Exercise 1

Given $x, y, z \in \mathbb{R}$, Prove the following inequalities:

1. $|x+y| \le |x|+|y|$, 2. $||x|-|y|| \le |x-y|$ 3. $\sqrt{x^2+y^2} \le |x|+|y|$ 4. $\frac{1}{2}(x^2+y^2) \ge xy$ 5. $xy+xz+yz \le x^2+y^2+z^2$

Exercise 2

Show that:

- 1. $\sqrt{3}$ is irrational
- 2. for all $(a, b) \in \mathbb{Q} \times \mathbb{Q}^*$, the numbers $a + b\sqrt{3}$ are irrational.
- 3. $\frac{\ln 3}{\ln 2}$ is irrational.

Exercise 3

Justify whether the following assertions are true or false :

- a. The sum, the product of two rational numbers, the inverse of a non-zero rational number is a rational number.
- b. The sum or product of two irrational numbers is an irrational.
- c. The sum of a rational number and an irrational number is an irrational.
- d. The product of a rational number and an irrational number is an irrational.

Exercise 4

Let $x, y \in \mathbb{R}$, show that:

1. f(x) = E(x) is an increasing function.

2.
$$E(x) + E(y) \le E(x+y) \le E(x) + E(y) + 1$$

3.
$$\forall n \in \mathbb{N}^*, \ E(\frac{E(nx)}{n}) = E(x)$$

Exercise 5

For each of the following sets, describe the set of all upper bounds for the set :

1. the set of odd integers;

2.
$$\left\{1 - \frac{1}{n} : n \in \mathbb{N}\right\};$$

3.
$$\left\{r \in \mathbb{Q} : r^3 < 8\right\};$$

4. $\{\sin x : x \in \mathbb{R}\}$

Exercise 6

For each of the sets in (1),(2),(3) of the preceding exercise, find the least upper bound of the set, if it exists.

Exercise 7

Let A, B be two non-empty bounded parts of \mathbb{R} . Note $-A = \{-x, x \in A\}$. Show that:

- 1. $\sup(-A) = -\inf(A)$
- 2. $\inf(-A) = -\sup(A)$
- 3. If $A \subset B$, then:

$$\begin{cases} \sup(A) \le \sup(B) \\ \inf(B) \le \inf(A) \end{cases}$$

- 4. $\sup(A \cup B) = \max(\sup(A), \sup(B))$
- 5. $\inf(A \cup B) = \min(\inf(A), \inf(B))$

Exercise 8

Determine (if they exist) sup, inf, max, min of the following sets :

1. $A = [1, 2] \cap \mathbb{Q}$ 2. $B = [1, 2] \cap \mathbb{Q}$ 3. $C = \left\{ v_n = \frac{1}{n+1}, n \in \mathbb{N} \right\}$ 4. $D = \{x \in \mathbb{R} : |x| > 1\}$ 5. $E = \{x \in \mathbb{R} : |x| > 1\}$ 6. $F = \{x \in \mathbb{R} : |x^2 - 1| > 1\}$

Exercise 9

Let $a, b \in \mathbb{Q}$ such that a < b, Show that:

 $\exists \ c \in \mathbb{Q}: \ a < c < b$