Analysis 1 Limits and Continuous Functions

Department: Common Core in Mathematics and Computer Science Batna 2-University.

Exercise 1

Find the domain of definition of the following functions:

1. $f_{1}(x)=\frac{1}{\sqrt{x}+\sqrt{1-x}}$
2. $f_{2}(x)=\ln (\ln x)$
3. $f_{3}(x)=\frac{1}{E(x)-2}$
4. $f_{4}(x)= \begin{cases}1 /(1-x) & \text { si } x \geq 0 \\ 1 & \text { si. } x<0\end{cases}$
5. $f_{5}(x)= \begin{cases}1 /(3-x) & \text { si } x \geq 0 \\ x^{4}-x & \text { si. } x<-2\end{cases}$
6. $f_{6}(x)= \begin{cases}1 / x(2-x) & \text { si } x \geq 3 \\ 1 & \text { si. } x<0\end{cases}$

Exercise 2

Solve the following equations in \mathbb{R}

1. $\ln (x-1)+\ln (2 x-1)=0$
2. $2^{3 x}-3^{x+2}=3^{x+1}-2^{3 x+2}$
3. $(\sqrt{x})^{x}=x^{\sqrt{x}}$

Exercise 3

Prove that:

1. $\lim _{x \rightarrow 1} 3 x+1=4$
2. $\lim _{x \rightarrow+\infty} x^{2}+x-2=+\infty$
3. $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$

Exercise 4

Determine the following limits when x converges to 0 .

1. $\frac{\sqrt{1+x}-\left(1+\frac{x}{2}\right)}{x^{2}}$
2. $\frac{\sqrt{2 x^{2}+5 x+9}-3}{x}$
3. $x+1+\frac{|x|}{x}$
4. $\frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}$

Exercise 5

Determine the following limits when x tends to $+\infty$

1. $\frac{2 x^{2}+3 x-1}{3 x^{2}+1}$
2. $x-\sqrt{x^{2}-x}$
3. $\frac{\sqrt{x}}{\sqrt{x+\sqrt{x}}}$
4. $\frac{2 \ln (x)-\ln \left(3 x^{2}-2\right)}{x \sin \left(\frac{1}{x}\right)}$

Exercise 6

Let be the numerical function defined by:

$$
f(x)= \begin{cases}0, & \text { si } x \in]-\infty, 2] \\ a-\frac{b}{x}, & \text { si } x \in] 2,4] \\ 1, & \text { si } x \in] 4,+\infty[\end{cases}
$$

Determine the real parameters a and b so that the function f is continuous on \mathbb{R}. Then draw the graph of f.

Which of the following given functions $f_{i}: \mathbb{R}^{*} \rightarrow \mathbb{R}$ can be extended to become a continuous function at 0 .

1. $f_{1}(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & \text { si } x>0 \\ \frac{\sin (x)}{x}, & \text { si } x<0\end{cases}$
2. $f_{2}(x)= \begin{cases}x \cos \left(\frac{1}{x}\right), & \text { si } x>0 \\ \frac{1-\cos (x)}{x^{2}}, & \text { si } x<0\end{cases}$
3. $f_{2}(x)= \begin{cases}\frac{1-\cos (x)}{x^{2}}, & \text { si } x>0 \\ x \sin \left(\frac{1}{x}\right), & \text { si } x<0\end{cases}$

Exercise 8

Let $f:[0,2] \rightarrow \mathbb{R}$ be a continuous function such that: $f(0)=f(2)$. Show that there exists at least one element α of $[0,1]$ for which we have: $f(\alpha)=f(\alpha+1)$.

Exercise 9

Let $f, g:[0,1] \rightarrow \mathbb{R}$ be two continuous functions satisfying :

$$
\left\{\begin{array}{l}
f(0)=g(1)=0 \\
\text { and } \\
f(1)=g(0)=1
\end{array}\right.
$$

Show that for every $\alpha \geq 0$, we can associate an element $x_{\alpha} \in[0,1]: f\left(x_{\alpha}\right)=\alpha g\left(x_{\alpha}\right)$.

Exercise 10

Show that the function $f:\left[0, \frac{1}{4}\right] \rightarrow\left[0, \frac{1}{4}\right]$ defined by :

$$
f(x)=\frac{1}{x^{2}+4}
$$

is $\frac{1}{32}$-contraction.

Recall

A function f is said to be contracting on an interval I, if there exists a real $0<k<1$ such that: for all real x and y of the interval I we have :

$$
|f(x)-f(y)| \leq k|x-y|
$$

