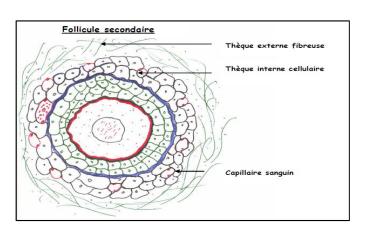
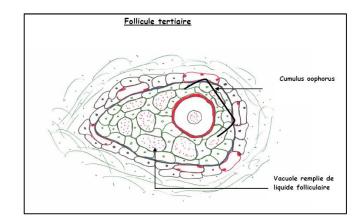

Année Universitaire 2019 /2020 1<sup>ére</sup> Année Pharmacie Module de biologie animale


## **EMBRYOLOGIE**; cours TD


## La folliculogenese

# **Développement des Follicules :**









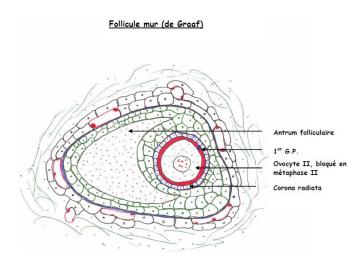



Fig. Évolution des follicules

Année Universitaire 2019 /2020

Faculté de Médecine

Département de Pharmacie

1<sup>ére</sup> Année Pharmacie

Module de biologie animale

#### Le follicule primordial (40 μm):

- Ovocyte I (<u>ovocyte I</u>, <u>bloque en prophase I</u>) entouré quelques cellules folliculeuses endothéliformes (aplaties)
- La folliculogenese débute à partir du <u>7eme mois</u> de la grossesse par la mise en place des <u>follicules primordiaux</u>.
- A la naissance le nombre de follicules primordiaux est de <u>1 millions par ovaire en moyenne</u>. De la naissance a la puberté, la folliculogenese est bloque, provoquant ainsi la dégénérescence de 60% du stock initial des follicules primordiaux.
- A la puberté leur nombre s'abaisse à 400000 par ovaires

# Le follicule primaire (45-50 µm)

- -La taille du follicule augmente,
- -un gros ovocyte I, bloque en prophase I;
- -une seule couche de cellules folliculaires cubiques ;
- -une zone pellucide entre l'ovocyte I et les cellules folliculaires ;
- -une thèque indifférenciée; et
- -une membrane de Slavjansky entre la thèque indifférenciée et les cellules folliculaires.

## Le follicule secondaire (50 à 180 µm)

- -Ovocyte I entouré de plusieurs couches de cellules folliculeuses formant la GRANULOSA
- -A ce stade, la thèque s'est différenciée en deux thèques bien distinctes : l'une interne cellulaire et l'autre externe fibreuse.

#### Le follicule tertiaire ou antral ou cavitaire (200 µm à 20 mm)

- -ovocyte I entouré de la GRANULOSA
- -Le follicule a presque atteint sa taille mature. Il change de forme pour devenir ovalaire.
- -L'ovocyte I, tres volumineux, migre dans une région épaisse de la granulosa,
- -pour devenir excentrique, fixé par un pont dit cumulus oophorus.
- -Les cellules de la thèque interne sont capables d'excréter les œstrogènes.
- -formation de la CAVITÉ ANTRALE ou ANTRUM (liquide folliculaire)

thèque interne secrète des Œstrogènes et la thèque externe forment le tissu conjonctif de soutien

#### Le follicule pré-ovulatoire ou follicule mûr ou follicule de De Graaf (20 mm)

- -Volumineux antrum bordé par la granulosa
- -Ovocyte I fait saillie dans l'antrum au sommet du cumulus oophorus
- -Ovocyte I entouré d'une seule assise de cellules folliculeuses = corona radiata
- -Il atteint sa taille mature qui est de l'ordre de 2.5 cm.
- -Quelques heures avant l'ovulation, l'ovocyte I achève sa division réductionnelle et donne l'ovocyte II (n chr.) bloque en métaphase II et le premier globule polaire.
- -Sous l'influence d'une décharge de la L.H. et de la F.S.H, élaborées par
- l'antéhypophyse, et les forces exercées par le liquide folliculaire l'ovocyte II, l'ovulation est mise en place

### Corps jaune

- Le follicule dehiscent se cicatrise formant ainsi une glande endocrine temporaire dite corps jaune.
- -Les cellules de la granulosa du corps jaune deviennent lutéales, capables de synthétiser la progestérone.

Université Moustafa Benboulaid-BATNA 2 -Faculté de Médecine

1<sup>ére</sup> Année Pharmacie

Département de Pharmacie

Module de biologie animale

Année Universitaire 2019 /2020

-Les cellules de la thèque interne synthétisent toujours les œstrogènes. Le corps jaune peut évoluer de deux manières différentes a savoir :

- > en l'absence de fécondation : le corps jaune est dit progestatif, sa durée de vie est de <u>14 jours</u> ; et
  - ➤ en cas de fécondation : le corps jaune est dit gestatif, sa durée de vie est de 3 mois. Ensuite, il dégénère et le relais de la synthèse des stéroïdes est pris par les cellules du syncytiotrophoblaste du placenta.

# **Corps blanc (corpus albicans)**

Dans l'ovaire, la dégénérescence du corps jaune donne le corps blanc, qui sera phagocyte par les cellules phagocytaires.