2023/2024 Analysis 1	Exercise Sheet 5 Differentiable functions	Department: Common Core in Mathematics and Computer Science Batna 2-University.
Exercise 1 By calculating the differentiable at a	0	the following functions, determine which one is
1. $f_1(x) = x^2 -$	+ x+1 , a = 1, -1	2. $f_2(x) = \begin{cases} \frac{x}{1+e^{1/x}}, & si \ x \in \mathbb{R}^* \\ 0, & si \ x = 0 \end{cases}$, $a = 0$
Exercise 2		
Compute the deri	vatives of the following function	ns and precise their domains of definition.
1. $\sqrt[4]{x^3}$	4. $x\sqrt[n]{x}$, $n \in$	$\in \mathbb{N}^*$ 8. a^x , $a \in \mathbb{R}^{+*}$
2. $\frac{x}{x^3+1}$	5. $x \ln x + 1 $	$1 \qquad 9. \ (x + \ln x)^n, n \in \mathbb{N}^*$
	6. $x^2 e^{1/x}$	10. $x^3 \ln(x)$
3. $\frac{(1+\sqrt{x})^3}{(x+1)^2}$	7. $\sin(\cos(5x))$	$x)) 11. x^2 e^x$
Exercise 3		
	ntiability on $\mathbb R$ of the following t	functions:
1. $f(x) = x x $ 2. $g(x) = \frac{1}{2+x}$		3. $h(x) = \begin{cases} x^2 \cos \frac{1}{x}, & si \ x \neq 0 \\ 0, & si \ x = 0 \end{cases}$
2+		
Exercise 4	derivative of the following fund	tions
-	derivative of the following function $2 - \ln(x)$	
1. $x\sqrt{x}$	2. $\ln(x)$	3. e^{ax} 4. $\frac{1}{1-x}$
Exercise 5		
Let a and b be tw	to real numbers and f be a func	etion defined on $[0, +\infty)$ by
	$f(x) = \begin{cases} 2\sqrt{x}, \\ ax + \end{cases}$	$si \ 0 \le x \le 1$ b, si x > 1
Find a and b so t	hat f is differentiable on $]0, +\infty$.[
Exercise 6		
Show that:		
1. $\forall x \in]0, \pi[:$	$x\cos(x) - \sin(x) < 0$	
2. $\forall x \in]0, \frac{\pi}{2}[:$	$\frac{2x}{\pi} < \sin(x) < x$	

Exercise 7

In which of the following functions Rolle's theorem is applicable?

- 1. $x^2 2$, on [-2, 2] 3. $\sqrt{1 x^2}$, on [-1, 1]
- 2. |x-2|, on [1,3] 4. $\tan(x)$, on $[\frac{\pi}{4}, \frac{\pi}{3}]$

Exercise 8

Let f be a function defined by

$$f(x) = e^{x^2} \cos(x)$$

Show that for all a > 0, the equation f'(x) = 0 has at least one solution on [-a, a].

Exercise 9

- 1. apply the Mean value Theorem for the function $f: x \to x x^3$ on the segment [-2, 1] and compute the value $c \in]-2, 1[$ appearing in this formula.
- 2. apply the Mean value Theorem for the function $f: x \to x^2$ on the segment [a, b] and compute the value $c \in]a, b[$ appearing in this formula.

Exercise 10

- 1. Using the Mean value Theorem, show that: $\frac{1}{1+x} < \ln(1+x) \ln(x) < \frac{1}{x}$
- 2. Compute $\lim_{x \to +\infty} x [\ln(1+x) \ln(x)]$
- 3. Deduce that: $\lim_{x \to +\infty} (1 + \frac{1}{x})^x = e$
- 4. Compute: $\lim_{x \to -\infty} (1 + \frac{1}{x})^x$.