Exercise 1

Given $x, y, z \in \mathbb{R}$, Prove the following inequalities:

1. $|x+y| \leq|x|+|y|$,
2. $||x|-|y|| \leq|x-y|$
3. $\sqrt{x^{2}+y^{2}} \leq|x|+|y|$
4. $\frac{1}{2}\left(x^{2}+y^{2}\right) \geq x y$
5. $x y+x z+y z \leq x^{2}+y^{2}+z^{2}$

Exercise 2

Show that:

1. $\sqrt{3}$ is irrational
2. for all $(a, b) \in \mathbb{Q} \times \mathbb{Q}^{*}$, the numbers $a+b \sqrt{3}$ are irrational.
3. $\frac{\ln 3}{\ln 2}$ is irrational.

Exercise 3

Justify whether the following assertions are true or false :
a. The sum, the product of two rational numbers, the inverse of a non-zero rational number is a rational number.
b. The sum or product of two irrational numbers is an irrational.
c. The sum of a rational number and an irrational number is an irrational.
d. The product of a rational number and an irrational number is an irrational.

Exercise 4

Let $x, y \in \mathbb{R}$, show that:

1. $f(x)=E(x)$ is an increasing function.
2. $E(x)+E(y) \leq E(x+y) \leq E(x)+E(y)+1$
3. $\forall n \in \mathbb{N}^{*}, E\left(\frac{E(n x)}{n}\right)=E(x)$

Exercise 5

For each of the following sets, describe the set of all upper bounds for the set :

1. the set of odd integers;
2. $\left\{1-\frac{1}{n}: n \in \mathbb{N}\right\}$;
3. $\left\{r \in \mathbb{Q}: r^{3}<8\right\}$;
4. $\{\sin x: x \in \mathbb{R}\}$

Exercise 6

For each of the sets in $(1),(2),(3)$ of the preceding exercise, find the least upper bound of the set, if it exists.

Exercise 7

Let A, B be two non-empty bounded parts of \mathbb{R}. Note $-A=\{-x, x \in A\}$. Show that:

1. $\sup (-A)=-\inf (A)$
2. $\inf (-A)=-\sup (A)$
3. If $A \subset B$, then:

$$
\begin{cases}\sup (A) & \leq \sup (B) \\ \inf (B) & \leq \inf (A)\end{cases}
$$

4. $\sup (A \cup B)=\max (\sup (A), \sup (B))$
5. $\inf (A \cup B)=\min (\inf (A), \inf (B))$

Exercise 8

Determine (if they exist) sup, inf, max, min of the following sets :

1. $A=[1,2] \cap \mathbb{Q}$
2. $B=[1,2[\cap \mathbb{Q}$
3. $C=\left\{v_{n}=\frac{1}{n+1}, n \in \mathbb{N}\right\}$
4. $D=\left\{x \in \mathbb{R}: x^{2} \leq 3\right\}$
5. $E=\{x \in \mathbb{R}:|x|>1\}$
6. $F=\left\{x \in \mathbb{R}:\left|x^{2}-1\right|>1\right\}$

Exercise 9

Let $a, b \in \mathbb{Q}$ such that $a<b$, Show that:

$$
\exists c \in \mathbb{Q}: a<c<b
$$

