

Université Batna2

Reconnaissance géotechnique

Licence: 3ème année Géologie de l'ingénieur et Géotechnique

Contenu de la matière :

Cours :

Chapitre 1 : Moyens de reconnaissances des sols

1.1. Programme d'une compagne de reconnaissances géotechniques.
1.2. Complémentarité des méthodes de reconnaissances des sols (inventaire des données existantes, observation sur terrain, les prospections géophysiques, les sondages mécaniques, forage et échantillonnage manuels des sols, puits et forages profonds, essais géotechniques en laboratoire pour les sols meubles et les enrochements, essais et mesures in situ en terrains meubles et en terrains rocheux).
1.3. Nombre et profondeur des sondages de reconnaissance en géotechnique.
1.4. Le rapport coût/fiabilité d'une compagne de reconnaissances géotechniques.

Chapitre 2 : Pénétromètre dynamique (DPT)

2.1. Appareillage et Principe de l'essai au pénétromètre dynamique ;
2.2. Courbe pénétrométrique,
2.2. Application aux fondations

Chapitre 3 : Essais de pénétration normalisée (SPT)
3.1. Appareillage et Principe de l'essai Standard pénétration test,

Chapitre 4: Pénétromètre statique (CPT)

4.1. Appareillage et Principe de l'essai au pénétromètre statique ;
4.2. Courbe pénétrométrique,
4.3. Application aux fondations

Chapitre 5 : Essai pressiométrique
5.1. Introduction.
5.2. Le pressiomètre de Menard.
5.3. Exécution de l'essai.

Chapitre I. Aperçu sur la reconnaissance géotechnique

1. Introduction

Les ouvrages géotechniques peuvent faire partie intégrante d'une structure, telles que les fondations superficielles, les fondations sur pieux et les parois moulées, comme ils peuvent former en eux-mêmes sur structure à part, telles que les tunnels, les murs de soutènement et les barrages.

INFRASTRUCTURE: Eléments constructifs

SUPERSTRUCTURE

Murs et baies
Plafond
Charpente
Couverture

Fig 1. Exemple des ouvrages de géotechnique

Dans tout projet de construction, une compagne de reconnaissance du sol est nécessaire. Au cours de cette opération, l'organisme chargé de l'étude géotechnique effectue lui-mêmeou confie à un laboratoire la réalisation des sondages pour l'extraction des échantillons de sol, ou d'appliquer les méthodes de reconnaissance géophysique. Par la suite, des essais sur le terrain (in-situ) ou sur des échantillons de sol emportés au laboratoire seront menés. A partir des résultats obtenus, une classification est proposée au sol en fonction de ses propriétés physiques et chimiques.

La géotechnique est l'étude de l'adaptation des ouvrages de génie civil aux sols et roches formant le terrain naturel. Elle traite de l'interaction sol / structures, et fait appel à des bases de géologie, de mécanique des sols, de mécanique des roches et de structures.

L'histoire de la géotechnique :

Aussiloin que l'on remonte dans le temps, les constructeurs se sont toujours servis du sol pour leurs constructions ou leurs fondations. Les Egyptiens, les Babyloniens, les Chinois et les Indiens construisaient des digues en se servant du sol des plaines inondables des rivières. Le sol et la roche ont servi, soit comme support, soit comme matériau, dans la construction des temples et des monuments de l'Antiquité. Plus tard, au Moyen Âge, les architectes et les constructeurs européens se sont heurtés aux difficultés que comportait l'érection de cathédrales et de monuments importants. L'exemple le plus notable est sans doute celui de la tour penchée de Pise (fig. 2). Quant aux Scandinaves, ils ont su mettre à profit les pieux de bois pour supporter les maisons et les quais qui devaient être érigés sur un sol mou et argileux.

