Exercice 1

By calculating the right and left derivatives of the following functions, determine which one is differentiable at a:

1
$$f_1(x) = x^2 + |x+1|, \ a = 1, -1$$

2
$$f_2(x) = \begin{cases} \frac{x}{1 + e^{1/x}}, & si \ x \in \mathbb{R}^* \\ 0, & si \ x = 0 \end{cases}, a = 0$$

Exercice 2

Compute the derivatives of the following functions and precise their domains of definition.

1
$$\sqrt[4]{x^3}$$

$$\frac{x}{x^3+1}$$

$$4 \quad x\sqrt[n]{x}, \ n \in \mathbb{N}^*$$

$$\int x \ln |x+1|$$

6
$$x^2e^{1/x}$$

$$8 \quad a^x \ , a \in \mathbb{R}^{+*}$$

$$9 \quad (x + \ln x)^n, \quad n \in \mathbb{N}^*$$

$$10 \quad x^3 \ln(x)$$

$$11$$
 x^2e^x

Exercice 3

Study the differentiability on $\mathbb R$ of the following functions:

$$g(x) = \frac{1}{2 + |x|}$$

Exercice 4

Compute the nth derivative of the following functions

$$1 \quad x\sqrt{x}$$

$$2 \ln(x)$$

$$e^{ax}$$

$$\frac{1}{1-x}$$

Exercice 5

Let a and b be two real numbers and f be a function defined on $[0, +\infty[$ by

$$f(x) = \begin{cases} 2\sqrt{x}, & si \ 0 \le x \le 1 \\ ax + b, & si \ x > 1 \end{cases}$$

Find a and b so that f is differentiable on $]0, +\infty[$

Exercice 6

Show that:

1
$$\forall x \in]0, \pi[: x \cos(x) - \sin(x) < 0]$$

2
$$\forall x \in]0, \frac{\pi}{2}[: \frac{2x}{\pi} < \sin(x) < x]$$

Exercice 7

In which of the following functions Rolle's theorem is applicable?

1
$$x^2 - 2$$
, on $[-2, 2]$

3
$$\sqrt{1-x^2}$$
, on $[-1,1]$

$$|x-2|$$
, on $[1,3]$

4
$$\tan(x)$$
, on $[\frac{\pi}{4}, \frac{\pi}{3}]$

Exercice 8

Let f be a function defined by

$$f(x) = e^{x^2} \cos(x)$$

2

Show that for all a > 0, the equation f'(x) = 0 has at least one solution on [-a, a].

Exercice 9

- 1 apply the Mean value Theorem for the function $f: x \to x x^3$ on the segment [-2, 1] and compute the value $c \in]-2, 1[$ appearing in this formula.
- 2 apply the Mean value Theorem for the function $f: x \to x^2$ on the segment [a, b] and compute the value $c \in]a, b[$ appearing in this formula.

Exercice 10

- 1 Using the Mean value Theorem, show that: $\frac{1}{1+x} < \ln(1+x) \ln(x) < \frac{1}{x}$
- 2 Compute $\lim_{x \to +\infty} x[\ln(1+x) \ln(x)]$
- 3 Deduce that: $\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$
- 4 Compute: $\lim_{x \to -\infty} (1 + \frac{1}{x})^x$.