Résumé de cours M1 Microélectronique Module : Physique des composants semi-conducteurs 2 Structure MIS

Prof. Abdelhamid BENHAYA

Directeur du Laboratoire d'Electronique Avancée Responsable Salle Blanche

Département d'Electronique Faculté de Technologie Université Batna 2

Domaines d'intérêt:

Technologie des semi-conducteurs (Matériaux et dispositifs photovoltaïques)

e-mail: <u>a.benhaya@univ-batna2.dz</u> <u>benhaya_abdelhamid@yahoo.fr</u>

Tel: +213 (0)7 73 87 37 84

Structure MIS

BIBLIOGRAPHIE

Langue Anglaise

- 1. Marius Grundmann, The Physics of Semiconductors, Springer-Verlag Berlin Heidelberg, 2006.
- 2. S. M. Sze, Physics of Semiconductor Devices, JOHN WILEY & SONS, 2007.
- 3. <u>http://ecee.colorado.edu/~bart/book/book/contents.htm</u>

Langue Française

- 1. A. Vapaille et R. Castagné, Dispositifs et circuits semi-conducteurs, Physique et technologie, dunod, 1987.
- 2. CHRISTIAN ET HELENE NGÖ, Introduction à la physique des semi-conducteurs, Dunod, 1998.
- 3. H. MATHIEU, physique des semi-conducteurs et des composants électroniques, Dunod, 2001.
- 4. <u>https://www.polytech-lille.fr/cours-atome-circuit-integre/</u>
- 5. http://koeniguer.perso.cegetel.net/ips/ips.html

https://youtu.be/kJ9eOhbzY8g

Structure MIS

Plan

Réalisation de la structure

Structure MIS idéale

Structure MIS Réelle

1^{ère} Partie

Réalisation de la structure

Structure MIS

- Une structure MIS est un empilement de trois couches : métal, isolant et semi-conducteur.
- Dans le cas où l'isolant est l'oxyde de silicium, la structure est appelée structure MOS.

Structure MIS

Réalisation d'une structure MIS

Une structure MIS peut être réalisée selon les étapes suivantes :

- **Croissance ou déposition d'une mince couche diélectrique (400-1000A°)**
 - à la surface d'un substrat semi-conducteur par l'une des techniques suivantes :
 - Pulvérisation cathodique (Sputtering);
 - Oxydation thermique;
 - Dépôt par CVD.

Dépôt d'une électrode métallique, dite grille, à la surface du diélectrique par :

- Evaporation thermique ou par faisceau d'électrons (e-beam);
- Pulvérisation cathodique (Sputtering).
- Elaboration sur la face arrière du substrat semi-conducteur d'un contact ohmique permettant de polariser le semi-conducteur par rapport à la grille.

Structure MIS Idéale

N.B.: Dans cette étude, l'oxyde de silicium (SiO₂) est considéré implicitement comme isolant

Structure MIS Idéale

Une structure MIS idéale doit répondre aux conditions suivantes :

- Les bandes du semi-conducteur sont plates en l'absence d'une polarisation électrique ;
- L'oxyde est dépourvu de charges électriques ;
- Absence d'états électronique (états d'interface) à l'interface, oxyde-semi-conducteur.

Diagramme de bandes d'une structure MIS idéale non polarisée

Régime d'accumulation

Si la grille est polarisée positivement par rapport au semi-conducteur de type n, les électrons libres du semiconducteur s'accumulent à l'interface isolant semiconducteur, ainsi, une zone de charge d'espace négative apparaît au voisinage de cette interface.

$$Q_{sc}+Q_{m}=0$$

Régime de dépeuplement (désertion)

Si la grille est polarisée négativement par rapport au semi-conducteur de type n, les électrons libres du semiconducteur sont chassés de l'interface, ce qui conduit à une zone déserte chargée positivement qui équilibre la charge négative de l'interface métal isolant

Régime d'inversion :

Si on augmente la polarisation négative de la grille, la courbure des bandes du semiconducteur croit davantage.

Il arrive, pour une certaine polarisation , d'avoir, à l'interface, le niveau E_v plus proche de E_F que le niveau E_C n'est proche de E_F dans le volume du semi-conducteur.

