and Computer Science Batna 2-University.

Exercise 1

By calculating the right and left derivatives of the following functions, determine which one is differentiable at a :

1. $f_{1}(x)=x^{2}+|x+1|, a=1,-1$
2. $f_{2}(x)=\left\{\begin{array}{ll}\frac{x}{1+e^{1 / x}}, & \text { si } x \in \mathbb{R}^{*} \\ 0, & \text { si } x=0\end{array} \quad, a=0\right.$

Exercise 2

Compute the derivatives of the following functions and precise their domains of definition.

1. $\sqrt[4]{x^{3}}$
2. $\frac{x}{x^{3}+1}$
3. $\frac{(1+\sqrt{x})^{3}}{(x+1)^{2}}$
4. $x \sqrt[n]{x}, n \in \mathbb{N}^{*}$
5. $x \ln |x+1|$
6. $x^{2} e^{1 / x}$
7. $\sin (\cos (5 x))$
8. $a^{x}, a \in \mathbb{R}^{+*}$
9. $(x+\ln x)^{n}, \quad n \in \mathbb{N}^{*}$
10. $x^{3} \ln (x)$
11. $x^{2} e^{x}$

Exercise 3

Study the differentiability on \mathbb{R} of the following functions:

1. $f(x)=x|x|$
2. $g(x)=\frac{1}{2+|x|}$
3. $h(x)= \begin{cases}x^{2} \cos \frac{1}{x}, & \text { si } x \neq 0 \\ 0, & \text { si } x=0\end{cases}$

Exercise 4

Compute the nth derivative of the following functions

1. $x \sqrt{x}$
2. $\ln (x)$
3. $e^{a x}$
4. $\frac{1}{1-x}$

Exercise 5

Let a and b be two real numbers and f be a function defined on $[0,+\infty[$ by

$$
f(x)= \begin{cases}2 \sqrt{x}, & \text { si } 0 \leq x \leq 1 \\ a x+b, & \text { si } x>1\end{cases}
$$

Find a and b so that f is differentiable on $] 0,+\infty[$

Exercise 6

Show that:

1. $\forall x \in] 0, \pi[: x \cos (x)-\sin (x)<0$
2. $\forall x \in] 0, \frac{\pi}{2}\left[: \frac{2 x}{\pi}<\sin (x)<x\right.$

In which of the following functions Rolle's theorem is applicable?

1. $x^{2}-2$, on $[-2,2]$
2. $|x-2|$, on $[1,3]$
3. $\sqrt{1-x^{2}}$, on $[-1,1]$
4. $\tan (x)$, on $\left[\frac{\pi}{4}, \frac{\pi}{3}\right]$

Exercise 8

Let f be a function defined by

$$
f(x)=e^{x^{2}} \cos (x)
$$

Show that for all $a>0$, the equation $f^{\prime}(x)=0$ has at least one solution on $[-a, a]$.

Exercise 9

1. apply the Mean value Theorem for the function $f: x \rightarrow x-x^{3}$ on the segment $[-2,1]$ and compute the value $c \in]-2,1[$ appearing in this formula.
2. apply the Mean value Theorem for the function $f: x \rightarrow x^{2}$ on the segment $[a, b]$ and compute the value $c \in] a, b[$ appearing in this formula.

Exercise 10

1. Using the Mean value Theorem, show that: $\frac{1}{1+x}<\ln (1+x)-\ln (x)<\frac{1}{x}$
2. Compute $\lim _{x \rightarrow+\infty} x[\ln (1+x)-\ln (x)]$
3. Deduce that: $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x}=e$
4. Compute: $\lim _{x \rightarrow-\infty}\left(1+\frac{1}{x}\right)^{x}$.
