2023/2024 Analysis 1	Tutorial=2 Complex numbers	Department: Common Core in Mathematics and Computer Science Batna 2-University.
Exercise 1		
Put the following complex numbers into algebraic form:		
1. $\frac{1}{i}$	3. $\frac{i}{i+1}$	5. $\frac{1}{2+i} + \frac{1}{2-i}$
$2. \frac{2+i}{5-i}$	4. $\frac{1}{2-i}$	6. $\frac{1}{1+i} + \frac{i}{1+i}$
Exercise 2		
Determine the modulus and an argument for each complex number :		
12	3. $2e^{-2i}$	$5. \ \frac{1+i}{\sqrt{3}-1}$
2. 3 <i>i</i>	4. $-1 + i\sqrt{3}$	6. $(\sqrt{3}-i)^9$
Exercise 3		
Find the points of the complex plane which satisfy the following conditions.		
1. $ z \le 2$	$2. \ z + \overline{z} = 1$	3. $ z - 3 + 5i = 2$
Exercise 4		
Let $\alpha \in \mathbb{R}$. Express of $\cos \frac{\pi}{10}$.	$\cos \cos 5\alpha$ as a function of $\cos \alpha$,	then $\sin 5\alpha$ as a function of $\sin \alpha$, give the value
Exercise 5		
Find the square roots of the following complex numbers:		
1. 5+i	2. 6-8i	3. $4\sqrt{3}+i$
Exercise 6		
Solve the following equation in \mathbb{C} :		
1. $z^2 + (2-2i)z$	$= 3i+1$ 2. $z^3 = \frac{1+i}{\sqrt{2}}$	3. $z^6 = 27i$
Exercise 7		
1. For all $x \in \mathbb{R}$, compute the following sums using the exponential form of a complex number:		
$A = \cos x + \cos 2x + \cos 3x + \cos 4x + \cos 5x + \cos 6x + \cos 7x$		

 $B = \sin x + \sin 2x + \sin 3x + \sin 4x + \sin 5x + \sin 6x + \sin 7x$

2. by using Euler formulas, linearize: $\cos x^3$, $\sin x^3$, $\cos x^3 \sin x^4$.