Fig 2. Tour penchée de Pise, Italie (Gracieuseté de Braja Das)
Après avoir rencontré plusieurs problèmes liés aux fondations pendant la construction au cours des siècles passés, les ingénieurs et les scientifiques ont commencé à aborder les propriétés et le comportement des sols de manière plus méthodique à partir du début du XVIIIe siècle.
\rightarrow Vers 1776, on retient surtout le nom de Coulomb, qui s'est intéressé aux problèmes posés par la pression des terres sur les murs de soutènement. D'ailleurs, la théorie de la résistance au cisaillement du sol, porte son nom.
\rightarrow Au cours du siècle suivant, l'Allemand Otto Mohr reprend et développe plus avant la théorie ébauchée par Coulomb. Mohr élabore également des techniques graphiques utiles pour représenter en deux dimensions des contraintes s'exerçant dans un espace tridimensionnel, se sont les cercles de Mohr.
\rightarrow A la même époque, les ingénieurs français Collin, Darcy et Rankine ont fait d'importantes découvertes. Collin fut le premier à étudier la rupture dans les talus d'argile et la résistance au cisaillement de l'argile. Darcy, pour sa part, a formulé une théorie sur l'écoulement de l'eau dans les sables, qui sert encore de base à l'évaluation de la perméabilité des sols, tandis que Rankine a développé une méthode permettant d'estimer la pression des terres contre les murs de soutènement. L'utilisation d'un système de drainage horizontal et d'un remblai compact avec contreforts pour stabiliser la pente des tranchées de voies ferrées revient à l'Anglais Gregory.
\rightarrow Au début du XXe siècle, le suédois Atterberg présente les notions fondamentales des limites de consistance des argiles, notion encore utilisée aujourd'hui.
\rightarrow Le véritable précurseur de la mécanique des sols est en Autrichien, le professeur Karl Terzaghi. En 1925, il publiait le premier manuel moderne de mécanique des sols. A ce propos, l'expression mécanique des sols vient du mot allemand Erdbaumechanick qui faisait partie du titre de ce live. $\| l$ a écrit plusieurs ouvrages importants et plus de 250 articles et communications. Terzaghi a enseigné au collège Robert à Istamboul, à la technische Hochschule à vienne et àl'université Harvard de 1938 à 1956, année où il prit sa retraite. Par la suite, il continua d'agir à titre de consultant, jusqu'à sa mort, en 1963.
\rightarrow Le professeur Arthur Casagrande, qui enseigna à l'université Harvard de 1932 à 1969, a lui aussi contribué de façon importante à l'avancement des connaissances dans le domaine. Taylor, Peck, Tschebotarioff, Skempton et Bjerrum ont également contribué, par leurs travaux, au développement de la mécanique des sols. A partir de 1950, le domaine a connu des progrès très rapides et ceux qui ont participé à cet essor sont trop nombreux pour qu'il soit possible de les nommer tous ici.
\rightarrow Terzaghi et Casagrande sont les premiers à avoir enseigné la mécanique des sols et le génie géologique aux Etats-Unis. Jusqu'à la seconde Guerre mondiale, ce cours n'était offert que dans quelques universités et ne conduisait qu'à l'obtention d'un diplôme de premier cycle. Après la guerre, on a exigé que les étudiants inscrits au programme de génie civil suivent au moins un cours de géotechnique. Par la suite, plusieurs universités ont fait de la géotechnique un programme conduisant à al'obtention d'un diplôme d'études supérieures.
\rightarrow Encore aujourd'hui, il y a de nombreux développements, notamment dans le domaine de l'étude des effets sismiques, de la dynamique des sols, de l'utilisation de l'ordinateur pour résoudre les problèmes complexes de génie. On applique même aujourd'hui les probabilités et la statistique à la conception et à l'analyse géotechnique.

Ekig 3.2.Raph 6. Peck

2. Objectif de la reconnaissance

Pourquoi réaliser une étude géotechnique avant un projet d'aménagement?

Lors d'un projet d'aménagement, tout constructeur doit prendre en compte la nature des formations constituant le sous-sol du site où il est prévu de réaliser cet aménagement. Cette prise en compte permet d'adapter le projet au site envisagé, de définir le système de fondation de l'ouvrage avec le meilleur rapport sécurité/coût et de se garantir contre les effets de la réalisation des travaux sur les constructions voisines.

La reconnaissance du sol permet d'obtenir des informations qui vont aider l'ingénieur géotechnicien, à savoir:
\rightarrow La localisation des différentes couches de terrain (profondeur, épaisseur, extension et la nature de chaque couche de sol ou de roche) et de préciser la configuration générale de la zone à étudier.
\rightarrow La détermination des caractéristiques géotechniques de chaque couche.
\rightarrow La localisation des zones dangereuses.
\rightarrow Le choix de système de fondation qui pouvant transmettre les surcharges de la structure au sol, sans que ce dernier subisse des déformations pouvant gênant l'exploitation de l'ouvrage.
\rightarrow L'évaluation de la capacité portante de la fondation et estimation du tassement probable de la structure.
\rightarrow La détermination de la pression latérale pour les ouvrages de soutènement.
\rightarrow La détermination de la position de la nappe d'eau.

