Exercise 1

Let $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ be the sequence defined by :

$$
u_{n}=\frac{n+2}{n+1}
$$

1. Show that $\left(u_{n}\right)_{n \in \mathbb{N}^{*}}$ converges to 1 .
2. Find an integer $n_{0} \in \mathbb{N}$ such that all terms u_{n} of index $n \geq n_{0}$ are in the interval $\left.I=\right] 0.98 ; 1.2[$.

Exercise 2

Let $\left(u_{n}\right)_{n}$ a sequence of real numbers, and assume that it converges to a positive limit $l>0$. Show that there exists some $N \in \mathbb{N}$ such that $\forall n \geq N: u_{n}>0$.

Exercise 3

Study the nature of the following sequences and determine their possible limits:

1. $\sqrt{n^{2}+n+1}-\sqrt{n}$
2. $\frac{n \cos n}{n^{3}+1}$
3. $\frac{\sin n^{2}+2 \cos n}{n^{2}}$
4. $\left.\frac{a^{n}-b^{n}}{a^{n}+b^{n}} ; a, b \in\right] 0,+\infty[$
5. $\left(1+\frac{2}{n}\right)^{n}$
6. $n^{3}\left(\tan \frac{3}{n}-\sin \frac{3}{n}\right)$

Exercise 4

Let the sequences $\left(x_{n}\right),\left(y_{n}\right),\left(u_{n}\right)$, and $\left(v_{n}\right)$ of real numbers such that:

1. $\left(\forall n \in \mathbb{N}, x_{n} \leq 2\right.$ et $\left.y_{n} \leq 3\right)$ et $x_{n}+y_{n} \rightarrow 5$
2. $\left(\forall n \in \mathbb{N}, 0 \leq u_{n} \leq 1\right.$ et $\left.0 \leq v_{n} \leq 1\right)$ et $u_{n} \cdot v_{n} \rightarrow 1$

Show that the sequences defined above are convergent

Exercise 5

Let $\left(u_{n}\right)$ be a sequence of real numbers

1. If $\lim u_{n}=+\infty$, show that $\lim E\left(u_{n}\right)=+\infty$.
2. If the sequence $\left(u_{n}\right)$ converges, can we say that $E\left(u_{n}\right)$ converges?

Let $\left(u_{n}\right)$ be a sequence such that $u_{0}=4$ and $\forall n \in \mathbb{N}: u_{n+1}=3-\frac{4}{2+u_{n}}$.

1. Show that $u_{n} \geq 2$, for all $n \in \mathbb{N}$.
2. Prove that $\left(u_{n}\right)$ is a monotonic sequence.
3. Study its convergence. If it converges, compute its limit.

Exercise 7

For any $n \in \mathbb{N}^{*}$, consider the sequence defined by: $H_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$

1. Compute $H_{2 n}-H_{n}$
2. Show that H_{n} is divergent.