Dans cette situation, la concentration des trous minoritaires à l'interface isolant semiconducteur devient supérieure à la concentration des électrons.

Il y a donc apparition d'une couche d'inversion séparée par une zone déserte des régions neutres du semi-conducteur ; c'est le régime d'inversion

N. B.: Le seuil de forte inversion se produit quand: $n_s = p_0 = N_A$ pour type p $P_s = n_0 = N_D$ pour type n

Résumé des différents régimes de polarisation

Caractéristique C(V) Régime d'accumulation

En régime d'accumulation, la capacité est réduite à celle de l'isolant:

$$C_I = \frac{\varepsilon_o \varepsilon_I}{d}$$
 en F/cm²

d: épaisseur de l'isolant

Caractéristique C(V)/Régime de bandes plates

En régime de bandes plates, la capacité est donnée par l'expression:

$$C_{FB} = \frac{\varepsilon_I \varepsilon_0}{d + \frac{\varepsilon_I}{\sqrt{2}\varepsilon_{SC}} L_D}$$

$$L_D = \sqrt{\frac{2\varepsilon_{SC}\varepsilon_0}{q p_0} \left(\frac{kT}{q}\right)}$$

L_D: Longueur de Debye

Caractéristique C(V)/Régime de déplétion

En régime de déplétion, la capacité est donnée par l'expression:

$$\frac{1}{C_{des}} = \sqrt{\frac{1}{C_I^2} + \frac{2 V_G}{q N_A \varepsilon_{SC} \varepsilon_0}}$$

V_G: Tension de polarisation

Caractéristique C(V)/Régime d'inversion

En régime d'inversion, la capacité est donnée par l'expression:

B. F.:
$$C_I = \frac{\varepsilon_I \varepsilon_0}{d}$$

• H.F. $\frac{1}{C_{min}} = \frac{1}{C_I} + \sqrt{\frac{4kT\ln\left(\frac{N_A}{n_i}\right)}{\varepsilon_{SC}e^2N_A}}$

Description de la caractéristique C(Vg)

Relation champ électrique-potentiel de surface

Relation densité de charge-potentiel de surface

Expressions des différentes capacités

Capacité de l'isolant:
$$C_I = \frac{\varepsilon_I \varepsilon_0}{d}$$

$$=\frac{\varepsilon_I\varepsilon_0}{d}$$

Semi-conducteur type p

Capacité du semi-conducteur BF

$$C_{SC} = \frac{dQ_{SC}}{d\psi_S} = \frac{\varepsilon_{SC}\varepsilon_0}{L_D} \cdot \frac{\left[\left(1 - e^{-\left(\frac{q\psi_S}{kT}\right)}\right) + \frac{n_0}{p_0}\left(e^{\left(\frac{q\psi_S}{kT}\right)} - 1\right)\right]}{\sqrt{\left[e^{-\left(\frac{q\psi}{kT}\right)} + \beta\psi - 1\right] + \frac{n_0}{p_0}\left[e^{\left(\frac{q\psi}{kT}\right)} - \beta\psi - 1\right]}}$$

Capacité du semi-conducteur HF

$$C_{SC-HF} = \frac{\varepsilon_{SC}\varepsilon_{0}}{\int_{0}^{\psi_{s}} \frac{qp_{0}\left(e^{-\frac{q\psi}{kT}} - 1\right)}{\frac{2kT}{qL_{D}}\sqrt{\left[e^{-\left(\frac{q\psi}{kT}\right)} + \beta\psi - 1\right] + \frac{n_{0}}{p_{0}}\left[e^{\left(\frac{q\psi}{kT}\right)} - \beta\psi - 1\right]}} d\psi$$

Expressions particulières de la capacité

Capacité des Bandes Plates (Flat Bands)

$$C_{FB} = \frac{\varepsilon_I \varepsilon_0}{d + \frac{\varepsilon_I}{\sqrt{2}\varepsilon_{SC}} L_D}$$

Capacité de désertion

$$\frac{1}{C_{des}} = \sqrt{\frac{1}{C_I^2} + \frac{2 V_G}{q N_A \varepsilon_{SC} \varepsilon_0}}$$

Représentation graphique de la capacité C_{BF}(V_G)

