2}}\right)=0
$$

From this we deduce that f is a constant function on each of the intervals $]-\infty, 0[$ and $] 0,+\infty[$. On the other hand, we have:

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(\arctan (x)+\arctan \left(\frac{1}{x}\right)\right)=-\frac{\pi}{2}
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(\arctan (x)+\arctan \left(\frac{1}{x}\right)\right)=\frac{\pi}{2}
$$

so f can't be extended by continuity at 0 . So we deduce that:

$$
\exists C_{1}, C_{2} \in \mathbb{R} \mathrm{tq}: f(x)= \begin{cases}C_{1} & \text { if } x \in] 0,+\infty[\\ C_{2} & \text { if } x \in]-\infty, 0[\end{cases}
$$

Since $f(1)=2 \arctan (1)=2\left(\frac{\pi}{4}\right)=\frac{\pi}{2}=C_{1}$
and $f(-1)=2 \arctan (-1)=2\left(-\frac{\pi}{4}\right)=-\frac{\pi}{2}=C_{2}$

$$
\Longrightarrow f(x)=\left\{\begin{aligned}
\frac{\pi}{2} & \text { if } x \in] 0,+\infty[\\
-\frac{\pi}{2} & \text { if } x \in]-\infty, 0[
\end{aligned}\right.
$$

So $\forall x \in \mathbb{R}_{-}^{*} ; \arctan (x)+\arctan \left(\frac{1}{x}\right)=-\frac{\pi}{2}$ and $\forall x \in \mathbb{R}_{+}^{*} ; \arctan (x)+\arctan \left(\frac{1}{x}\right)=\frac{\pi}{2}$

6.8 The inverse hyperbolic functions

6.8.1 The inverse of hyperbolic Sine function

From the above table of variation of $\operatorname{sh}(x)$ we have: $\operatorname{sh}(x)$ is continuous and strictly increasing on \mathbb{R}. Hence, it realizes a bijection from \mathbb{R} into \mathbb{R}.

Definition 6.13

The inverse function of the hyperbolic sine function on \mathbb{R} is denoted $\operatorname{argsh}(x)$ or $\operatorname{sh}^{-1}(x)$.

$$
\begin{aligned}
\operatorname{argsh}: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{argsh}(x)
\end{aligned}
$$

Proposition 6.27

The function $\operatorname{argsh}(x)$ has the following properties:

1. The function $\operatorname{argsh}(x)$ is defined on \mathbb{R}, it is continuous and strictly increasing on \mathbb{R}.
2. $\forall x \in \mathbb{R} ; \operatorname{argsh}(\operatorname{sh}(x))=x$.
3. $\forall y \in \mathbb{R} ; \operatorname{sh}(\operatorname{argsh}(y))=y$.
4. $\forall(x, y) \in \mathbb{R}^{2} ; y=\operatorname{sh}(x) \Longleftrightarrow x=\operatorname{argsh}(y)$.
5. $\operatorname{argsh}(x)$ is odd function.

Proof

We'll show that $\operatorname{argsh}(x)$ is odd.
Let $x \in \mathbb{R}$, and

$$
\begin{equation*}
y=\operatorname{argsh}(-x) \tag{6.4}
\end{equation*}
$$

(6.4) $\Longleftrightarrow \operatorname{sh}(y)=-x \Longleftrightarrow \operatorname{sh}(-y)=x($ Since $\operatorname{sh}(x)$ is odd $)$
$\Longrightarrow-y=\operatorname{argsh}(x) \Longleftrightarrow y=-\operatorname{argsh}(x)$.
From (6.4), we get: $\operatorname{argsh}(-x)=-\operatorname{argsh}(x)$.
So, $\forall x \in \mathbb{R} ; \operatorname{argsh}(-x)=-\operatorname{argsh}(x) \Longrightarrow \operatorname{argsh}(x)$ is odd.

Proposition 6.28

The function $\operatorname{argsh}(x)$ is differentiable on \mathbb{R} and verifies:

$$
\forall x \in \mathbb{R} ;(\operatorname{argsh}(x))^{\prime}=\frac{1}{\sqrt{1+x^{2}}}
$$

Proof

The $\operatorname{sh}(x)$ function verifies the following two properties:

1. $\operatorname{sh}(x)$ is differentiable on \mathbb{R}.
2. $\forall x \in \mathbb{R} ;(\operatorname{sh}(x))^{\prime}=\operatorname{ch}(x)=\frac{e^{x}+e^{-x}}{2} \neq 0$

From proposition (6.3), the function $\operatorname{argsh}(x)$ is differentiable on \mathbb{R} :

$$
\forall x \in \mathbb{R} ;(\operatorname{argsh}(x))^{\prime}=\frac{1}{\operatorname{sh}^{\prime}(\operatorname{argsh}(x))}=\frac{1}{\operatorname{ch}(\operatorname{argsh}(x))}
$$

On the other hand, we have: $\operatorname{ch}(x)^{2}-\operatorname{sh}(x)^{2}=1 \Longrightarrow \operatorname{ch}(x)=\sqrt{1+\operatorname{sh}^{2}(x)}$ because $\operatorname{ch}(x)$ is positive function.