Fige 4. Cas de rupture de fondation
3. Les différentes étapes d'une campagne de recomnaissance

Pour tout aménagement de quelque importance, les études progressent par étapes, allantdu général au particulier. Trois stades principaux peuventêtre distingués:

3.1. L'étude préliminaire

Au préalable, une reconnaissance préliminaire doit être organisée. Elle consiste en un examendu terrain sur place et surcartes (cartes topographiques, géologiques et des photos aériennes). Généralementles échelles des cartes vont du $1 / 25000$ au $1 / 50000$. Dans cette étude :
\rightarrow On détermine sile projetest réaliste, réalisable età quelles conditions.
\rightarrow Elle doit préciserl'intérêtd des travaux à entreprendre.
\rightarrow Fixerles variantes possibles, donner une idée approximative des principaux ouvrages appuyéesur des schémas de principe.
\rightarrow Définir le degré de difficulté.
\rightarrow Produire une estimation financière approchée.
\rightarrow A ce stade, il n’est généralement pas procédé àdes reconnaissances.

Plusieurs éléments peuvent être exploités et peuvent fournir des renseignements très intéressants:
\checkmark Examen de la situation géographique. Cet examen peut fournir une idée générale surla formation du sol. Par exemple une plaine alluviale contient en général des couches hétérogènes correspondant à différentes époques de dépôt des matériaux alluvionnaires.
\checkmark Examen des cartes géologiques. La carte géologique peut fournir des renseignements surla nature, l'origine du sol et l'histoire de sa formation.
\checkmark Examen de la carte topographique. Les courbes de niveau donnentle relief duterrain, ce qui permet d'apprécierle potentielde glissement de terrain.
\checkmark Examen de la végétation. Certaines végétations
 poussent dans un sol bien précis. Par exemple, le pin pousse dans les sols sableux, le hêtre dans l'argile et les céréales dans le limon.
\checkmark Examen des constructions voisines. La présence des fissures sur les murs, par exemple, peut fournir une idée surla présence d'un risque de tassement différentielle (l'hétérogénéité du sol) ou sur un potentielde gonflement(présence des argiles),...etc.

3.2. Avantproiet sommaire (APS)

Au stade de l'APS:
\rightarrow Les échelles employées pour les relevés sur le terrain vont du 1/500 au 1/5 000 .
\rightarrow L'essentiel des travaux de reconnaissance géologiques et géotechniques se fait à ce stade.
\rightarrow Fixe définitivement les tracés et implantations des ouvrages et précise la consistance des travaux.
\rightarrow Etablit le prix de revient probable de la construction.
\rightarrow On détermine la profondeur, l'épaisseur, l'extension et la nature de chaque couche de sol ou de roche.
\rightarrow On détermine les caractéristiques physiquo-mécaniques des couches, ainsique le niveau piézométrique.
\rightarrow Cette étude doit conduire aux choix d'un système de fondation.
\rightarrow Il doit Mettre en évidence, tous les problèmes particuliers que risque de poser la réalisation du projet.
\rightarrow Permet de dresser un programme précis de la reconnaissance définitive.

Fig 6. Exemple d'une campagne d'investigation par différents moyens de reconnaissances d'un projet de construction.

3.3. Avant proiet détaillé (APD)

Cette reconnaissance permet au géotechnicien de répondre à tous les points figurant dans sa mission et son contenu dépend des résultats de l'étude de l'APS.
\rightarrow L'échelle des investigations peut descendre jusqu'au $1 / 100$ voire au $1 / 50$.
\rightarrow Débouche surla réalisation des travaux.
\rightarrow Les études géologiques et géotechniques ne portent plus, à ce stade, que surdes points de détail ou bien sur la mesure précise et ponctuelle de certains paramètres.
\rightarrow Réemploides matériaux de construction.
\rightarrow Etudie les problèmes de stabilité et définit de la pente des talus.
\rightarrow Détermination dutaux de travail et le type de fondation.
\rightarrow Recherche deszones d'emprunt.

Remarque \Rightarrow Dans la pratique, pour les ouvrages d'importance modeste et surdes sites homogènes, les deux phases d'étude sont souvent confondues.

