Tutorial=3 Sequences of Real Numbers Department: Common Core in Mathematics and Computer Science Batna 2-University.

Exercise 1

Let $(u_n)_{n \in \mathbb{N}^*}$ be the sequence defined by :

$$u_n = \frac{n+2}{n+1}$$

- 1. Show that $(u_n)_{n \in \mathbb{N}^*}$ converges to 1.
- 2. Find an integer $n_0 \in \mathbb{N}$ such that all terms u_n of index $n \ge n_0$ are in the interval I =]0.98; 1.2[.

Exercise 2

Let $(u_n)_n$ a sequence of real numbers, and assume that it converges to a positive limit l > 0. Show that there exists some $N \in \mathbb{N}$ such that $\forall n \geq N : u_n > 0$.

Exercise 3

Study the nature of the following sequences and determine their possible limits:

1. $\sqrt{n^2 + n + 1} - \sqrt{n}$	$3. \ \frac{\sin n^2 + 2\cos n}{n^2}$	5. $(1+\frac{2}{n})^n$
2. $\frac{n\cos n}{n^3+1}$	4. $\frac{a^n - b^n}{a^n + b^n}; a, b \in]0, +\infty[$	6. $n^{3}(\tan\frac{3}{n} - \sin\frac{3}{n})$

Exercise 4

Let the sequences (x_n) , (y_n) , (u_n) , and (v_n) of real numbers such that:

- 1. $(\forall n \in \mathbb{N}, x_n \leq 2 \text{ et } y_n \leq 3) \text{ et } x_n + y_n \rightarrow 5$
- 2. $(\forall n \in \mathbb{N}, 0 \le u_n \le 1 \text{ et } 0 \le v_n \le 1) \text{ et } u_n \cdot v_n \to 1$

Show that the sequences defined above are convergent

Exercise 5

Let (u_n) be a sequence of real numbers

- 1. If $\lim u_n = +\infty$, show that $\lim E(u_n) = +\infty$.
- 2. If the sequence (u_n) converges, can we say that $E(u_n)$ converges?

Exercise 6

Let (u_n) be a sequence such that $u_0 = 4$ and $\forall n \in \mathbb{N}$: $u_{n+1} = 3 - \frac{4}{2+u_n}$.

- 1. Show that $u_n \geq 2$, for all $n \in \mathbb{N}$.
- 2. Prove that (u_n) is a monotonic sequence.
- 3. Study its convergence. If it converges, compute its limit.

Exercise 7

For any $n \in \mathbb{N}^*$, consider the sequence defined by: $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$

- 1. Compute $H_{2n} H_n$
- 2. Show that H_n is divergent.