- 1. Choisir un ensemble de valeurs discrètes adéquates pour le potentiel de surface ψ_s ;
- 2. Pour chaque valeur de ψ_s , calculer Q_{sc}
- 3. Calculer V₁ au moyen de :

$$V_I = \frac{Q_M}{C_I} = -\frac{Q_{SC}}{C_I}$$

4. Déduire l'ensemble des valeurs de VG(ψs) grâce à l'expression :

$$V_G = V_I + \psi_S$$

- 5. Calculer, pour les mêmes valeurs de ψ_s , $C_{sc}(\psi_s)$ et $C(\psi_s)$;
- 6. A partir des valeurs discrètes $C(V_G)$, on peut tracer la caractéristique $C_{BF}(V_G)$.

3^{ème} Partie

Structure MIS Réelle

Structure MIS réelle

Dans ce cas, on va s'affranchir des hypothèses simplificatrices admises pour la structure MOS idéale, c.a.d.:

- □ Les travaux de sortie du métal et du semi-conducteur ne sont pas égaux ($\phi_m \neq \phi_{sc}$);
- □ II y a des états à l'interface isolant semi-conducteur ($N_{ss} \neq 0$);
- □ II y a des charges électriques dans l' isolant ($Q_{ox} \neq 0$).

Effet des travaux de sortie

A cause de la différence entre les travaux de sortie, les bandes ne sont pas plates même en l'absence d'une polarisation externe.

Pour retrouver la situation des bandes plates, il faut appliquer une tension V_{FB} (positive ou négative selon la situation) donnée par l'expression:

$$V_{FB1} = \frac{\phi_m - \chi - (Ec - EFsc)}{q}$$

N.B.: La caractéristique C(V) subit une **translation** selon l'axe des tensions.

Effet des charges de l'oxyde

1) Nature des charges

- Charges ioniques mobiles;
- Charges piégées dans l'oxyde;
- Charges fixes dans l'oxyde;
- Charges piégées à l'interface Si-SiO₂.

2) Influence des charges

En fonction de **leur position** dans l'oxyde, ces charges auront **une influence plus ou moins grande** sur la population électronique sous la grille.

L'influence est maximale lorsque les charges sont proches de l'interface Oxyde – Semi-conducteur.

Effet des charges de l'oxyde (suite)

1) Charge équivalente

Pour simplifier, on introduit une charge équivalente d'oxyde par unité de surface définie par:

$$\Delta V_g(V_S) = -\frac{Q_{ox}(V_S)}{C_{ox}} = V_{FB2}$$

2) Effet sur la caractéristique C(V)

N.B.: La caractéristique C(V) subit une <u>translation</u> selon l'axe des tension d'une quantité V_{FB2} .

Influence des états d'interface

Origine des états d'interface

Les états d'interface ont pour origine les liaisons pendantes et les impuretés restantes à la surface du semi-conducteur.

Règle d'occupation des états d'interface

La population de ces états obéit aux règles suivantes :

- Tous les états situés au-dessus du niveau de Fermi sont vides.
- Tous les états situés au-dessous du niveau de Fermi sont pleins.

Bilan des charges et répartition de la tension

 Si Qss est la charge piégée dans les états d'interface, alors cette charge va contribuer avec la charge Q_{sc} dans le semi-conducteur pour équilibrer la charge Q_m sur la grille métallique, ce qui donne :

 $Q_m = Q_{SC} + Q_{SS}$

• Dans ce cas, l'expression du potentiel devient :

$$V_G = \frac{Q_{SC+}Q_{SS}}{C_I} + \psi_S$$

Capacité de la structure

La capacité de la structure MIS, en présence des états d'interface, a donc comme expression :

$$\frac{1}{C} = \frac{1}{C_I} + \frac{1}{C_{SC} + C_{SS}}$$

avec:

$$C_{SS} = \frac{dQ_{SS}}{d\psi_s} = qN_{SS}$$

Où Nss est la densité d'états d'interface (cm⁻².eV⁻¹).

Schéma équivalent

Le schéma équivalent d'une structure MIS dépend fortement de la fréquence du petit signal appliqué à la structure.

Caractéristique C(V) de la structure MOS (Si-type p)