$$
\begin{gathered}
\Longrightarrow \forall x \in \mathbb{R} ; \operatorname{ch}(\operatorname{argsh}(x))=\sqrt{1+\left(\operatorname{sh}(\operatorname{argsh}(x))^{2}\right.}=\sqrt{1+x^{2}} \\
\Longrightarrow \forall x \in \mathbb{R} ;(\operatorname{argsh}(x))^{\prime}=\frac{1}{\sqrt{1+x^{2}}}
\end{gathered}
$$

Proposition 6.29

$$
\forall x \in \mathbb{R} ; \operatorname{argsh}(x)=\ln \left(x+\sqrt{1+x^{2}}\right)
$$

Figure 6.18 - Graphical representation of the function $\operatorname{argsh}(x)$

6.8.2 The inverse hyperbolic cosine function

From the table of variation of the function $\operatorname{ch}(x)$ above we have:
$\operatorname{ch}(x)$ is continuous and strictly increasing on $[0,+\infty[$. So it forms a bijection from $[0,+\infty[$ into $[1,+\infty[$.

Definition 6.14

The inverse function of the restriction of $\operatorname{ch}(x)$ on $[0,+\infty[$ is denoted by $\operatorname{argch}(x)$ or $\operatorname{ch}^{-1}(x)$

$$
\begin{aligned}
\operatorname{argch}:[1,+\infty[& \longrightarrow[0,+\infty[\\
x & \longmapsto \operatorname{argch}(x)
\end{aligned}
$$

Proposition 6.30

The $\operatorname{argch}(x)$ function has the following properties:

1. The function $\operatorname{argch}(x)$ is defined on $[1,+\infty[$, it is continuous and strictly increasing on $[1,+\infty[$.
2. $\forall x \in[0,+\infty[; \operatorname{argch}(\operatorname{ch}(x))=x$.
3. $\forall y \in[1,+\infty[; \operatorname{ch}(\operatorname{argch}(y))=y$.
4. $\forall x \in[0,+\infty[, \forall y \in[1,+\infty[; y=\operatorname{ch}(x) \Longleftrightarrow x=\operatorname{argch}(y)$.

Proposition 6.31

The inverse hyperbolic cosine function is differentiable on $] 1,+\infty[$ and verifies:

$$
\forall x \in] 1,+\infty\left[;(\operatorname{argch}(x))^{\prime}=\frac{1}{\sqrt{x^{2}-1}}\right.
$$

Remark 6.13 The proof of proposition (6.31) is similar to the proof of proposition (6.28).

Proposition 6.32

$$
\forall x \in] 1,+\infty\left[; \operatorname{argch}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)\right.
$$

Figure 6.19 - Graphical representation of the function $\operatorname{argch}(x)$

6.8.3 The inverse hyperbolic tangent function

From the table of variation of the function $\operatorname{th}(x)$ above we have: $\operatorname{th}(x)$ is continuous and strictly increasing on \mathbb{R}. So it makes is a bijection from \mathbb{R} into] - $1,1[$.

Definition 6.15

The inverse function of the function $\operatorname{th}(x)$ on \mathbb{R} is denoted by $\operatorname{argth}(x)$ or $\operatorname{th}^{-1}(x)$

$$
\begin{aligned}
\operatorname{argth}:]-1,1[& \longrightarrow \mathbb{R} \\
x & \longmapsto \operatorname{argth}(x)
\end{aligned}
$$

Proposition 6.33

The function $\operatorname{argth}(x)$ has the following properties:

1. The function $\operatorname{argth}(x)$ is defined on $]-1,1[$, it is continuous and strictly increasing on] $-1,1[$.
2. $\forall x \in \mathbb{R} ; \operatorname{argth}(\operatorname{th}(x))=x$.
3. $\forall y \in]-1,1[; \operatorname{th}(\operatorname{argth}(y))=y$.
4. $\forall x \in \mathbb{R}, \forall y \in]-1,1[; y=\operatorname{th}(x) \Longleftrightarrow x=\operatorname{argth}(y)$.
5. The $\operatorname{argth}(x)$ function is odd.

Proposition 6.34

The function $\operatorname{argth}(x)$ is differentiable on $]-1,1[$ and verifies:

$$
\forall x \in]-1,1\left[;(\operatorname{argth}(x))^{\prime}=\frac{1}{1-x^{2}}\right.
$$

Proposition 6.35

$$
\forall x \in]-1 ; 1\left[; \operatorname{argth}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)\right.
$$

Proof

Let $x \in]-1 ; 1[$, and $y=\operatorname{argth}(x)$.
We have:

$$
\begin{gathered}
\operatorname{th}(x)=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=\frac{e^{2 y}-1}{e^{2 y}+1} \\
\Longrightarrow e^{2 y}=\frac{1+\operatorname{th}(y)}{1-\operatorname{th}(y)}=\frac{1+\operatorname{th}(\operatorname{argth}(x))}{1-\operatorname{th}(\operatorname{argth}(x))}=\frac{1+x}{1-x} \\
\Longleftrightarrow e^{2 y}=\frac{1+x}{1-x} \Longleftrightarrow 2 y=\ln \left(\frac{1+x}{1-x}\right) \Longleftrightarrow y=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
\Longrightarrow \forall x \in]-1,1\left[; \operatorname{argth}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)\right.
\end{gathered}
$$

Figure 6.20 - Graphical representation of the function $\operatorname{argth}(x)$

