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[Corrigé 01] (06 points)

By induction proof

For n =0, we find 0 < vy = % < 2, so the inequality is true for n = 0.
Assume that the inequality is true for a certain rank n (any rank) and show that the inequality
is true for the next rank, i.e. for rank n + 1.
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According to the previous question,
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[Corrigé 02] (10 points) YVAAAS
1]
flz) = e’ + 2, st x>0
| acos(x)+br+1, six<0

It is clear that f(0) = 3 and e” + 2 is differentiable on |0, +-00[, with (2 + ¢*) = ¢®
(a) The same on | — oo, 0] with (acos(x) + bx + 1) = —3sin(z) + b

(b) The only point that remains is a = 0, for which we need to compute the right and left
derivatives because the function f changes its form at 0.
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On the other hand, since f is continuous at a = 0
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From the above we find : a =2Ab=1
We have :
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[Corrigé 03] (04 points)

By applying the Mean Value Theorem on [1,z],z > 1 to the function In(¢).
It is clear that In(t) is continuous on [1, z| and differentiable on |1, z[, hence the existence of

1 < ¢ < x such that :
r—1

In(z) —In(1) = .

andasl<cec<z = 0<-<1
C

which implies that
lnr < z-1

By applying the Mean Value Theorem on [z, 1],0 < z < 1 to the function In(¢).
It is clear that In(¢) is continuous on [z, 1] and differentiable on |x, 1], hence the existence of

x < ¢ < 1 such that :
1—=zx

In(1) —In(x) = .
= ¢(—In(z)=1—-x
= 1—z< —In(x)
= x—1>In(z)

From (1) and (2) plus In(1) =1 — 1, we find :
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